

Modeling the Manufacturing Process in Regenerative Medicine

Theresa Kotanchek
Evolved Analytics LLC

Applying Systems Thinking to Regenerative Medicine- A Workshop

October 22-23, 2020

Session V:

Addressing Regenerative Medicine Manufacturing and Supply Chain Challenges with Systems-Level Approaches

Grand Challenges in Cell Manufacturing

- Lack of Reproducibility, Standards, and Quality-by-Design (QbD)
- What Quality Attributes Make a Cell Safe and Effective → What to Measure?
 - Which cells are "good" in the midst of heterogeneity and which are "bad"?
- How to Measure Critical Quality Attributes (CQAs), In-line, During Manufacturing?
- How to Grow Billions of Safe and Potent Cells from a Patient/donor?
- How to "Predict" Safety and Potency for Specific Indications and Patients?
- How to Purify, Store, Freeze, Package, and Transport Cells WITHOUT Compromising Quality?
- End-to-end Manufacturing at Low Cost and High Quality?
- Lack of Trained Cell Manufacturing Workforce

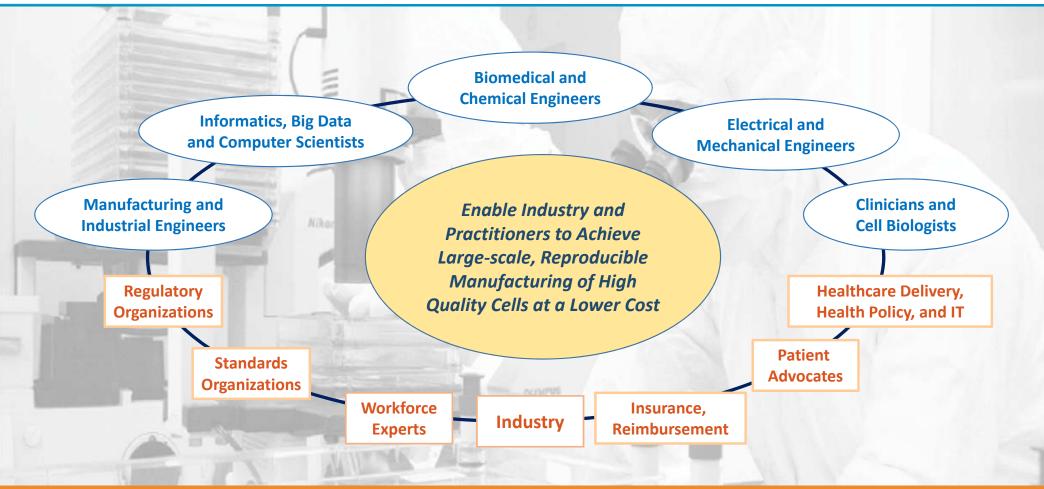
Adopted from "Achieving Large-scale, Cost-effective, Reproducible Manufacturing of Therapeutic Cells: A Technology Roadmap to 2025" — The NIST/AMTech National Cell Manufacturing Roadmap

CMaT's Vision

To transform the manufacture of cell-based therapeutics into a large-scale, lower-cost, reproducible, and high-quality engineered process for broad industry and clinical use.

To become a visionary and strategic international resource and an exemplar for developing new knowledge, innovative technologies, diverse workforce and enabling standards for cell-production and characterization processes.

Bringing All Stakeholders On-deck



CMaT is Strategically Positioned to Address the Challenges Faced by the Emerging Cell Manufacturing Industry

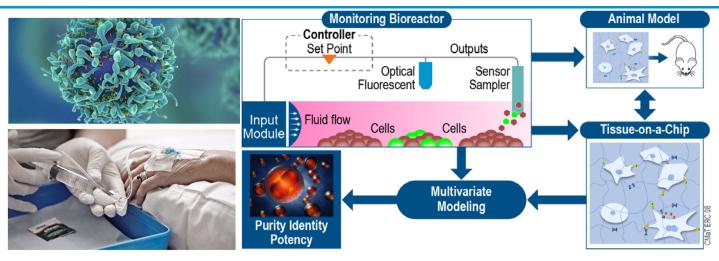
- Multivariate CQAs maximize efficacy and safety
- Multivariate CPPs improve process control and reproducibility
- Real-time monitoring and predictive analytics
- Physiologically relevant, personalized assays (human)
- Standards, best practices
- Quality-by-Design (QbD) and Flexible Automation

- Lower failure risk and supply-chain risk
- Reduced need for scale-up through maximizing quality
- Lower cost through maximizing safety
- Readily available highly trained, and diverse workforce
- Automation

- Develop faster and more efficient bioprocesses
- Lower failure rate
- Faster batch release
- Direct input from industry and faster translation to industry and clinic
- Readily available, highly trained, and diverse workforce

- Ideal supply-chain and logistics model
- "What if" models allow faster response to issues
- Nimble operation and adaptability to changing science and industry needs
- Inclusive Innovation ecosystem of all stakeholders

Dynamic Sampling Platform



How do we measure & predict quality?

