

Machine Learning for Unraveling the Complex Biology of CNS Disease

Daphne Koller, insitro Founder & CEO

At the convergence of human biology and machine learning lies a healthier you.

Meet insitro

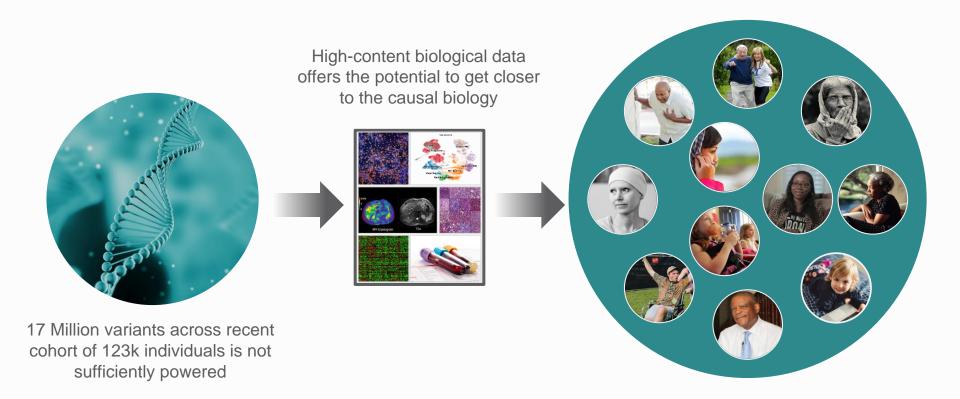
Genetics Suggest Causality

17 Million variants across recent cohort of 123k individuals

Associating phenotype with genotype suggests causality

Many variants with small effect-sizes

Rich Phenotypes to Bridge Genetics and Clinical Outcomes



Machine Learning

insitro

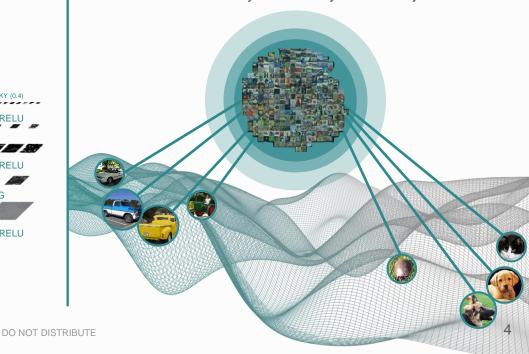
ML models can construct novel, important features

- Traditional ML models required manually defined features
- People are not very good at defining predictive features
- ML models trained end-to-end can discover features beyond human abilities

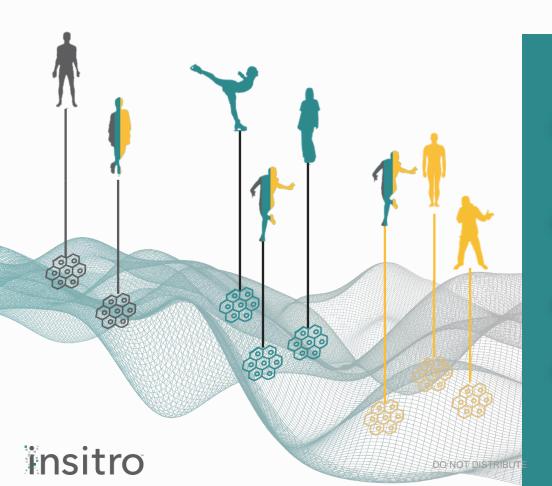
SAMOYED (16); PAPILLON (5.7); POMERANIAN (2.7); ARCTIC FOX (1.0); ESKIMO DOG (0.6); WHITE WOLF (0.4); SIBERIAN HUSKY (0.4) CONVOLUTIONS AND RELU MAX POOLING CONVOLUTIONS AND RELU MAX POOLING CONVOLUTIONS AND RELU RED GREEN BLUE

... which induce a new representation of the data

- ML features define a low-dimensional manifold in which the data are embedded
- Manifold induces a task-relevant distance function where semantically related objects are adjacent



