

Accelerating the Development and Uptake of Rapid Diagnostics to **Address Antibiotic Resistance**

October 13-14, 2022

LESSONS LEARNED FROM ABROAD THROUGH THE WHO'S ACCESS TO COVID-19 TOOLS **ACCELERATOR PROGRAM**

♦ Bill Rodriguez CEO, FIND

FIND SEEKS TO ENSURE

EQUITABLE ACCESS TO RELIABLE DIAGNOSIS AROUND THE WORLD

We connect countries and communities, funders, decisionmakers, providers, and product developers to spur diagnostic innovation and implementation and make testing an integral part of **sustainable**, **resilient health systems**

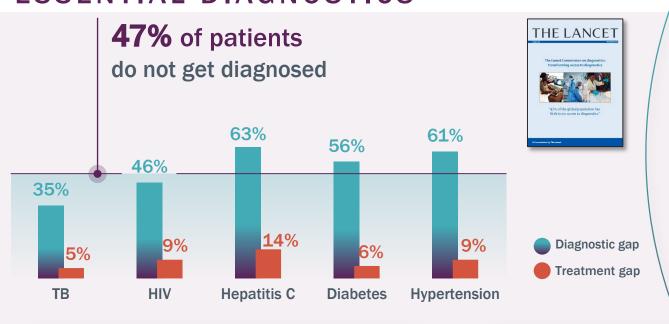
- Established in 2003 as a product development & delivery partnership
- Co-convener of the Access to COVID-19
 Tools (ACT) Accelerator Diagnostic Pillar
- WHO Collaborating Centre for Laboratory Strengthening & Diagnostic Technology Evaluation
- WHO SAGE-IVD member

2021 STRATEGY: EXPECTED IMPACT

Save 1 million lives through accessible, quality diagnosis

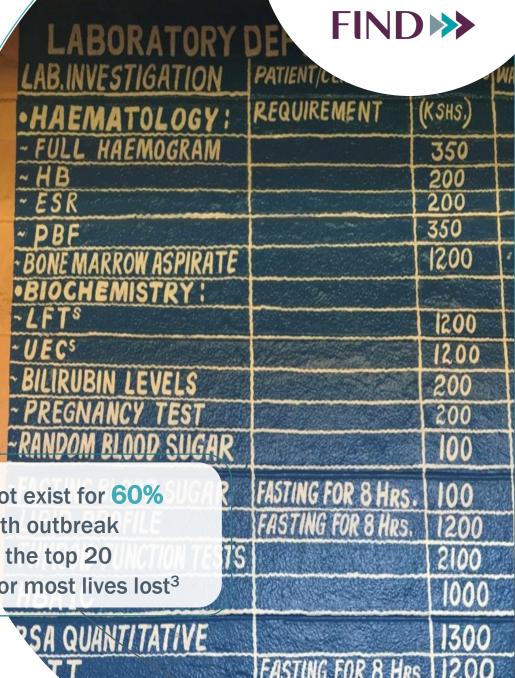
Save US\$1 billion

in healthcare costs to patients and health systems



Empower countries

with diagnostic data to inform policy and care and achieve health goals


AMR TESTING IN GLOBAL CONTEXT

HALF THE WORLD LACKS ACCESS TO ESSENTIAL DIAGNOSTICS

Appropriate tests do not exist for 60%
of infectious agents with outbreak
potential ² and 50% of the top 20
diseases responsible for most lives los

Basic diagnostic capacity				
is available in only 1% of primary				
care clinics and 14% of hospitals				
in some LMICs1				

¹Leslie et al. Bull World Health Organ 2017;95:738-748, http://dx.doi.org/10.2471/BLT.17.191916.

