

The BRAIN Initiative Cell Census Network: Applications Toward Understanding Sex Differences

John Ngai, Ph.D.

Director, NIH BRAIN Initiative

NAS Forum on Neuroscience and Nervous System Disorders September 23, 2020

The NIH BRAIN Initiative

NINDS, NIMH, NIA, NIDA, NEI, NIBIB, NIAAA, NICHD, NIDCD, NCCIH

Goal: to develop and apply new tools for understanding how neural circuits underlie complex behaviors in health and disease

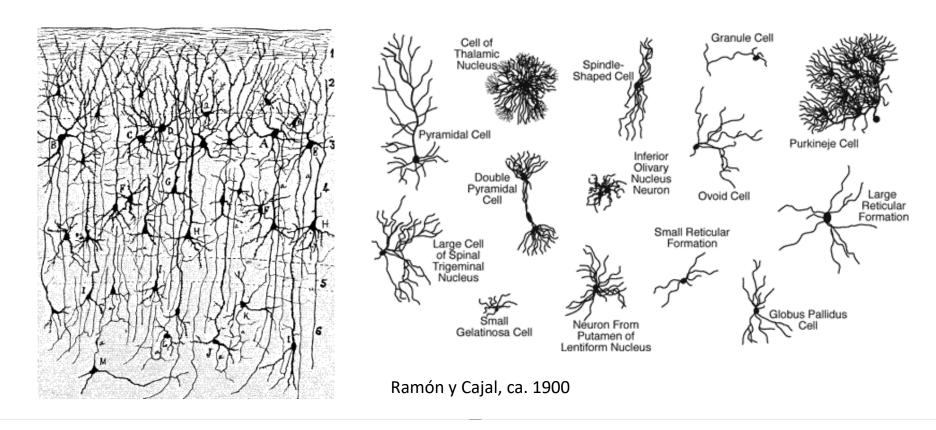
- Leverage technological innovations to enable new discoveries about neural circuit function
- Use these discoveries as a foundation for new therapeutic strategies for human brain disorders
- Disseminate and democratize technologies for basic discovery and clinical applications

BRAIN 2.0 Transformative Projects

- Phase III Brain Cell Census
 - Shift emphasis to construct a human brain cell atlas
 - Will build on success of BICCN mouse cell census
- Next-Generation Technologies for Brain Microconnectivity Analysis
 - A wiring diagram of the brain at multiple scales and species
- Organizing Resources for Brain Cell Type Access and Manipulation Across Species (cell type-specific armamentarium)
 - Develop tools for cell access in rodent and NHP brains, human cells and tissue
 - Long-term goal: new therapeutic strategies for human brain disorders
 - First RFA (RFA-MH-20-556) just issued!

Motivation for a brain cell census

We need a "parts list" for the brain

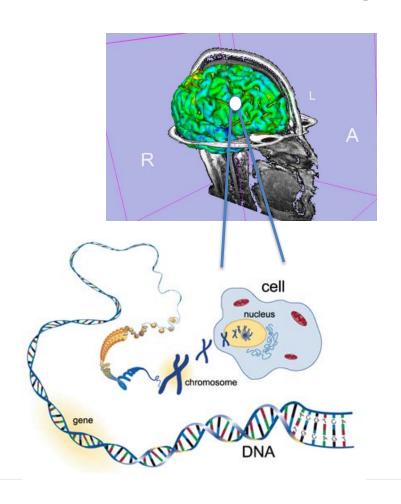


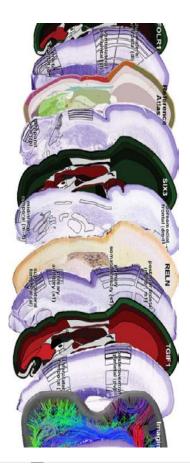
Understanding how a circuit functions requires knowledge about its constituent components