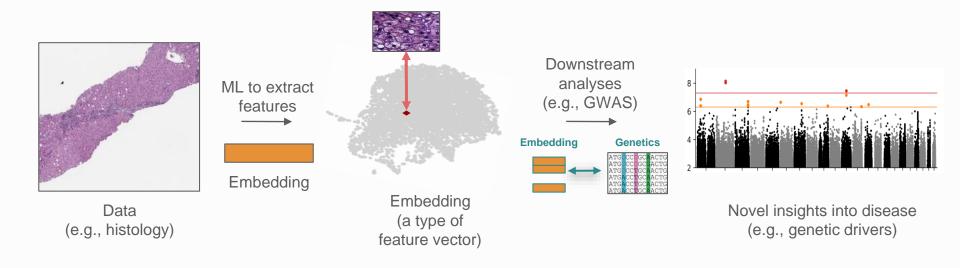
Interrogating Disease for Better Medicines



Our Approach

- High-content data from human cohorts and genetically diverse iPSCs empowers deeper understanding of disease biology
- Strong genetic drivers of disease provide "positive samples" of disease state for use by machine learning
- Dense biomarker data reveals underlying heterogeneity in patient population
- Discovery of patient segments and causal drivers of disease enables identification and de-risking of therapeutic targets and interventions

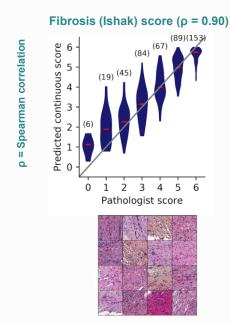
ML-enabled statistical genetics

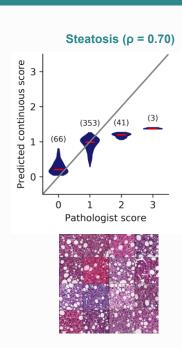


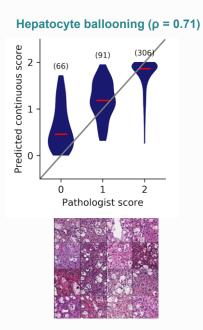
We leverage ML and high-content data to identify, de-risk, and prosecute new genetic insights, therapeutic targets, patient populations, and uses for existing molecules

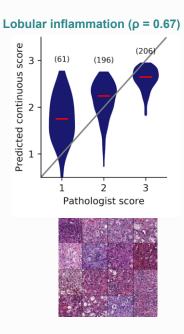
Pathologist-level Prediction Performance

The ML model was trained on 5 Gilead NASH clinical trials using 4,178 slides* and evaluated on a held-out set of 463 slides from different patients and clinical centers



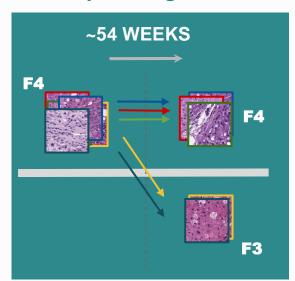






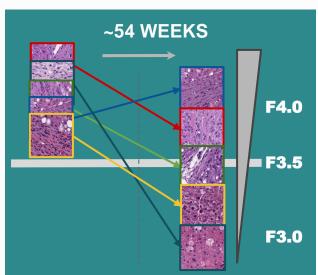
Example: Novel Genetic Drivers of Fibrosis Progression

What pathologist sees...



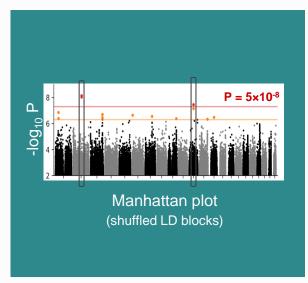
- Ordinal scores only
- Binary progression / regression

What insitro sees...



- Greater resolution
- Quantitative estimate of progression/regression

What we uncovered...