² Kelly-Cirino et al. *BMJ Glob Health* 2019;4:e001179. doi:10.1136/bmjgh-2018-001179

³ Pai et al. Analysis from Global Burden of Disease Report 2020

MAJOR GAPS IN AVAILABILITY OF ALL DIAGNOSTICS AT PHC LEVEL

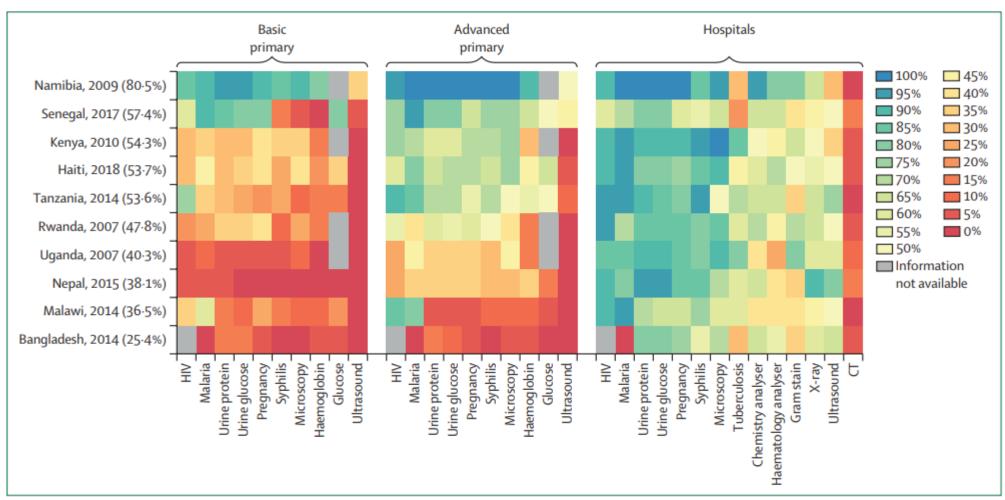


Figure 3: Availability of basic diagnostics by tier in ten low-income and middle-income countries in various years, 2007-18

ADAPTED TO USE CASES AND TO HOW HEALTH CARE IS ACTUALLY DELIVERED

Primary care

District hospital

Use setting

Testing infrastructure

Level 0 (L0)	Level 1 (L1)	Level 2 (L2)
Community outreachAt home testing	Primary care facility	Near-patient laboratoryReferral hospital laboratory
No mains powerNo waterNo lab equipmentNo temperature control	 No mains power (unreliable) Minimal lab equipment (may not support cold chain) BSL-1 containment 	 Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) BSL-2/1 containment

Technologies required

Self Tests

True POC

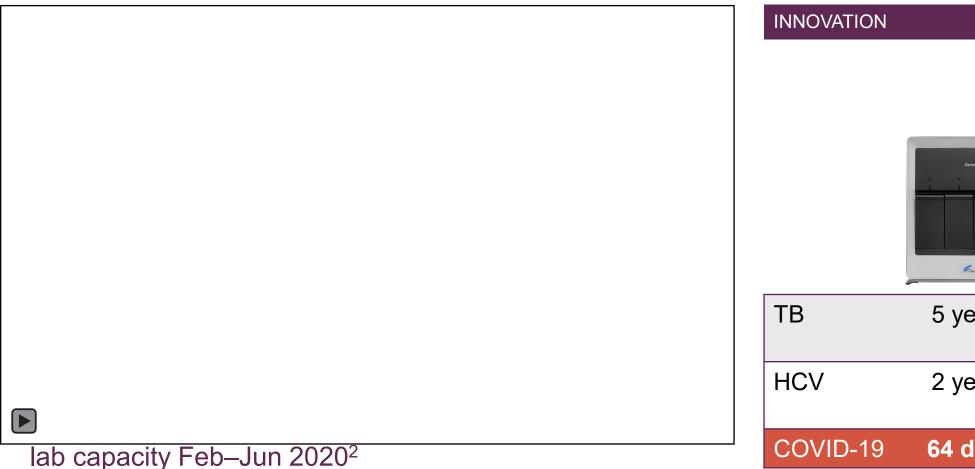
Near POC

DIFFERENT NEEDS AT EACH STEP OF THE PATIENT JOURNEY

Test, test, test Tedros Adhanom Ghebreyesus, WHO

If we ask ourselves what has benefited us in this first phase of the spread of the virus, it is our high-test capacities, and the dense laboratory network 77