Engineer reproducible, predictive measurement & assay technologies that enable batch & continuous monitoring of cell state & product

- non-destructive, in-line, closed system analysis using real-time sampling, reporters/ sensors & imaging tools as process analytical technologies
- "potency-on-a-chip" 3D disease & organoid models

Systems

Engineered Manufacturing Systems (Test-Beds)

MSCs for immune modulation and musculoskeletal applications

T cells for cancer immunotherapy applications

iPSC-cardiomyocytes for cardiac regeneration applications

Products & Outcomes:

- Transformative innovations in cell manufacturing technologies
- Inclusive workforce
- Industry standards

Requirements

Industry, Clinicians, Patients, NIST, FDA, & Reimbursement Experts

- Integrated, closed manufacturing system with real time analytics
 Predictive systems analysis of CQA and CPP for scale-up or scale-out manufacturing
- and workforce development
- Education, outreach, inclusivity.
 Social and regulatory policy. healthcare economics
- of therapeutic cells
- · Predictable safety and efficacy
- Lack of quality-driven manufacturing

Barriers

- Regulatory pathway, and standards
- · Large-scale, low cost, manufacturing
- · Trained workforce

The Three **Plane Chart**

Enabling Technologies

Engineered Manufacturing Systems (Test-Beds)

Thrust 2

Disease/tissue-on-a-chip

Biosensors, imaging,

in-line monitoring

MSCs from bone marrow and cord tissue

Therapeutic T cells

iPSC-derived

cardiomyocytes

- Thrust 3 Process modeling and supply chain simulations
- Engineering biomaterials and bioreactors

Deliverables:

New tools and technologies

Barriers

- Lack of rapid, physiologically relevant potency/safety assays
- Lack of real time monitoring of CQAs and CPPs during manufacturing
- 3 Difficult scale-up/out, supply chain/logistics

TECHNOLOGY BASE

TECHNOLOGY INTEGRATION

Fundamental Insights System Requirements

System Requirements

Technology Building Blocks

Fundamental Knowledge

Thrust 1

- New systems-driven multiomics pipeline for cell characterization
- Multi-variate discriminators of cell quality (potency and safety)

Thrust 1

Big data analytics tools for

predicting cell function

· Multi-omics platform integration

Thrust 2

- Minimal models of tissue/disease
- In vitro vs. in vivo safety/potency

Thrust 3

- Effects of materials and bioreactors on cell quality
- Process/supply-chain and logistics requirements for living cells and reagents

Deliverables:

New scientific knowledge

Barriers

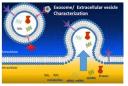
- Lack of Critical Quality Attributes (CQA) and Critical Process Parameters (CPP)
- Poor understanding of in vitro/in vivo correlation of cell properties/function
- Lack of understanding of (a) scaling effects on cell quality, (b) supply chain

KNOWLEDGE BASE

Variability assessment and omics characterization of CAR-T cells through an integrative computational pipeline

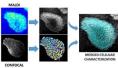
Project 2, Thrust 1, TB = MSC (Stice, Kemp, Platt, Edison, Fernandez)

Exosome protein and cell surface signature: a critical quality attribute for MSCs



Project 3, Thrust 1, TB = All (Kemp, Fernandez, McDevitt, Palecek, Mortensen)

modalities with omics characterization



Project 1, Thrust 3, TB = T Cell / iPSC (Ashton, Kam, Levine, Brockbank)

Analysis of Cryopreservation's Effect on Cell Isolates and Manufactured Therapeutic **Phenotypes**

Source cells,

materials,

and reagents

Project 1, Thrust 2, TB = T Cells

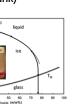
Predictive CAR-T Potency assay

for solid tumors using tumor-on-

(Saha, Roy, Karumbiah,

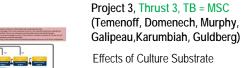
Torres-logo)

a-chip models



Project 2, Thrust 3, TB = All (Wang, White, Levine, Ashton, Saha, Roy, Levine)

Development of Novel Supply Chain and Process Modeling Algorithms, Methods, and Tools for Reagents, Materials, and Cell Products



