Session 2: Leveraging New Methodologies to Interpret Genetic Data in Neurological and Psychiatric Disorders

Danielle Posthuma

d.posthuma@vu.nl

CTGlab - Dept. of Complex Trait Genetics, VU Amsterdam

From Molecular Insights to Patient Stratification for Neurological and Psychiatric Disorders

Oct 5, 2021

Outstanding challenges for GWAS

 Increase <u>diversity</u>: we need more diverse samples, including nonwestern, non-white populations

Refine <u>phenotypes</u>: we need more in-depth phenotyping

Understand <u>pleiotropy</u> and (causal) relationships between phenotypes

Translate GWAS findings into mechanistic insight

Outstanding challenges for GWAS

 Increase <u>diversity</u>: we need more diverse samples, including nonwestern, non-white populations

Refine <u>phenotypes</u>: we need more in-depth phenotyping

Understand pleiotropy and (causal) relationships between phenotypes

Translate GWAS findings into mechanistic insight

Translate GWAS findings into mechanistic insight

Challenges:

- Correlation between variants significant association P-values are distributed over blocks of correlated genetic variants: actual causal variant is unclear
- Solution: functional annotation (functional variants more likely to be causal than non-functional ones, e.g. tools FUMA, VEP, ANNOVAR)
 - **statistical fine-mapping** (the known correlation structure can be modeled against the observed pattern of association values to pinpoint the most likely causal SNPs, can be integrated with functional information (e.g. tools FINEMAP, PAINTOR)
 - **local genetic correlation analyses** with molecular traits, e.g eQTLS (incl scRNA), splicing variants etc. Using e..g. LAVA, SUPERgnova, rhoHESS
- Most neuropsychiatric traits are polygenic: many genetic variants of small effect, a single genetic variant, even if it is known to be causal, is usually not informative for biology

Solution: look for convergence in biological pathways, shared cellular or synaptic function, co-localization, co-expression in tissue or cell types (e.g. tools MAGMA, Ldscore regression, DEPICT)

A Roadmap from Neurogenetics to Neurobiology

- NWO Gravitation proposal 19.6M€, 2020-2030
- Goal: "... gain insight into the molecular and cellular basis of complex brain disorders, by closely connecting genetics to neurobiology, facilitating new experimental approaches, and enabling the design of novel treatment strategies"

Danielle Posthuma - Pl Genetics of Brain Disorders

Huib Mansvelder Neurophysiology

Guus Smit Neurobiology

Jeroen Pasterkamp Molecular Neurobiology

Elly Hol Cell Biology

Boudewijn Lelieveldt Computational Biology

Brainscapes Rationale

- Computational: Align results from large genetic discovery studies with genetic expression maps of cell types, thereby implicating cell types in disease
- Wet-lab functional experiments: Investigate the role of these cell types in disease using the latest neurobiological techniques at single cell resolution

Tools from my lab that aid in interpreting GWAS results

Kyoko Watanabe

Article | Open Access | Published: 28 November 2017

Functional mapping and annotation of genetic associations with FUMA

Kyoko Watanabe, Erdogan Taskesen, Arjen van Bochoven & Danielle Posthuma 🖂

Nature Communications 8, Article number: 1826 (2017) | Cite this article

17k Accesses | 24 Altmetric | Metrics

- FUMA: For functional annotations, gene-set analyses, visualizations
- https://fuma.ctglab.nl/
- 6308 current users

Christiaan de Leeuw

PLOS COMPUTATIONAL BIOLOGY

BESEARCH ARTICLE

⑥ OPEN ACCESS № PEER-REVIEWED

COMMUNICATIONS

MAGMA: Generalized (

Christiaan A. de Leeuw 🗖, Joris M. Mooij, Tom

Published: April 17, 2015 https://doi.org/10.13

ARTICLE

anditional and interaction

Conditional and interaction gene-set analysis reveals novel functional pathways for blood pressure

Christiaan A. de Leeuwo 1, Sven Stringer 1, Ilona A. Dekkers 2, Tom Heskes & Danielle Posthuma 1,4

- MAGMA: For (conditional) gene-set analyses
- https://ctg.cncr.nl/software/magma

LAVA: An integrated framework for local genetic correlation analysis

In press, Nat Genet

- LAVA: For local genetic correlations
- https://ctg.cncr.nl/software/lava

D J. Werme, S. van der Sluis, D. Posthuma, C. A. de Leeuw doi: https://doi.org/10.1101/2020.12.31.424652

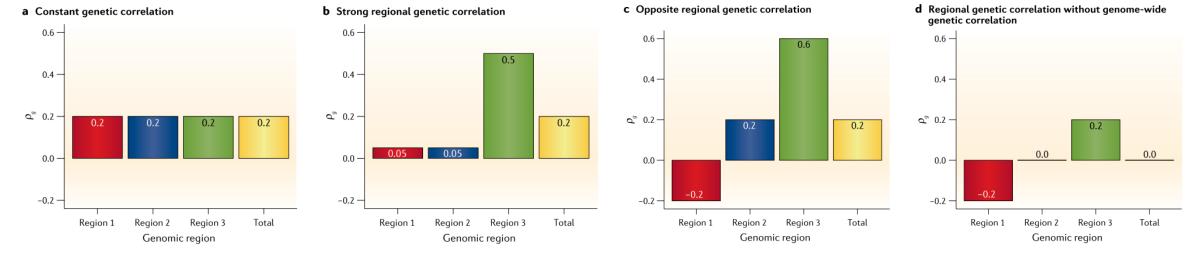
scRNA implementation in FUMA using MAGMA pipeline

- Genetic expression maps of the brain at single cell resolution can be used to map GWAS results more precisely on to cell types
- FUMA now includes cell type enrichment analyses based on GWAS results and 43 publicly available scRNA datasets

Genetic mapping of Currently working on:

Kyoko Watanabe, Maša Umićević Mir Posthuma ≌

traits


Nature Communications 10, Article r

7847 Accesses | **13** Citations | **16**

Adding novel scRNA resources

 Improving statistical methods to determine cell type enrichment

LAVA: Genetic correlation (rg) | Global vs local

van Rheenen et al. (2019), Nat. Rev. Genet.