--- Angela Merkel, Germany

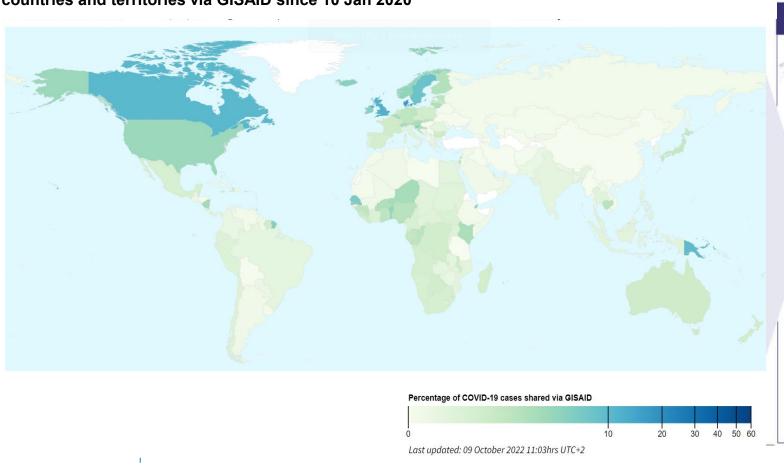

If you don't test,
you won't find "

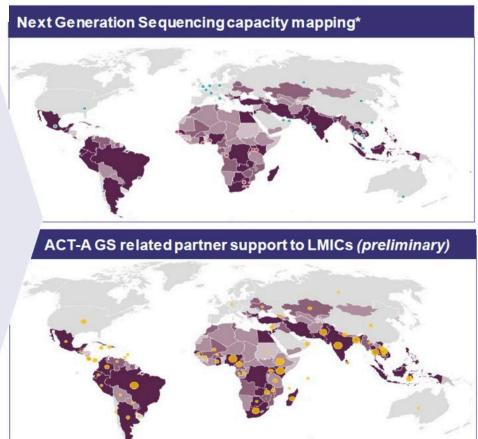
John Nkengasong,
PEPFAR (then Africa CDC)

UNPRECEDENTED SPEED FOR BOTH DX SCALE-UP & NEW INNOVATIONS

ТВ	5 years	TB-LAM in development
HCV	2 years	CAg in development
COVID-19	64 days	236 days

^{1.} FIND. COVID-19 test tracker. www.finddx.org/covid-19/test-tracker (accessed 18 Sept 2020)


^{2.} Rahman F. The Malaysian Response to COVID-19. Report prepared for DNDi, 15 June 2020. www.europeanpharmaceuticalreview.com/article/125084/the-malaysianresponse-to-covid-19-building-preparedness-for-surge-capacity-testing-efficiency-and-containment/ (accessed 18 Sept 2020)



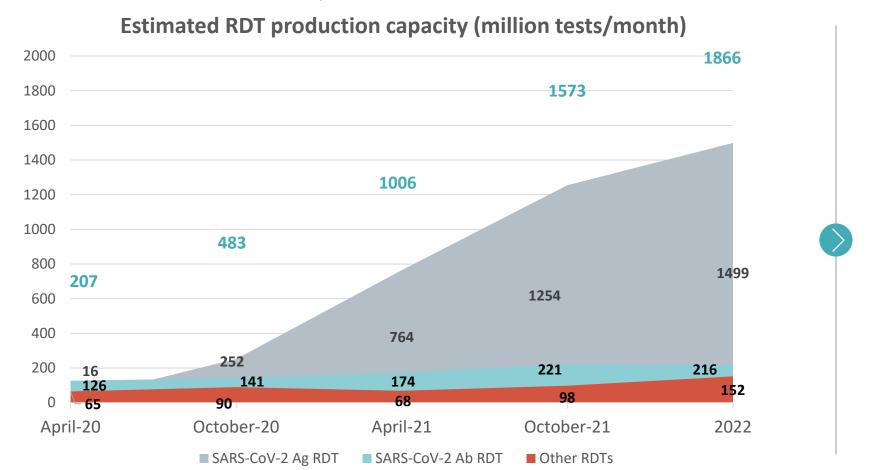
THE ACT-ACCELERATOR PARTNERSHIP ENABLED

GLOBAL GENOMIC SURVEILLANCE

As of Sept 2022, 13+ million viral genome sequences from human cases of COVID-19 shared by 215 countries and territories via GISAID since 10 Jan 2020