The BRAIN Initiative® Motivation for a brain cell census

A century-old unsolved problem

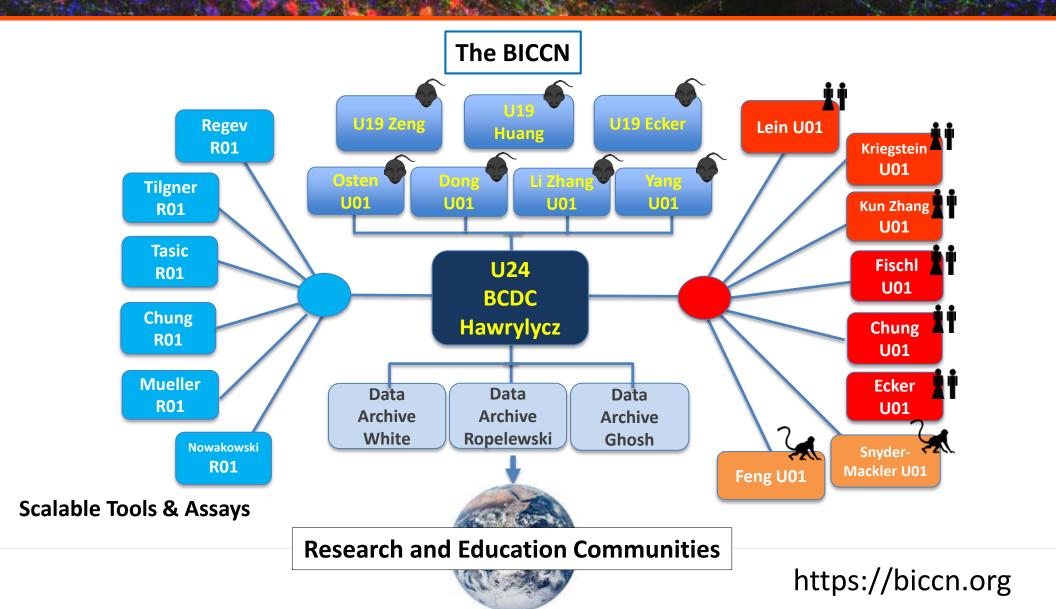
Neural circuits in the brain are made up of 100's if not 1000's of different cell types...

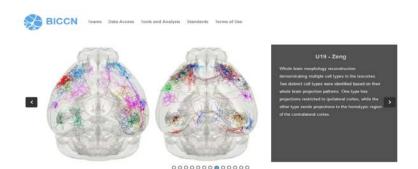



...we need a systematic way to identify and classify them

The BRAIN Initiative The BRAIN Initiative Cell Census Project

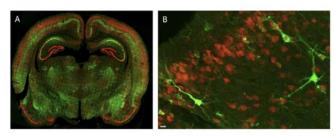
Toward Building Integrated Brain Cell Atlases




- **Molecular Signatures (RNA**seq, ATAC-seq, mC-seq, FISH, Immunostaining, etc.)
- **Anatomy** (cell location, size, morphology, synapses, cell type composition and microenvironment, etc.)
- **Neural Circuits** (long distance projections, local circuits, etc.)
- **Functional Measures** (electrophysiology, calcium and voltage imaging, etc.)

The BRAIN Initiative The BRAIN Initiative Cell Census Network

The BRAIN Initiative® BICCN Data Infrastructure Working Group


NPFs Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative - Cell Census Network (BICCN) aims to provide researchers and the public with a comprehensive reference of the diverse cell types in human, mouse, and marmoset brain. A network of integrated centers and laboratories including U01, U19 data centers, R24 data sections, and a U24 Brain

BICCN Data

	Human	Mouse	Marmoset	Transcriptomic	Epigenomic	Anatomy/Morphology	Physiology
U01 Chung	~					~	
U01 Dong		~				~	
U19 Ecker		~			~		
Callaway		~				~	
Dong		~				~	
Ren		~			~		
U01 Fang			~			-	
McCarroll			~	~			
U01 Fischi	~					~	