Existing local r_q methods:

Rho-Hess (Shi, et al., 2016); SUPERGNOVA (Zhang et al., 2020); LOGODetect (Guo et al., 2019)

Local rg | Overview LAVA

Local Analysis of (co) Variant Association

Features / implementation

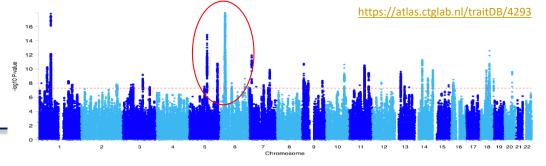
- R package
- Input: GWAS summary statistics
- Flexible locus definition
- Binary and continuous phenotypes
- Deals with sample overlap
- Bi- and multivariate

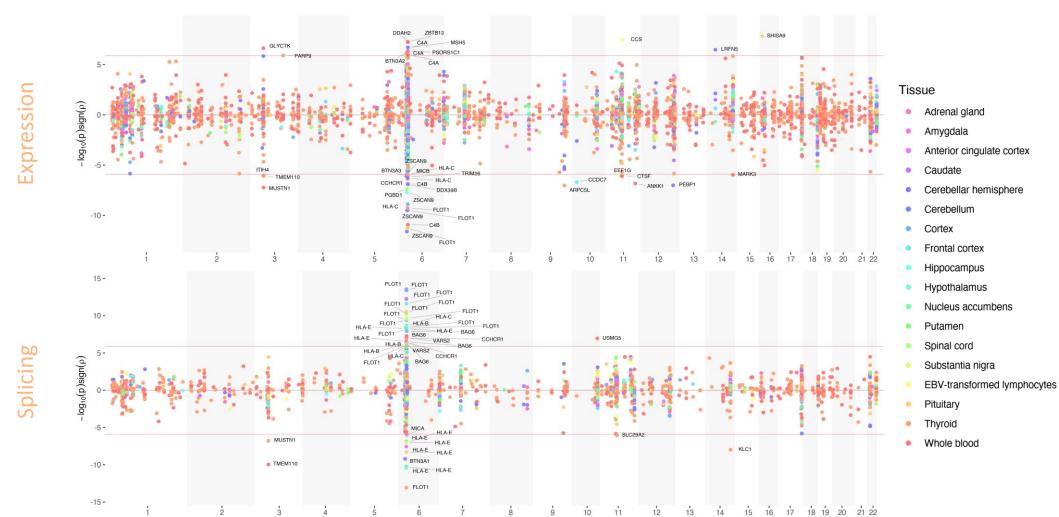
Three step procedure

1. Univariate test

Confirm local *h*²

2. Bivariate test


Pairwise local $r_{\rm g}$

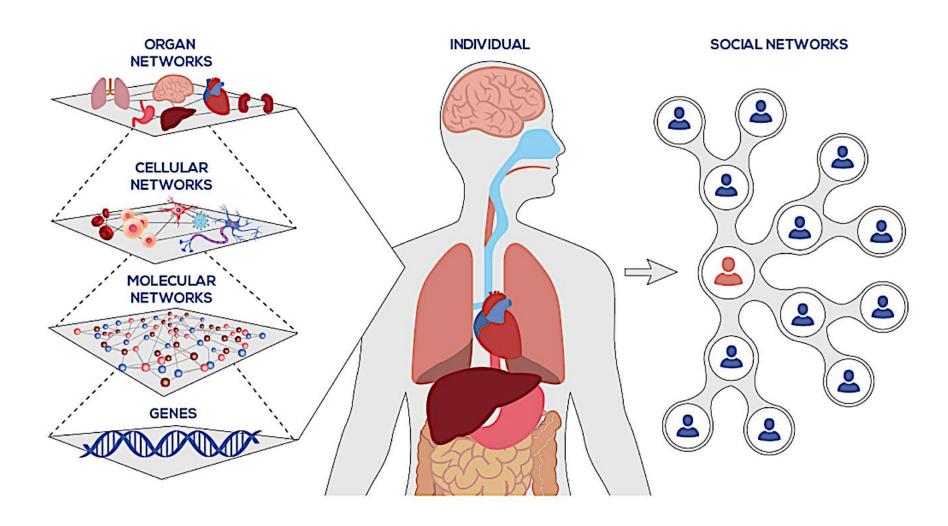

3. Multivariate test(s)

Conditional local $r_{\rm g}$

- Partial cor: X ~ Y | Z
- Mult. reg: Y ~ X1 + X2 + X3

Bivariate LAVA of Depression ~ Expression & splicing

In sum


 Working on addressing polygenicity and looking for convergence of genetic signal from GWAS, by leveraging large scale mapping efforts

 In close collaboration with neuroscientists to facilitate translation of GWAS successes into mechanistic disease insight

Systems biology Approach

