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At the convergence 

of human biology 

and machine learning 

lies a healthier you.

Meet insitro.

Machine Learning for Unraveling 

the Complex Biology of CNS Disease

Daphne Koller, insitro Founder & CEO



Genetics Suggest Causality

Associating phenotype with 

genotype suggests causality
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17 Million variants across recent 

cohort of 123k individuals Many variants with

small effect-sizes
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Rich Phenotypes to Bridge Genetics and Clinical Outcomes

17 Million variants across recent 

cohort of 123k individuals is not 

sufficiently powered

High-content biological data 

offers the potential to get closer 

to the causal biology
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Machine Learning 

● Traditional ML models required manually defined features 

● People are not very good at defining predictive features

● ML models trained end-to-end can discover features 

beyond human abilities 

… which induce a new representation of the data

SAMOYED (16); PAPILLON (5.7); POMERANIAN (2.7); ARCTIC FOX (1.0); ESKIMO DOG (0.6); WHITE WOLF (0.4); SIBERIAN HUSKY (0.4)

RED GREEN BLUE

CONVOLUTIONS AND RELU

MAX POOLING

CONVOLUTIONS AND RELU

MAX POOLING

CONVOLUTIONS AND RELU

● ML features define a low-dimensional manifold in 

which the data are embedded

● Manifold induces a task-relevant distance function 

where semantically related objects are adjacent 

ML models can construct novel, important features
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Interrogating Disease for Better Medicines

High-content data from human cohorts 

and genetically diverse iPSCs empowers 

deeper understanding of disease biology

Strong genetic drivers of disease provide 

“positive samples” of disease state for 

use by machine learning

Dense biomarker data reveals underlying 

heterogeneity in patient population

Discovery of patient segments and 

causal drivers of disease enables 

identification and de-risking of 

therapeutic targets and interventions

Our Approach
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We leverage ML and high-content data to identify, de-risk, and prosecute new genetic 

insights, therapeutic targets, patient populations, and uses for existing molecules

ML-enabled statistical genetics 

Embedding

(a type of 

feature vector)

ML to extract 

features

Downstream 

analyses

(e.g., GWAS)

Data 

(e.g., histology)

Novel insights into disease 

(e.g., genetic drivers)

Embedding

GeneticsEmbedding
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Pathologist-level Prediction Performance 

The ML model was trained on 5 Gilead NASH clinical trials using 4,178 slides* and 

evaluated on a held-out set of 463 slides from different patients and clinical centers

Fibrosis (Ishak) score (ρ = 0.90) Steatosis (ρ = 0.70) Hepatocyte ballooning (ρ = 0.71) Lobular inflammation (ρ = 0.67)
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P. Casale et. al., Oral presentation at EASL, April 2020;  *Resulting 

aggregate dataset contains ~2 million tilesDO NOT DISTRIBUTE
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Manhattan plot

(shuffled LD blocks)

● Two novel, genome-wide 

significant variants

● Compelling biology

● Eminently prosecutable

● Ordinal scores only

● Binary progression / 

regression

● Greater resolution

● Quantitative estimate of 

progression/regression 

~54 WEEKS

What pathologist sees... What insitro sees... What we uncovered…

F3

F4

F4 F4.0

F3.5

F3.0

~54 WEEKS

Source: P. Casale et. al., Oral presentation at EASL, April 2020

Example: Novel Genetic Drivers of Fibrosis Progression
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ML-enabled Disease Models

Analyze 

human data

Build in vitro systems Build ML models

Derive insights from 

genetic, phenotypic, 

and clinical data

Use iPSCs and biology at scale 

to generate multi-modal data 

Use ML to build phenotypic

manifolds from massive datasets 

Predictive Disease Models

Leading edge technology stack integrating 

iPSC technology, automation, and compute

to generate at-scale data that spans genetic diversity

● Insights on disease 

● Novel genetic drivers

● Screening platform 
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From this we get...
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Screening Using the Phenotypic Manifold
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* Has the potential to uncover genetic modifiers –

high-value novel targets, hard to find in other ways

Genetic interventions*: starting point 

for target-based drug discovery

Chemical interventions: existing 

molecules, evaluating new hits

Integration with therapeutics design 

allowing ML-enabled “phenotypic SAR”

Identifying Relevant Interventions 
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Introduction – Tuberous Sclerosis (TSC)