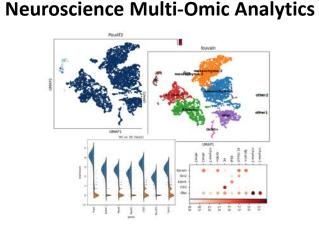
https://biccn.org

A Confocal Fluorescence Microscopy Brain Data Archive

https://www.brainimagelibrary.org

DANDI: Distributed Archives for

DANDI is a platform for publishing, sharing, and processing neu data funded by the BRAIN Initiative. The platform is under const an initial demo shown at SFN 2019 in Chicago.


Neurophysiology Data Integration

2020 02 03:06

2019 10 19-23

2019 07 22 MIT, Dartmouth, and Kitwan received BRAIN Initiative award for see all News

with us at the INCF booth prior to SFN.

https://gui.dandiarchive.org

https://nemoanalytics.org

Neuroscience Multi-Omic Archive

A BRAIN Initiative resource: The neuroscience multi-omic data archive

- . Levels of cytosine modification

https://nemoarchive.org

Modular Genetic Control of Sexually Dimorphic Behaviors

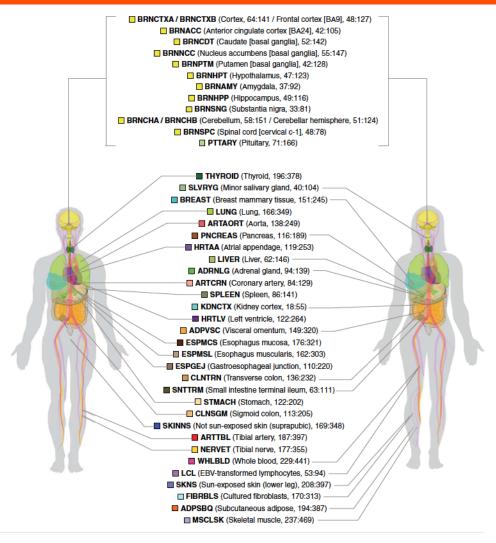
Xiaohong Xu,^{2,4} Jennifer K. Coats,^{1,4} Cindy F. Yang,¹ Amy Wang,^{2,5} Osama M. Ahmed,¹ Maricruz Alvarado,² Tetsuro Izumi,³ and Nirao M. Shah^{1,2,*}

Cell 148, 596-607, February 3, 2012 @2012 Elsevier Inc.

- Shah and colleagues used bulk RNA profiling to identify genes showing sexually dimorphic expression in mouse amygdala and hypothalamus
- Mice with targeted deletions in genes identified in this screen exhibited deficits in *specific* sex-specific behaviors
- Strong evidence that sex-specific innate behaviors are governed by discrete genetic programs

Molecular Analysis of Sexual Dimorphism

RESEARCH ARTICLE SUMMARY


HUMAN GENOMICS

The impact of sex on gene expression across human tissues

Meritxell Oliva*†, Manuel Muñoz-Aguirre†, Sarah Kim-Hellmuth†, Valentin Wucher, Ariel D. H. Gewirtz, Daniel J. Cotter, Princy Parsana, Silva Kasela, Brunilda Balliu, Ana Viñuela, Stephane E. Castel, Pejman Mohammadi, François Aguet, Yuxin Zou, Ekaterina A. Khramtsova, Andrew D. Skol, Diego Garrido-Martín, Ferran Reverter, Andrew Brown, Patrick Evans, Eric R. Gamazon, Anthony Payne, Rodrigo Bonazzola, Alvaro N. Barbeira, Andrew R. Hamel, Angel Martinez-Perez, José Manuel Soria, GTEx Consortium, Brandon L. Pierce, Matthew Stephens, Eleazar Eskin, Emmanouil T. Dermitzakis, Ayellet V. Segrè, Hae Kyung Im, Barbara E. Engelhardt, Kristin G. Ardlie, Stephen B. Montgomery, Alexis J. Battle, Tuuli Lappalainen, Roderic Guigó, Barbara E. Stranger*