Cryopreservation,

storage, release,

transportation,

delivery

Formulation

and filling

Parameters on MSC Secretome

Downstream

Processing

Upstream

Processing

Release

testing,

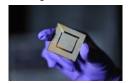
delivery

and

administration

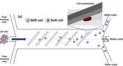
Project 5, Thrust 2, TB = MSC and T Cells (Ong, Guldberg, Roy, Temenoff)

Magnetoelastic Microcarriers for Realtime Tracking of Cell Loading



Project 4, Thrust 2, TB = T cells, All (Sulchek, Zhang,

Development of realtime microfluidic and flexible electronics biosensors for monitoring cell and culture attributes during manufacturing



Cross-cutting Engineered System

Closed-loop cell manufacturing platform with integrated, real-time analytics, potency measurement, and feedback process control

Initial culture purification, and selection

gene-

Project 2, Thrust 2, TB = All

(Fedorov, Resto, Guldberg)

Dynamic Sampling Platform

(DSP) for Cell State

Monitoring

Analysis and Bioreactor

Dynamic Sampling Platform (DSP)

transduction. modification, genome editing

Cell Cell expansion and/or differentiation

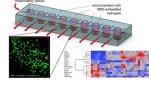
and

pooling, separation enrichment

Harvesting,

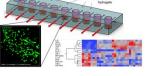
Project 3, Thrust 2, TB = MSC (Garcia, Lam, Mortensen)

Tissue-on-a-Chip Platform for Mesenchymal Stem Cell Potency

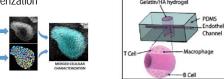


Joint Project, Thrust 2 and 3, TB = iPSC-CM (Palecek, Domenech, Kamp, Kane. McDevitt, Torres-Lugo, De la Fuente)

Improving the Quality of iPSC-derived Cardiomyocytes by Providing Intercellular Cues during Scalable Manufacturing

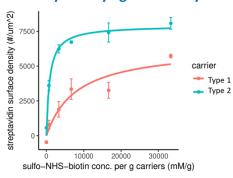


Integration of imaging

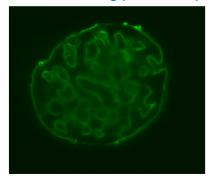


Degradable Microscaffold (DMS) Microcarrier Cultures Can Expand More Central Memory & LN Homing T cells

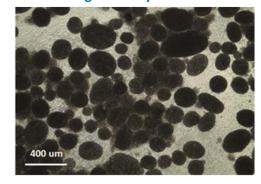
Ability to vary ligand density



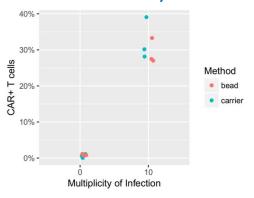
Uniform Coating (FITC-Biotin)



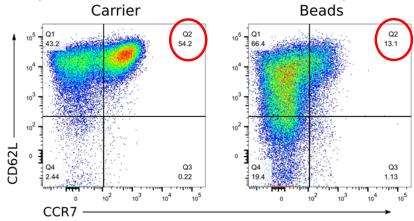
High Density Culture



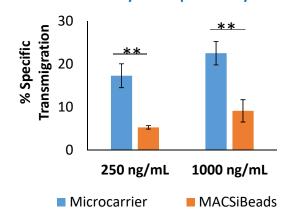
CAR Transduction Efficacy is Similar



Representative % of CD62L+CCR7+ Central Memory T cells



CCL21 chemotaxis assay: More potentially LN homing T cells



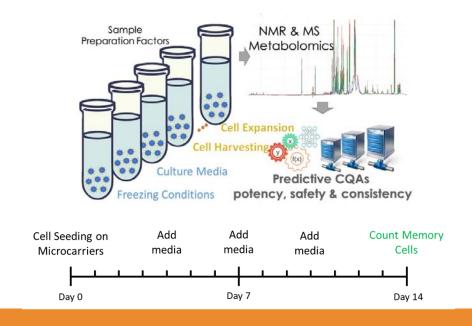
Nathan J. Dwarshuis,, Krishnendu Roy

T cell Characterization Project Aims

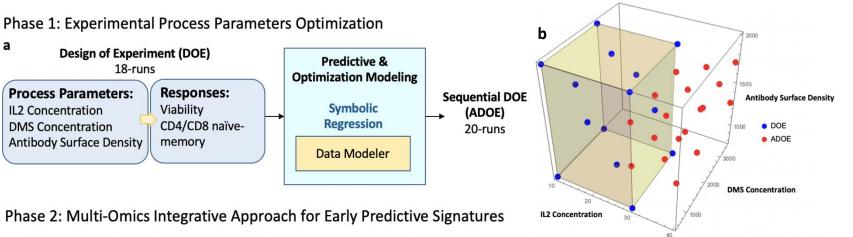
Development of a workflow to enable multi-omics characterization and unbiased modeling of the end-product and early, predictive-signatures of quality during manufacturing

