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GENES                                           DISEASE
?

• Impact of genetic background, ancestry 
• Genetic modifiers

• Variants in the genome

• Selective vulnerability of cell types 
• Disease-relevant cell states

• Differentially expressed genes

• Stratify patients 
• Understand disease mechanisms 
• Identify new therapeutic targets

• Significance 
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implicated by GWASs to affect disease risk might do so by
altering the genetic regulation of one or more target genes.
However, the complex nature of eukaryotic transcriptional
regulation15 can make it difficult to assign putative CREs
(and any disease-associated variants within them) to their
correct target genes,10 necessitating the use of genomic
datasets and experimental approaches to help answer
this question. Indeed, while several thousand GWASs
have been performed, and many thousands of loci have
been confirmed as bona fide disease risk factors,11 the
number of studies that have investigated the mechanisms
underlying particular associations is orders of magnitude
fewer (Figure 1), and the number of studies that have
functionally characterized candidate causal variants at a
given locus in an objective (versus ‘‘cherry-picked’’)
manner is even fewer still (Table 1 lists the studies dis-
cussed in this review, but is by no means exhaustive).
Thus, the purpose of this review is to present a general
framework for the functional dissection of a disease-associ-
ated risk locus, and to highlight individual studies as proof-
of-principle examples for the various approaches that have
been used in mechanistic GWAS follow-up studies.

The Role of Gene Expression in Complex Traits
As mentioned above, the vast majority of daVs reside in
noncoding regions of the genome, suggesting that these
variants might affect gene expression through effects on
transcription, splicing, or mRNA stability. Consistently,
several studies have shown that daVs are enriched in pre-
dicted CREs, typically defined by chromatin accessibility
(as determined by DNase-seq, FAIRE-seq, ATAC-seq, or
MNase-seq), transcription factor (TF) binding, and/or his-
tone marks known to be associated with transcriptional
regulatory activity, such as H3K27ac, H3K4me1, and
H3K4me3.13,14 Intriguingly, daVs for a particular disease
appear to be enriched in CREs active in disease-relevant
cell types. For example, a study from Farh and colleagues
(2015) examined the overlap of variants associated with
21 autoimmune diseases with six histone marks in
multiple primary immune cell types and conditions.16

Importantly, the authors imputed the genotypes of vari-
ants not directly genotyped in their respective GWAS
and determined which variants were most likely to be
causal using an algorithm that incorporates the LD struc-
ture and association pattern at each locus. The authors
found that candidate causal variants were enriched in
predicted B and T cell enhancers (consistent with the ex-
pected cellular origin of autoimmune diseases) and that
this enrichment increases with the likelihood that the
variant is causal.16 When expanding this analysis to 18
additional traits and diseases and incorporating epigenetic
data from additional cell and tissue types, the authors
observed an enrichment of variants associated with
neurological disease in predicted brain promoters and
enhancers, whereas blood glucose risk variants were en-
riched in regulatory regions predicted to be active in
pancreatic islets.16

Based on these results and other similar reports,14 many
GWASs causal variants have been proposed to influence
disease risk by altering the function of cell type-specific
regulatory elements, with ensuing changes in target gene
expression. This hypothesis is supported by the overlap
of daVs with expression quantitative trait loci (eQTLs)—
specifically, daVs are more likely to be associated with the
expression (mRNA) levels of one or more genes than would
be expected by chance (reviewed in17). Furthermore, the
cell type in which the eQTL effect is observed often
matches cell types already thought to be relevant to the
disease in question or lends additional support to a role
for a particular cell type in disease, consistent with the
overlap of daVs with disease-relevant tissue-specific CREs.
In a study by Raj and colleagues (2014), a large-scale
eQTL analysis in primary T cells andmonocytes, represent-
ing different ‘‘branches’’ of the immune response, was per-
formed.18 The authors found a significant overlap between
variants associated with gene expression in these cell types
and variants associated with autoimmune diseases. More-
over, some additional daVs were only associated with
gene-expression levels in one of the two immune cell
types. For example, daVs for Alzheimer’s disease (AD)
were associated with gene-expression levels only in mono-
cytes. As AD genetic risk variants have also been reported
to be enriched in predictedmonocyte CREs,19 these studies

Figure 1. Mechanistic Understanding of Disease Risk Loci Iden-
tified by GWASs Lags Far Behind the Discovery of New SNP-Trait
Associations
The EBI GWAS catalog was used to determine the number of total
GWASs reported from 2005 through the end of 2016, which are
shown in blue. The number of post-GWAS functional studies re-
ported each year were also identified (orange line) by (1) reviewing
the titles, and in some cases, abstracts, of all research articles
published in 23 relevant biomedical research journals*, and (2)
searching PubMed using the keywords ‘‘causal variant’’ or ‘‘func-
tional variant.’’ Additional studies were identified through refer-
ences from primary research or review articles found as described.
*American Journal of Human Genetics, Cancer Cell, Cell, Cell Reports,
Cell Stem Cell, eLife, Genome Biology, Genome Research, Human
Molecular Genetics, Molecular Cell, Nature, Nature Biotechnology,
Nature Communications, Nature Genetics, Nature Medicine, Nature
Neuroscience, Nature Structural & Molecular Biology, Neuron, PLOS
Genetics, PNAS, Science, Science Translational Medicine, Stem Cell
Reports