Oliva et al., Science 369, eaba3066 (2020) 11 September 2020

- 13,294/35,431 genes were found to show sex-specific differences in expression
- Most differences are restricted to 1-2 tissues
- Differences are subtle (average fold-change = 1.04 for autosomal genes)

GTex Project: genetic analysis & bulk RNA profiling of human tissues from 838 individuals (557 male, 281 female)

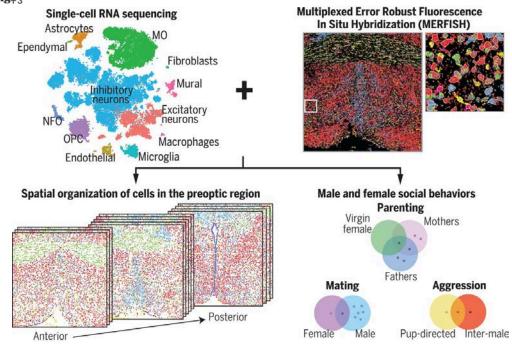
Single Cell RNA Sequencing:

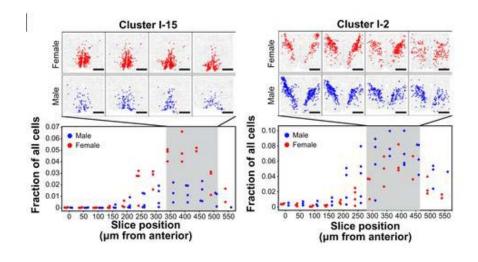
Unmixing the smoothie to identify and characterize the components

Bulk RNA-seq

Single cell RNA-seq

VS

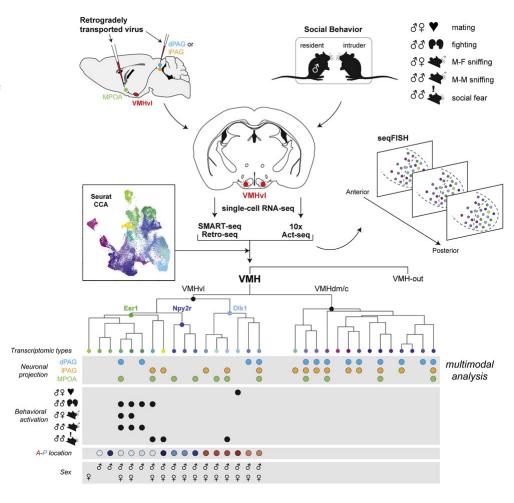

Single cell analysis: a powerful tool for discovery


Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region

Single-cell RNA-seq + spatial RNA profiling

Jeffrey R. Moffitt*, Dhananjay Bambah-Mukku*, Stephen W. Eichhorn†, Eric Vaughn†, Karthik Shekhar, Julio D. Perez, Nimrod D. Rubinstein, Junjie Hao, Aviv Regev, Catherine Dulac‡§, Xiaowei Zhuang‡§

Science **362**, 792 (2018)



Single cell analysis: a powerful tool for discovery

Multimodal Analysis of Cell Types in a Hypothalamic Node Controlling Social Behavior

Dong-Wook Kim, 1,2,4 Zizhen Yao,5 Lucas T. Graybuck, 5 Tae Kyung Kim, 5 Thuc Nghi Nguyen, 5 Kimberly A. Smith, 5 Olivia Fong, 5 Lynn Yi, 2 Noushin Koulena, 2 Nico Pierson, 2 Sheel Shah, 2 Liching Lo, 2,3,4 Allan-Hermann Pool, 2 Yuki Oka, 2 Lior Pachter, 2 Long Cai, 2 Bosiljka Tasic, 5 Hongkui Zeng, 5 and David J. Anderson 2,3,4,6,* Cell 179, 713–728, October 17, 2019 © 2019 Elsevier Inc.