Understanding *variance*

Establishing CQAs & CPPs that are predictive of *potency*, *safety* and *consistency*

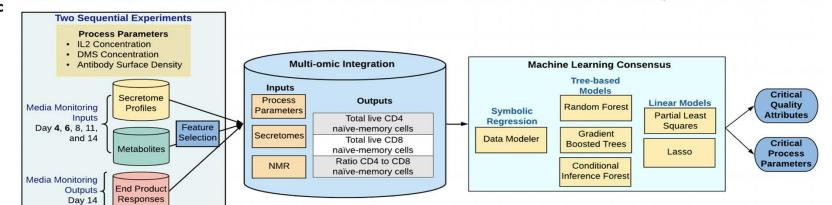


Key achievements



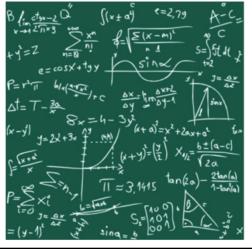
Data Challenges

High complexity – Heterogeneous – Unknown behavior Volume of data



Modeling Challenges

Apriori model structure
(linear vs non-linear)
Standalone vs
interactive effects
Prediction performance
vs overfitting
Interpretability
Computational
infrastructure

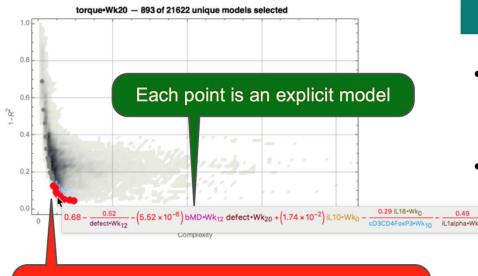


Modeling Options Are Determined By What's Known & What's Unknown

$\begin{cases} (x-y') & y = 2x + 3x & y' \\ (x-y') & y = 2x + 3x & y' \\ (x-y') & (x-y') = \frac{(y-y')^2}{2} & x_{1/2} = \frac{b \pm (a-c)}{\sqrt{2a}} \end{cases}$		Model Structure				
P=2×1 = 3,1415	$\tan(2a) - \frac{2\tan(a)}{1-\tan(a)}$	Known	Known	Unknown		
$= (y-1)^{\frac{1}{2}} $	SON EXTY	Linear	Non-Linear	????		
Driving	Known	Linear Regression	Non Linear Regression Parameter Estimation	Neural Networks SVM Random Forests Symbolic Regression		
Variables	Unknown	Symbolic Regression				

Evolution handles Symbolic Regression model development

- · Evolutionary computation automatically generates novelty from available data
- Solutions are found by simulating natural evolution & selection
- Rather then biological species being created, mathematical expressions are created
- Novelty is generated by the competition for high fitness of the mathematical expressions during the simulated evolution.
- Explicit algebraic, interpretable models are generated.
- Symbolic regression is an augmented intelligence hypothesis generator and optimizer.



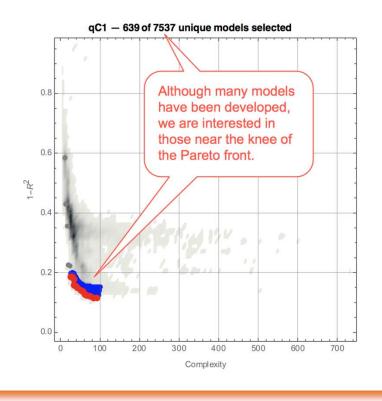
Models at the "knee" of the Pareto front provide best balance of complexity and accuracy

Select models with optimal performance & complexity

The Pareto Front

- Pareto front solutions are the best "bang-for-thebuck"
- Identifies trade-off between competing objectives of accuracy vs. complexity
- Unwarranted complexity is punished automatically
- Select models with optimal performance and low complexity

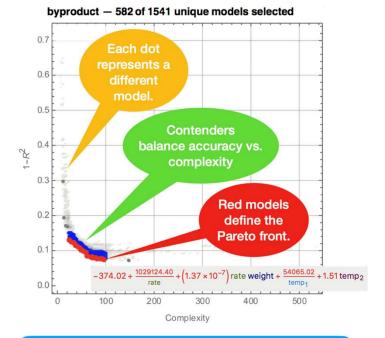
You can learn a lot from a model set ...