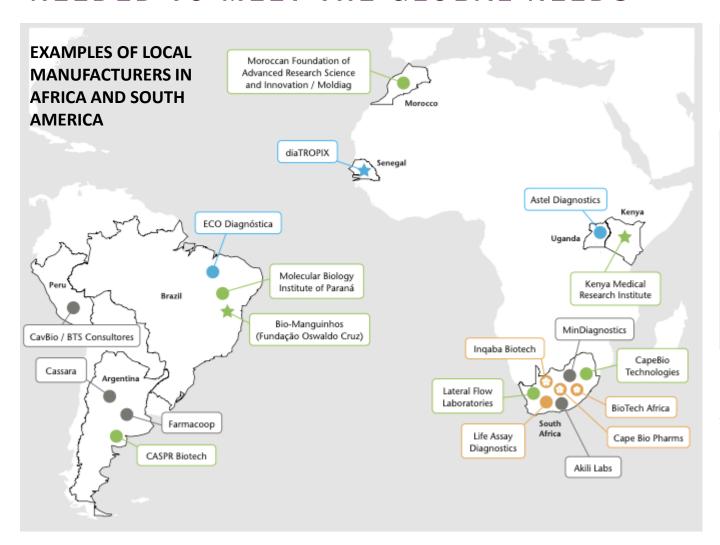
THE ACCESS TO COVID-19 TOOLS (ACT) ACCELERATOR DIAGNOSTICS PILLAR

PRESSURE-TESTED THE DIAGNOSTICS ALLIANCE CONCEPT


The Diagnostic Pillar has been co-convened by FIND and the Global Fund, with participation from a coalition of 50 standing partners across 3 working groups.

WHO leads on regulatory, policy, product procurement, and allocation

GLOBAL RDT PRODUCTION CAPACITY SKYROCKETED FROM OCTOBER 2020 TO MID-2022, MAINLY DUE TO SARS-COV-2 AG RDTS


4X growth in total mfg capacity from Oct '20 – Apr '22

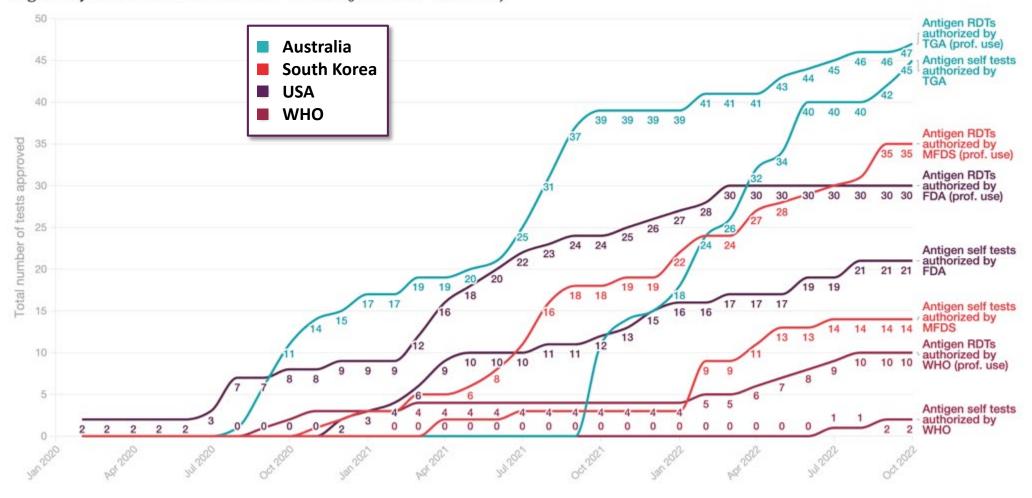
Capacity is concentrated in China & ROK

COVID-19'S IMPACT ON RAPID TESTING GLOBALLY - REGIONAL MANUFACTURING

EXPANSION AND DIVERSIFICATION OF LOCAL PRODUCTION IS NEEDED TO MEET THE GLOBAL NEEDS

- ★ Non-profit or public manufacturer
- The finished product is a test component, not a complete diagnostic test

Level of local production


- Local assembly of semi-finished products
- Local production of finished products
- Local production of finished products and some raw materials
- Local production of finished products and some raw materials and/or local innovation
- Level of local production unknown

Source: MSF Access Campaign Issue Brief, Local diagnostics to meet local health needs, 8 July 2021 https://msfaccess.org/improve-local-production-diagnostics