- Two novel, genome-wide significant variants
- Compelling biology
- Eminently prosecutable

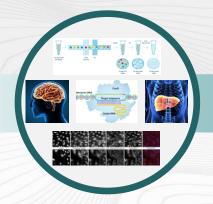
ML-enabled Disease Models

Analyze human data

Derive insights from genetic, phenotypic, and clinical data

Build in vitro systems

Use iPSCs and biology at scale to generate multi-modal data



Build ML models

Use ML to build phenotypic manifolds from massive datasets

From this we get...

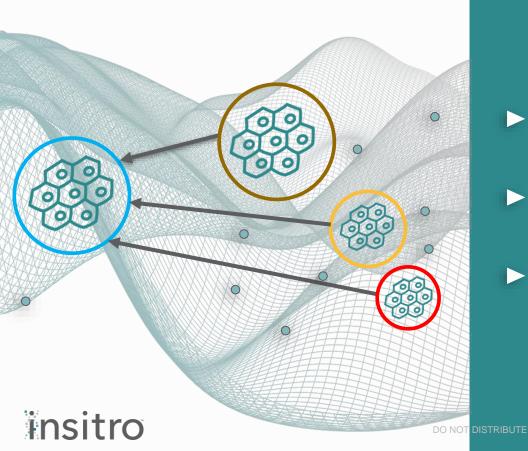
- Insights on disease
- Novel genetic drivers
- Screening platform

Predictive Disease Models

Leading edge technology stack integrating iPSC technology, automation, and compute to generate at-scale data that spans genetic diversity

,

Screening Using the Phenotypic Manifold



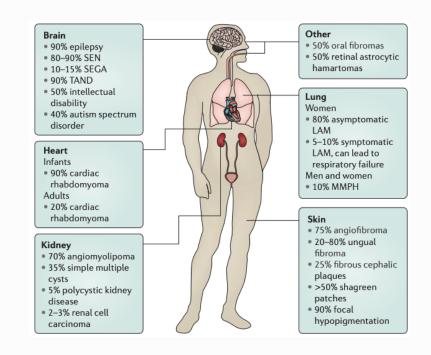
Identifying Relevant Interventions

- ► Genetic interventions*: starting point for target-based drug discovery
- Chemical interventions: existing molecules, evaluating new hits
- ► Integration with therapeutics design allowing ML-enabled "phenotypic SAR"

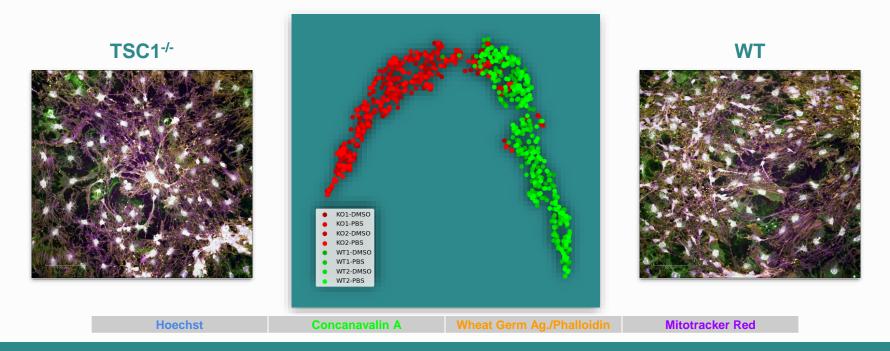
 ^{*} Has the potential to uncover genetic modifiers – high-value novel targets, hard to find in other ways

Introduction – Tuberous Sclerosis (TSC)

- TSC caused by LoF mutations in TSC1 or TSC2, leading to overactivation of the mTOR pathway
- Benign tumors present in skin, brain, and kidneys
- Neurologic impairment and refractory epilepsy are most common cause of morbidity
- Rapamycin approved for adjunctive treatment for partial onset seizures
 - ~50% with intractable epilepsy show no benefit
 - Issues with BBB penetration and tolerability