- Modeling Potential
- Complexity vs Accuracy Trade-off
- Number of Variables Required
- Variable Presence
- Variable Combinations
- Variable & Combination Distributions
- Metavariables

Big Data vs. Big Insight

- Data sizes
 - 2-10,000 variables
 - 10-1,000,000 records
- Automated hypothesis generation & refinement
 - Develop explicit algebraic models
 - Reward simplicity & accuracy
 - Focus on the good and simple models
- Many models are contenders
 - Exploit contenders for insight & guidance
- Iterate towards final model set
 - Focus on most impactful/useful variables
 - Implement trustable model from final good & simple models



We have to let the data determine the proper tradeoff of complexity vs. accuracy

Ensembles are Trustable Models

• Ensemble Creation

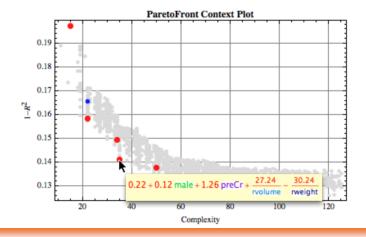
- · Start with interesting models
 - · reasonable accuracy & complexity
 - desirable variables and variable combinations and dimensionality
- Automatically chosen to maximize diversity of error residuals

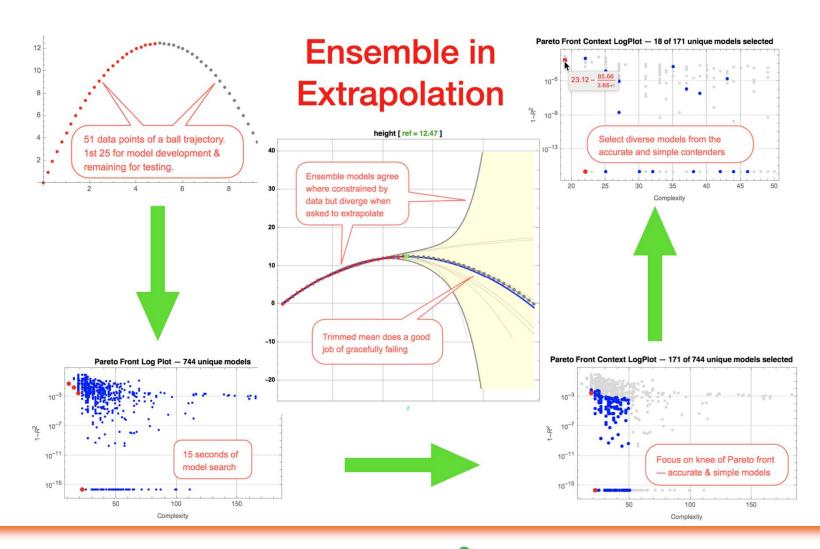
Ensembles

- · Agree where constrained by data
- Diverge when exposed to novel parameter conditions
- Guide decision making
- Enable active learning & design of experiments

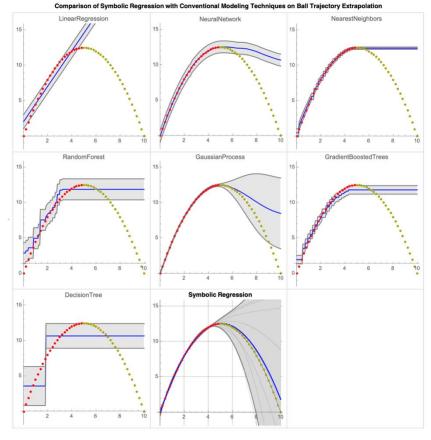
cr7POD

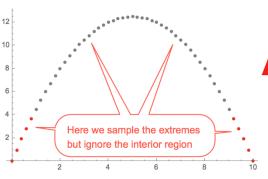
	Complexity	1-R ²	Function
1	15	0.197	0.61 + 1.08 preCr ²
2	22	0.159	0.24 + 0.16 (7.48 + male) preCr
3	22	0.166	0.40 - 0.27 (-3.55 - male) preCr
4	34	0.150	0.32 + 1.29 preCr + \frac{18.06 male}{rvolume} - \frac{18.78}{rweight}
5	35	0.141	$0.22 + 0.12 \text{male} + 1.26 \text{preCr} + \frac{27.24}{\text{rvolume}} - \frac{30.24}{\text{rweight}}$
6	50	0.138	$5.63 \times 10^{-2} + (2.04 \times 10^{-3}) \text{ bw} + 0.12 \text{ male} +$ $1.21 \text{ preCr} - (4.44 \times 10^{-4}) \text{ rvolume} + \frac{0.13 \text{ rweight}}{\text{rvolume}}$