● TSC caused by LoF mutations in TSC1 or TSC2,

leading to overactivation of the mTOR pathway

● Benign tumors present in skin, brain, and kidneys

● Neurologic impairment and refractory epilepsy are 

most common cause of morbidity

● Rapamycin approved for adjunctive treatment for 

partial onset seizures

○ ~50% with intractable epilepsy show no benefit

○ Issues with BBB penetration and tolerability

Theilmann et al. (2020) Neuropharmacology 180:108297;  Henske et 

al. (2016) Nat Rev Dis Primers. 2:16035.
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Example: Disease Phenotypes in iNeurons

Hoechst Concanavalin A Wheat Germ Ag./Phalloidin Mitotracker Red

TSC1-/- WT
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iPSC-derived disease models with genetic engineering allow data generation at a 

scale that enabled machine learning for sick vs. healthy phenotypes
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Negative Controls Do Not Revert Disease Phenotype
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EV, RAPA - known effective compounds

ROT, LOXA - orthogonal compounds

Knockout

Wildtype
Knockout + drug
Wildtype + drug
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EV, RAPA - known effective compounds

ROT, LOXA - orthogonal compounds

Knockout

Wildtype
Knockout + drug
Wildtype + drug
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Positive Controls Show Disease Reversion
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Morphology Model Predicts Rapamycin Treated and X KO 

Cells as “Healthy”

DAPI, MAP2

1) Train model to classify cells 

sick (TSC2-/-) or healthy (WT)

given DAPI and MAP2 staining

Perturbation
% Predicted as

WT Control KO

TSC2-/- +DMSO ctrl 8

TSC2-/- +Rapamycin 91.7

TSC2-/- parental line 7.8

TSC2-/- X KO* 62.3*

TSC2-/- Y KO 19.3

TSC2-/-- Z KO 16.4

WT +DMSO ctrl 88.7

WT +Rapamycin 95.2

WT parental line 71.3

WT Control KO 89.6

WT X KO 70.0

WT Y KO 76.1

WT Z KO 70.1

2) Test perturbations: 

Are cells WT-like?

40d old neurons

Model Predictions

● WT perturbations are mostly 

classified as WT (“healthy”)

● TSC2-/- are mostly classified 

as TSC2-/- (“sick”)

● Rapamycin treated and X KO 

“sick” cells mostly classified 

as “healthy”

● Y and Z KO “sick” cells mostly 

classified as “sick”, consistent 

with pS6 results

● Some evidence of morphological 

effects due to X KO

*X KO: 70% efficiency

ResNet50 WT Control KO
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Phenotypic Changes and Reversion Visible via Morphology 

WT NGN2

TSC2-/- + Gene X KO

TSC2-/- + Rapamycin

TSC2-/- NGN2

Day 14: TSC-/-Day 14: TSC-/- + GeneX KODay 14: TSC-/- + RapamycinDay 14: Wildtype

Day 4 NPC Stage Day 14 NGN2 NeuronsDay 10 NPC Stage



“Disease

axis”

Color: LDA projection

Analysis of scRNA-seq Validates Rapamycin and X as 

Effective but Distinct Reversions

Projection of Cells onto 
the “Disease Axis”

Unbiased Manifold 
Construction Using ACTIONet

Identifying a “Disease Axis” 
Using LDA of TSC-/- and WT

● Both X KO and Rapamycin show reversal characteristics

● Neither X KO or Rapamycin revert cells to exactly the healthy state

Disease

Healthy

1 2 3

X KO (WT)

X KO (TSC)

TSC + 

Rapamycin

TSC2 KO
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Validation of LDA Projections in Bulk RNA-seq Datasets

Ordering of Bulk (in-house) Samples Based on their 

LDA Projections Uncovers Ordering of Samples

Projection of in-vivo Samples Using LDA Gene 

Loadings Separates Based on Disease Phenotype

Source: Bongaarts et al., 2020 18DO NOT DISTRIBUTE

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935755/


Goal: Map the Phenotypic Manifold for CNS Disease

Example: ALS Phenotypic Landscape

Motor Neuron
Death

Axonal Transport 
Defects

Altered RNA 
Metabolism/ 
Splicing

Mitochondrial 
Dysfunction

ER 
Stress

Known Genetic 
Drivers of ALS
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Nuclear 
Pore Defects

DNA 
Repair 
Defects

Autophagy
Defects

Identify conserved pathophysiology across heterogeneous genetic causes to discern coherent, 

responsive patient populations and discover high-impact genetic modifiers of disease

60+ engineered isogenic lines, 50+ sporadic lines 

automated differentiation; dense, multi-modal phenotyping