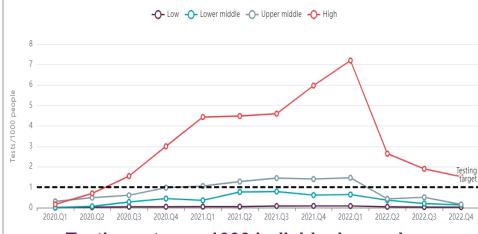
GLOBAL REGULATION IS A BARRIER TO TESTING

Regulatory authorizations for COVID-19 tests (Jan 2020 - Oct 2022)

GAPS PERSIST IN PROCUREMENT & COUNTRY UPTAKE

Diagnostic goals

All countries able to deploy affordable, quality tests


LMICs supported to establish effective test, trace, isolate strategies and surveillance

Minimal disruption of core health services

Diagnostic reality

Tests conducted per 1000 individuals

Testing rate per 1000 individuals per day Q1 20' to Oct 22'1

LIC: 0.02 LMIC: 0.14 UMIC: 0.15 HIC: 1.51

THE PATIENT JOURNEY NEEDS TO BE AT THE CENTER OF DX STRATEGY

POC PLATFORMS FOR SEPSIS AND 'BACTERIAL VS. VIRAL' TRIAGE

NanoEntek

- NanoEntek, FREND system
- Multiplexing capacity: Low
- **TAT:** <3 min
- Technology: Immunoassay
- Panels: PCT, hsCRP, others
- Development status: FDA platform, CE and FDA tests

abionic

- Abionic, abioSCOPE system
- Multiplexing capacity: Med (<13)
- **TAT:** 5-8 min
- Technology: Immunoassay
- Panels: sepsis (pancreatic stone protein, CRP, hsCRP, PCT)
- Development status: Platform is FDA registered and CE marked

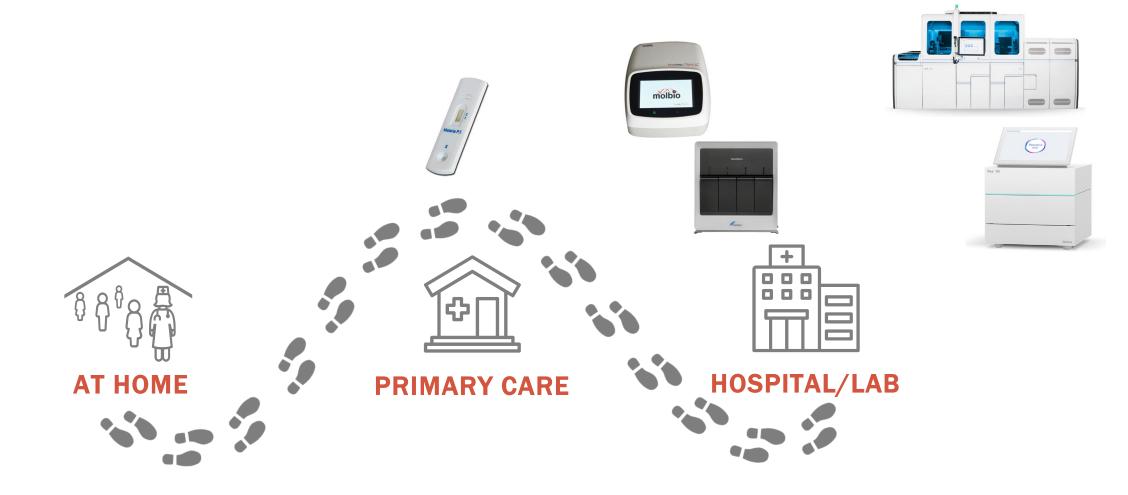
- MeMed, key riationin
- Multiplexing capacity: Low
- **TAT:** 12 min
- Technology: Chemiluminescent immunoassay
- Panels: TRAIL, IP-10, and CRP signature
- Development status: BV test (Bacterial vs. Viral for peds to adults) is CE-IVD, FDA approved/

- Inflammatix platform
- 29 m-RNA host response markers
- TAT: 5-8 min
- Technology: Molecular
- Panels: InSep (presence, type, severity), ViraBac test (bacterial vs. viral)
- In development