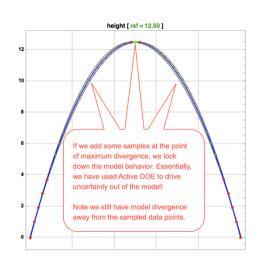


Machine Learning Comparisons





Active DOE

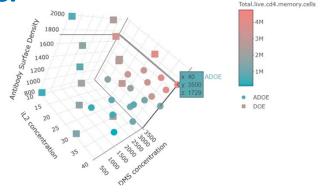


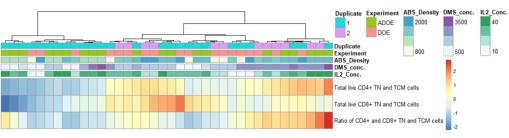


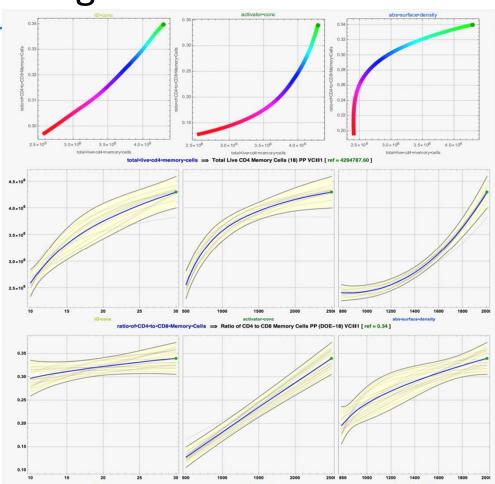
- Extrapolation can happen within the nominal data range
- Trustable models are especially important with multivariate models
- Trustable models are the foundation of Active DOE — targeting the next experiment to be the most informative

Significant Achievements

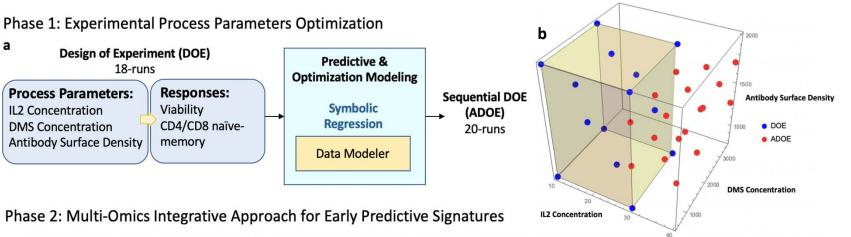
"Design of Experiments (DOE) identified optimum conditions for maximizing memory T cells."







Key achievements



Data Challenges

High complexity – Heterogeneous – Unknown behavior Volume of data

Two Sequential Experiments Process Parameters IL2 Concentration · DMS Concentration **Multi-omic Integration Machine Learning Consensus** · Antibody Surface Density Tree-based Inputs Models Critical Secretome Process Outputs **Linear Models** Quality Random Forest Media Monitoring Profiles Parameters **Symbolic Attributes** Partial Least Inputs Total live CD4 Regression Feature Squares Day 4, 6, 8, 11, naïve-memory cells Gradient Secretomes and 14 Selection Data Modeler Total live CD8 **Boosted Trees** Critical Metabolites naïve-memory cells Lasso Process Ratio CD4 to CD8 Parameters NMR Conditional naïve-memory cells nference Forest Media Monitoring End Product Outputs Responses Day 14

Modeling Challenges

Apriori model structure
(linear vs non-linear)
Standalone vs
interactive effects
Prediction performance
vs overfitting
Interpretability
Computational
infrastructure

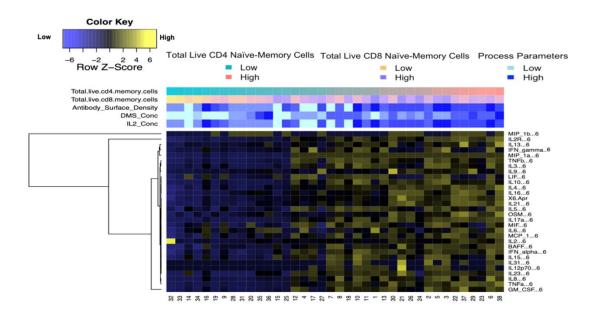
Predictive Performance

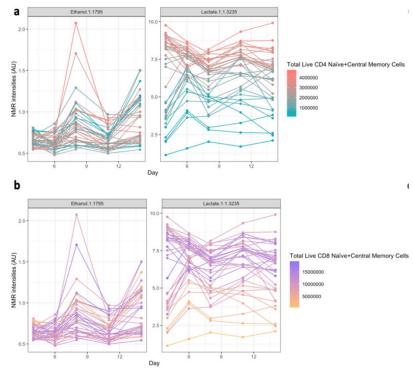
- Machine Learning Comparison
 - Conditional Inference Forest
 - Random Forest
 - Gradient Boosted Trees
 - Symbolic Regression