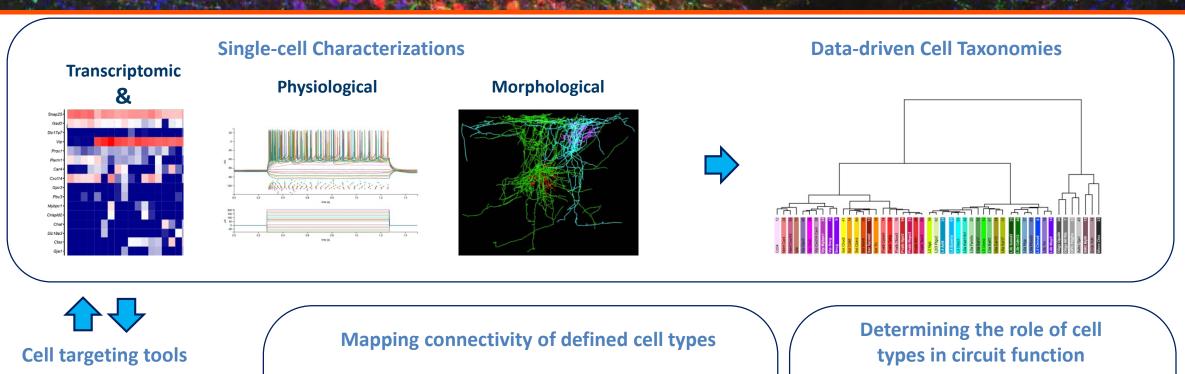
- Ventrolateral subdivision of the ventral medial hypothalamus (VMHvI) is the locus of innate and sexually dimorphic behaviors
- High depth single cell RNA sequencing allowed identification of 17 transcriptomically distinct cell clusters, including of rare cell types
- Small number of sexually dimorphic cell types
- Mapping of behaviors to specific cell types and projections is the exception rather than the rule

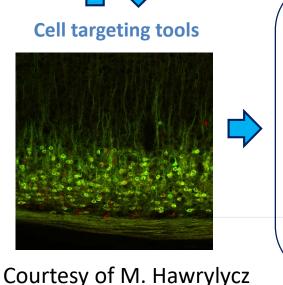
Identification of sexually dimorphic genes, neurons and circuits mediating innate behaviors

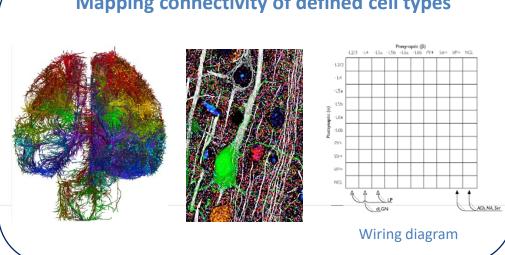
Opportunities

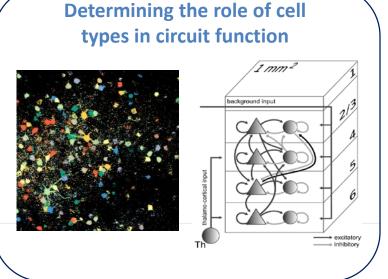
Discoveries supported by BRAIN lay the foundation for understanding sex differences in the nervous system

BRAIN-supported advances are unraveling the circuits and computations underlying innate and learned behaviors


- => Underpinnings of sex-specific behaviors
- => Sex-specific differences in circuits affected in neurologic and neuropsychiatric diseases
- => New therapies...




https://www.braininitiative.nih.gov



The BICCN: from single cell genomics to cell types, circuits and function

The U.S. BRAIN Initiative

The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative

- Mission: to enable and revolutionize our understanding of the human brain by accelerating the development and application of innovative technologies
- Partnership between five U.S. federal agencies & private foundations
- Announced by the White House in 2013, first awards in 2014
- NIH BRAIN Initiative:
 - US\$46M in 2014
 - US\$500M (budgeted) in 2020