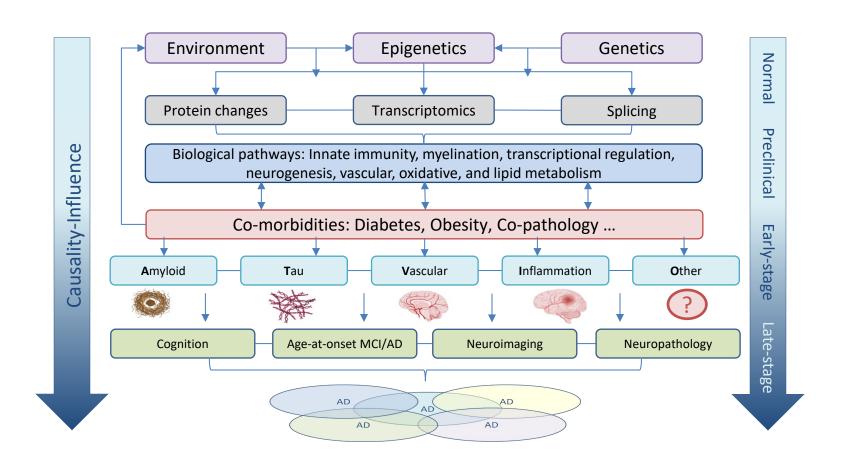


Sex Differences in Brain Disorders: Emerging Transcriptomic Evidence and Implications for Therapeutic Development

Nilüfer Ertekin-Taner, M.D., Ph.D. Professor of Neurology and Neuroscience Mayo Clinic Florida


National Academy of Sciences, Engineering, Medicine Part B: Neurodevelopmental and Neurodegenerative Disorders


September 23rd, 2020

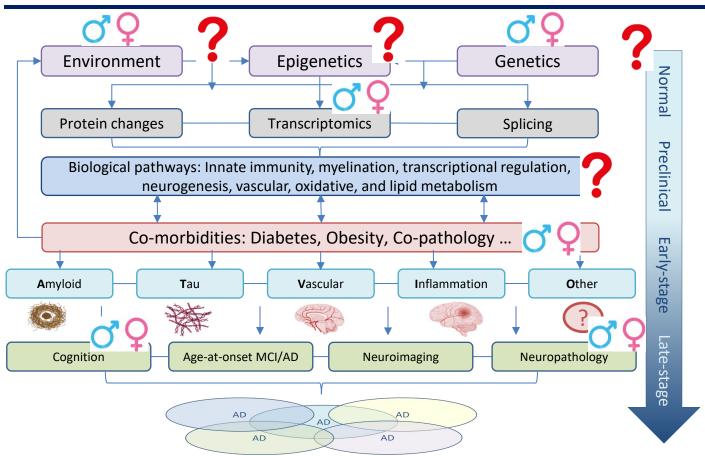
A (Simplified) Model of Neurodegenerative Diseases

A (Simplified) Model of Neurodegenerative Diseases

Evidence for Sex Differences in Alzheimer's Disease – "It's complicated"

Epidemiology:

- Women have 2x lifetime risk of Alzheimer's disease (AD) than men.
- Higher prevalence in women-but not all geographical regions.
- Higher incidence in low/middle income countries for women.
- Suggested explanations: Lower education in women, survival bias against men (death due to cardiovascular disease higher in middle age), genetic, hormonal, but no definitive studies.


Symptomatology:

- Women with AD show higher rates of cognitive decline.
- Some studies show greater rates of behavioral symptoms and dependence in women with AD.

Neuropathology:

- Some but not overwhelming evidence for differences in tau or Aß by neuropathology or biomarker studies (CSF, imaging).
- However, for given AD neuropathology or biomarker levels, women have higher odds of dementia and faster cognitive decline.

Sex Differences – Knowledge Gaps

- Effect of sex-differences in environment on epigenome -> transcriptome -> disease pathways.
- Impact of lifelong changes in hormonal status.
- Longitudinal changes in peripheral transcriptome -> disease progression/outcomes.
- Sex differences in multiethnic populations.

Sex Differences in Brain Disorders – Bridging the Gap to Therapies

Establish and enhance well-powered longitudinal cohorts:

- Peri-menopausal to post-menopausal aged women and age-matched men.
- Repeated measures of clinical, cognitive, biomarker outcomes.
- Peripheral (blood, saliva, CSF) multi-omics (transcriptome, epigenetic, proteome, metabolome)
 and genetic data.
- Ideally matched brain tissue/data.
- Enhance inclusion of underrepresented populations.

Integrative analyses:

- Effects of hormonal status, education, socio-economic factors on multi-omics and disease outcomes.
- Role of genetic factors on multi-omics and (eQTL, mQTL, pQTL) disease outcomes.
- Sex-stratified and sex-interaction analysis of all data (in addition to sex-adjusted analysis).

Model systems to study sex-differences:

- Investigate role of chromosomal sex, gonadal sex and hormones on disease-related outcomes, transcriptional and epigenetic changes in brain and peripheral tissue of model systems.
- Study effects of chromosomal sex in iPSC-based neuronal and glial cellular and organoid models based on samples collected from male and female participants from multi-ethnic groups who represent the full disease spectrum.