Single and Multi-omics Analysis - R ² Prediction Performance							
Endpoint Responses		CIF	RF	GBT	SR	Lasso	PLSR
	Total live CD4+ T _N and	84%	81%	96%	99%	90%	91%
	T _{CM} cells						
Multi-Omics	Total live CD8+ T _N and	47%	39%	86%	93%	80%	61%
	T _{CM} cells						
	Ratio CD4+/CD8+ T _N	75%	77%	88%	98%	90%	82%
	and T _{CM} cells						
Single-Omics	Total live CD4+ T _N and	79%	76%	93%	97%	-	-
(Process	T _{CM} cells						
Parameters &	Total live CD8+ T _N and	47%	36%	73%	89%	-	-
NMR features 4)	T _{CM} cells						
	Ratio CD4+/CD8+ T _N	76%	74%	85%	96%	-	-
	and T _{CM} cells						
	Total live CD4+ T _N and	64%	55%	90%	97%	-	-
Single-Omics	T _{CM} cells						
(Process	Total live CD8+ T _N and	43%	37%	83%	86%	-	-
Parameters &	T _{CM} cells						
NMR Day 6)	Ratio CD4+/CD8+ T _N	40%	84%	69%	96%	-	-
	and T _{CM} cells						
Single-Omics (Process Parameters & Cytokines Day 6)	Total live CD4+ T _N and	84%	91%	93%	96%	-	-
	T _{CM} cells						
	Total live CD8+ T _N and	44%	74%	87%	92%	-	-
	T _{CM} cells						
	Ratio CD4+/CD8+ T _N	76%	66%	88%	96%	-	-
	and T _{CM} cells						

Significant Achievements

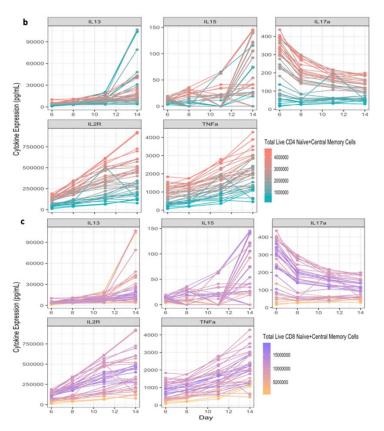
 "Machine learning was performed to correlate and identify critical process parameters and early secretomic and metabolomics-features that are predictive of product quality." – NSF 2020 Report

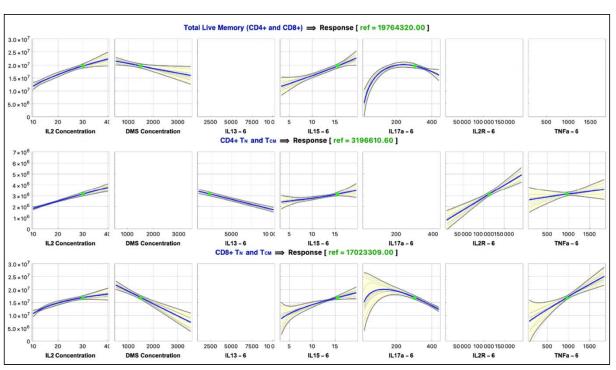




Early Prediction of Total T_N and T_{CM}

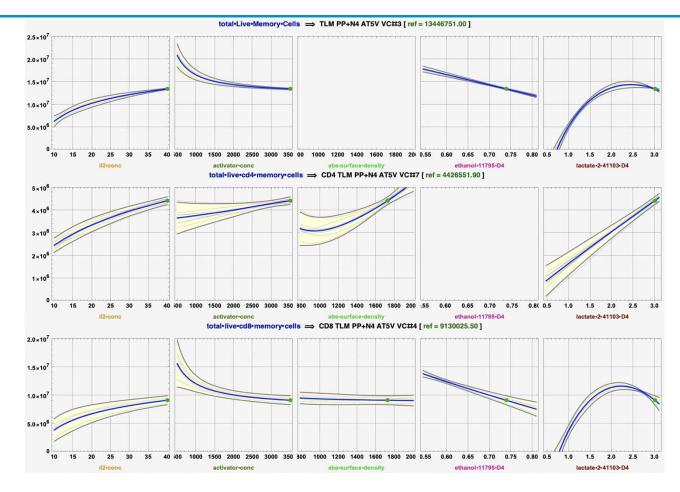
• Multi-Ohmic Prediction Profiles -> Process Parameters + Cytokines (Day 6)