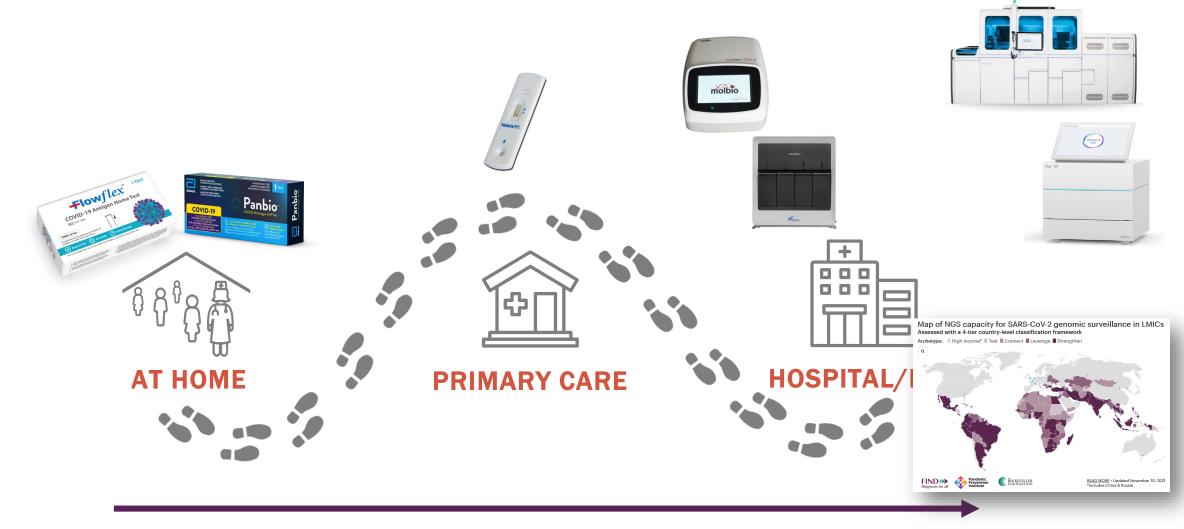
COMMERCIALIZED PLATFORMS WITH BLOOD CULTURE ID/AMR PANELS

HIGH-MULTIPLEXING NEAR-POC MOLECULAR PLATFORMS

- Multiplexing capacity: High (~100)
- Sample processing: fully integrated Technology: PCR
- Panels: Commercial BCID panel and other syndromic panels
- **Price:** High


GenMark Dx

- Multiplexing capacity: High (72)
- Sample processing: integrated
- **Technology:** DNA hybridization/array
- Panels: Commercial BCID panels (Gram+/Gram-) and other syndromic panels
- **Price**: High


FIND

PRE-PANDEMIC

COVID-19 DRIVEN INNOVATION

Connected diagnostics and interoperable systems for data management, data aggregation and data sharing for surveillance

THE COMING EXPLOSION IN NEW POC MOLECULAR PLATFORMS

Connected diagnostics and interoperable systems for data management, data aggregation and data sharing for surveillance

FIND INVESTMENT PORTFOLIO - MULTIPLEXED PLATFORMS

	LEVEL 1-2 P	LATFORMS	LEVEL 2 PLATFORMS		
	Biomeme	Qlife	SD Biosensor	Bioneer	
Value to Market	Rugged, molecular platform suited for Level 1 settings	Multi-analyte system suited for Level 1 settings	Late-stage platforms offering competition, multiplexing capacity a expanded test menu (AMR, TB) in near term		
Multiplexing	27	8	12	40	
In Market	COVID/Flu	COVID, CRP	COVID	HIV/HCV/HBV VL	
Pipeline	STI, bacterial vs viral, food, water	COVID IgG-IgM, ALAT, PKU	TB, Zika/Dengue/ChikV, HIV/HCV/HBV VL	COVID, TB, STI, AMR	
Funded activities	Activity 1: COVID/Flu Dev. and V&V Activity 2: System Optimization Activity 3: Manufacturing optimization	Activity 1: COVID/Flu Dev. and V&V Activity 2: System Optimization	Activity 1: COVID validation Activities 2-3: COVID/Flu/RSV development and V&V Activity 4: Manufacturing optimization and COGS reduction (automation)	Activity 1: COVID/Flu/RSV development and V&V Activity 2: Manufacturing optimization and COGS reduction (automation)	
Endpoint	Q1'23: SRA submission of COVID/Flu test in ISP platform	Q1'23: SRA submission of COVID/Flu test	Q3'23: SRA submission of COVID/Flu/RSV	Q3'23: SRA submission of COVID/Flu/RSV	
Commitment	\$10.96-13.77/test (EXW, COVID/flu)	\$9.98-14.98 ("all-in", COVID/Flu)	\$9.98 (EXW, COVID) \$14.98 (EXW, COVID/Flu/RSV)	\$14.38 ("all-in", COVID/Flu/RSV)	
Funding	\$3,800-6,500 (EXW, instrument)	\$500 (COGS, instrument)	\$10,000 (EXW, instrument)	\$10,000 (COGS, instrument)	
S	\$5.5M	\$3.45M	\$6M	\$6M	