718 The American Journal of Human Genetics 102, 717–730, May 3, 2018

Gallagher & Chen-Plotkin (2018) AJHG 



Functional genomics in iPSC-derived models of disease
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Genome-wide screening platform
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High-throughput modeling of genetic variants / DEGs
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Genome-wide modifier screens of disease phenotypes
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Protein aggregates in neurodegenerative diseases
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Protein aggregates in neurodegenerative diseases
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V337M tau forms oligomers in iPSC-derived neurons

Neurons from isogenic MAPT V337M vs. WT iPSCs (Li Gan)
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Genome-wide CRISPRi screen for tau aggregation 
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Modifiers of neuronal tau aggregation
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Increase in tau oligomersDecrease in tau oligomers

Knockdown Phenotype

MAPT

MTOR

WIPI2

ATG14

PIK3R3

PIK3C3 (Vps34)
ATG101

BECN1

PIK3R4 (Vps15)

Initiation of autophagy

ARTICLE

Prolonged tau clearance and stress vulnerability
rescue by pharmacological activation of autophagy
in tauopathy neurons
M. Catarina Silva 1, Ghata A. Nandi 1, Sharon Tentarelli2, Ian K. Gurrell3, Tanguy Jamier3, Diane Lucente4,
Bradford C. Dickerson5, Dean G. Brown6, Nicholas J. Brandon7 & Stephen J. Haggarty 1✉

Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau

protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant

phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we

explored autophagy as a mechanism to reduce tau burden in human neurons and, from a

small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055.

These compounds are more potent than rapamycin, and robustly downregulate phosphory-

lated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability.

MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably,

single-dose treatment followed by washout leads to a prolonged reduction of tau levels and

toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and

autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of

neuronal autophagy may contribute to development of therapies for tauopathies.

https://doi.org/10.1038/s41467-020-16984-1 OPEN

1 Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School,
185 Cambridge St CPZN 5400, Boston, MA 02114, USA. 2 Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Dr, Waltham, MA 02451, USA.
3 Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK. 4Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts
General Hospital and Harvard Medical School, 185 Cambridge St CPZN, RM 5820, Boston, MA 02114, USA. 5MGH Frontotemporal Disorders Unit,
Gerontology Research Unit, Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School,
149 13th St. Suite 2691, Charlestown, MA 02129, USA. 6 Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA. 7 Neuroscience,
BioPharmaceuticals R&D, AstraZeneca, Waltham, MA, USA. ✉email: shaggarty@mgh.harvard.edu

NATURE COMMUNICATIONS | ��������(2020)�11:3258� | https://doi.org/10.1038/s41467-020-16984-1 | www.nature.com/naturecommunications 1
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How do microglia contribute to neurodegenerative disease?

• Microglia undergo disease-associated 
changes

• Therapeutic strategies?

• Human genetics supports a causal role 
for microglia in neurodegenerative 
diseases

• Which mechanisms control disease states?

Nina Dräger Syd Sattler Olivia Teter

Collaboration 
with Li Gan

bioRxiv 2021.06.16.448639



CROP-Seq screen in iPSC-derived microglia

B

B

-50510
-8

-4

0

4

UMAP-1

U
M

A
P

-2

-5

0

5

-5 0 5

Microglia cluster

UMAP-1

U
M

A
P

-2

Cluster 1:
CXCL10+
Interferon 

Cluster 3: 
SPP1+

Cluster 4:
P53

Cluster 5:
Metallothionins

Cluster 6:
Homeostatic

Cluster 7:
Proliferative 

Cluster 8:
Chemokine

2
1
0

-1
-2

L

Cluster 9:
CCL13+

Chemokine

D

E
Embeddings value

-60-40-20020

1
2
3
4
5
6
7
8
9

Interferon 
(IFI6, IFIT1)

Chemokine
(CCL13, CCL2) 

A
Microglia

 differentiation 

Transduce with
sgRNA library

iTF-MG
Day 8

 iPSCs
Day 0

+ TMP for CRISPRi
+ Dox for differentiation

sgRNA identity

Transcriptome

-2.5

0

2.5

5
U

M
A

P
-2

C

Id
en

tit
y

PC1

CDK8 sgRNA

TGFBR2
 sgRNA

Microglia-like

Mitochondria-high

1

2

3

4

5

6

7

8

9

C3
CXCL10
NURP1

LEFTY2
CDKN1C
FCER1G
LGALS1

SPP1
S100A6

MDM2
CDKN1A

MT1G
CCL17
MT2A
DAB2

SLC40A1
RNASET2

TOP2A
MKI67

CENPF
CCL8
CCL4

CCL4L2
CCL3
CCL2

CCL13

Cluster 2:
Interferon

Relative
Expression

5

-5 0 5
UMAP-1

U
M

A
P

-2

SPP1

-2.5

0

2.5
5
4
3
2
1
0

Relative 
expression

5
F G

-5 0 5

-2.5

0

2.5

U
M

A
P

-2

CCL13

6
4
2
0

UMAP-1

Relative 
expression

-5 0 5

Microglia

UMAP-1

-2.5

0

2.5

5

U
M
A
P
-2

1
2
3
4
5
6
7
8
9

ClustersSingle-cell RNA sequencing



iPSC-derived microglia adopt disease-relevant states
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iPSC-derived microglia adopt disease-relevant states
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Alzheimer’s disease brains over control: P < 10–6



Uncovering regulators of microglia states
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Future directions / challenges

• Define relevant readouts in cell-based model systems

• Develop CRISPR screens in more physiological systems

• Specific neuronal subtypes
• 3D co-culture models
• Brain organoids
• In vivo models

• Large-scale characterization of genetic variation on the 
nucleotide level

• Base editing / prime editing
• Deep mutational scanning
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