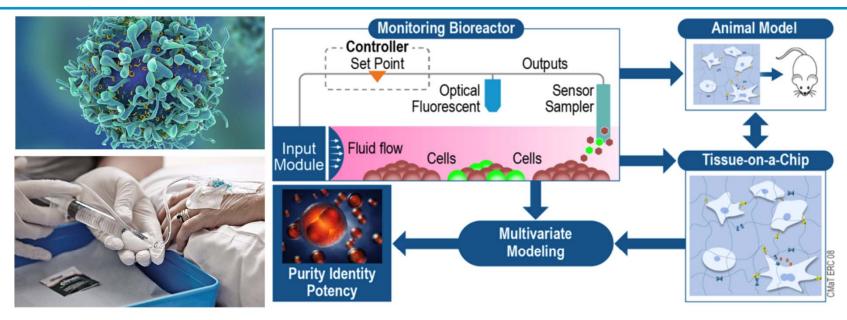


Early Prediction of Total T_N and T_{CM}

- NMR Media Analysis
 - Day 4

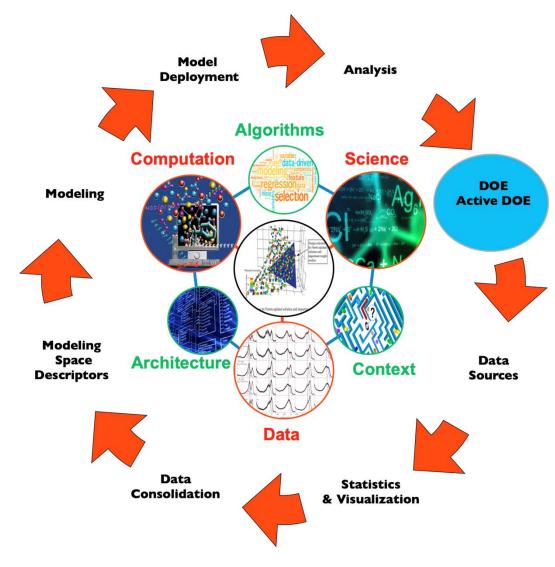


Dynamic Sampling Platform



- •What are the key factors?
- •How should we design the system?
- •Where should we look for better solutions?

Informatics
Critical for
Systems
Integration &
Active
Learning



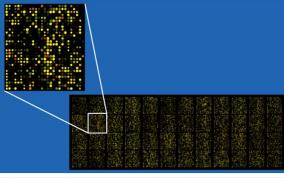
Moving Forward... What is Your Analysis Objective

Stage Objective		Analysis				
Discovery	New Insight/ Knowledge?	Identify new modes of action, therapies, formulations & process technologies				
Development	How does it work?	Develop multi-ohmic system level structure/ property/ process relations and robust IP				
Design	What & how to produce?	Design products, processes, testing and release protocols				
Validation	What to control?	Identify and verify CQAs & CPPs				
Optimization	How to optimize?	Determine optimal design, formulations, process conditions & yields Identify what to improve/ optimize based on clinical outcomes				
Process Control	How to control?	Identify what to control & control limits Define and implement real time control and lot release				
Supply Chain	How to maximize?	Determine optimal supply logistics plans to maximize working capital & patient outcomes				
Commercialization	What costs? Pricing?	Determine costs and pricing				
Strategy	Which scenario?	Examine potential scenarios using what-if exploration tools				

What Questions Do You Need to

Anewar?

- Variable Selection & Relationships
 - Which variables matter?
 - What variable combinations are useful?
 - Are there important metavariables?
- Prediction
 - Can we accurately predict performance?
 - Can we utilize for real time control?
- Optimization & Deployment
 - Can we build robust emulators for what if and design?
 - Can we simultaneously optimize multiple KPIs?
 - Can we build active learning systems?
- Risk Management
 - Outlier detection & assessment?
 - What is our extrapolation trust metric?
- Insight & Understanding
 - Is this novel? Is it patentable?



Moving Forward...

- •What data do you have?
- Exploit it! Good & bad!!!
- Lives can be saved!
- Act now!!!

10/23/2020 EVOLVED-ANALYTICS.COM 31

Thank you!

Acknowledgements

CMaT: Valerie Y. O deh-C ouvertier, Nathan J. D warshuis, Maxwell B. Colonna, Bruce L. Levine, Arthur S. Edison, Krishnendu Roy, Wandaliz Torres-Garcia, Andres Garcia, Andrei Federov

This material is based upon work supported by the National Science Foundation under Grant No. EEC-1648035. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