FIND INVESTMENT PORTFOLIO - TRUE POC (LEVEL 1) PLATFORMS

	INTRUMENT-FREE			INSTRUMENTED		
	Self- Diagnostics	Philmedi	Biocrucible (*)	Pluslife	Co- diagnostics	Sherlock Biosci. (*)
Value to Market	Potential for low-cost and multiplexing in an instrument-free test system	Early stage, but with relevant pipeline and potential for low-cost and multiplexing	Experienced team with approach to lowest-cost disposable	Lowest-cost, proven performance, real potential for multiplexing	Potential for broad sample type and volume & integrated sample prep	Proof-of-concept for CRISPR
Multiplexing	4	In development	None	7	6	5
In Market	COVID-19	None	None	COVID-19	None	None
Pipeline	STI	COVID-19, Malaria, TB, HIV	COVID-19	STI, HIV, HPV	COVID-19	COVID/Flu/RSV, STI (NG/CT)
Funded activities	COGS reduction of multiplexed product	V&V of COVID-19 test, and transfer to manufacturing	Proof-of-concept Gen2 device (lower cost and improved usability)	HPV 16/18/45 cartridge development	V&V of COVID-19 test	Platform development and verification of respiratory panel
Target COGS	< \$5	< \$10	<\$2/test <\$30/instrument	\$2/test (achieved)	TBC	\$5-15/test
Funding	\$350K	\$250K	\$250K	\$350K	No funding	\$200K

^{*} Companies are at early stage and still pursuing both an instrumented and an instrument-free version of their product

COVID-19 EXPERIENCE, CAN THIS BE APPLICABLE TO AMR?

CHALLENGES

Developers:

- Slow access to samples
- Lack of clear product requirements
- Insufficient regulatory harmonization

Demand and uptake:

- Complex global problem requiring collaboration across clinicians, epidemiologists, politicians
- Limited evidence to inform testing policy
- Market underprepared

SUCCESSES

Collaboration between academia and industry^{3,4}

- Automated PCR tests available in 64 days from PHEIC
- Rapid diagnostic tests approved in 236 days

Increase demand from Governments, increasing manufacturing capacity and capabilities^{5,6}

- Reduced costs for diagnostics
- Routinely updated guidance on test use and efficacy
- Increased access globally, including for LMICs where spread of genomic variants were tracked

WILL WE RISE TO THE CHALLENGE OF AMR?

♦ While trillions have been spent to fight COVID-19 in just 4 months...¹

♦ US\$12 trillion/year have been lost in global

production in 2020

♦ US\$10 trillion have already been spent in stimulus packages and other support measures ♦ US\$40 billion is needed to tackle AMR over the next 10 years...²

♦ US\$3 trillion/year
 | will be lost in global
 | production between 2016
 | and 2050¹

investment is needed over the next 10 years to tackle AMR

¹ Ziyad Cassim, Borko handhiski. The \$10 trillion rescue: how governments can deliver impact. https://www.mckinsey.com/~/media/McKinsey/Industries/Public%20Sector/Our%20Insights/The%2010%20trillion%20dollar%20rescue%20How%20governments s%20can%20deliver%20impact/The-10-trillion-dollar-rescue-How-governments-can-deliver-impact-vF.pdf

² O'Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on antimicrobial resistance, 2016

Thank you

Together, we can ensure that everyone who needs a test can get one