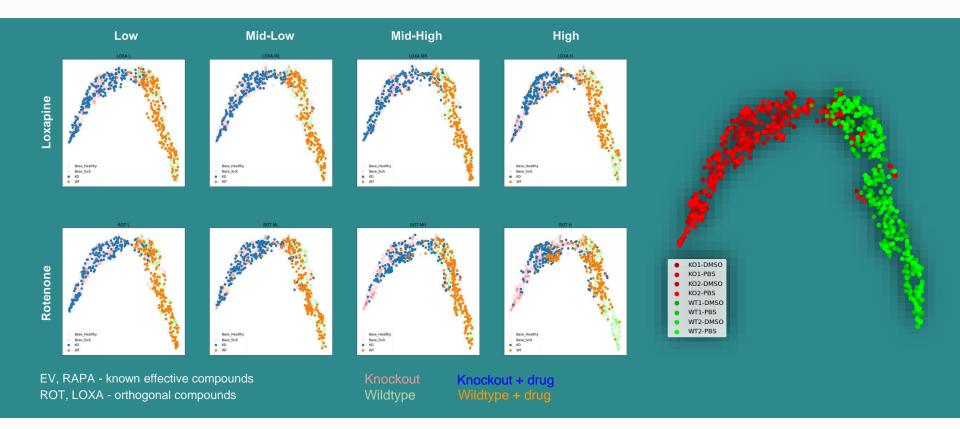
Example: Disease Phenotypes in iNeurons



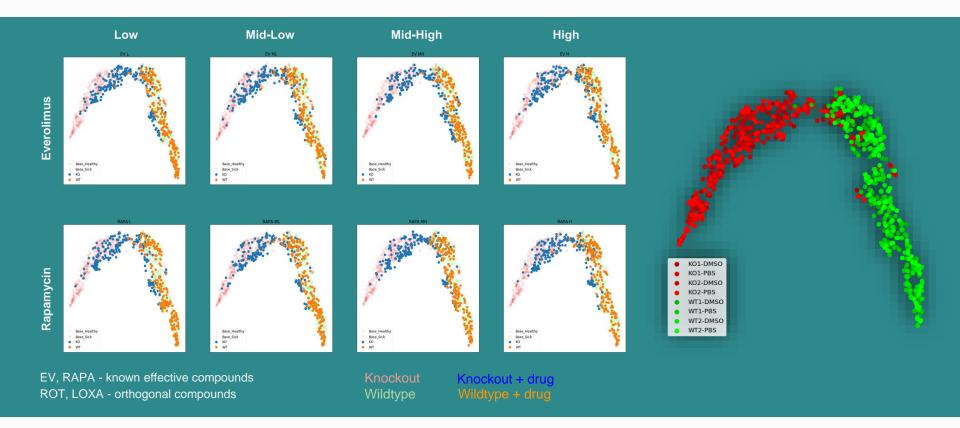
iPSC-derived disease models with genetic engineering allow data generation at a scale that enabled machine learning for sick vs. healthy phenotypes

12

Negative Controls Do Not Revert Disease Phenotype

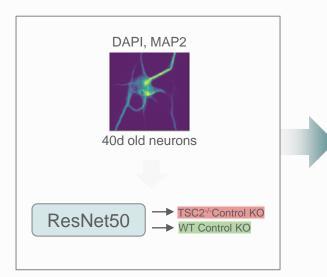


Positive Controls Show Disease Reversion



Morphology Model Predicts Rapamycin Treated and X KO Cells as "Healthy"

1) Train model to classify cells sick (TSC2-/-) or healthy (WT) given DAPI and MAP2 staining



2) Test perturbations: Are cells WT-like?

Perturbation	% Predicted as WT Control KO
TSC2-/- +DMSO ctrl	8
TSC2 ^{-/-} +Rapamycin	91.7
TSC2-/- parental line	7.8
TSC2-/- X KO*	62.3*
TSC2-/- Y KO	19.3
TSC2-/ Z KO	16.4
WT +DMSO ctrl	88.7
WT +Rapamycin	95.2
WT parental line	71.3
WT Control KO	89.6
WT X KO	70.0
WT Y KO	76.1
WT Z KO	70.1

*X KO: 70% efficiency

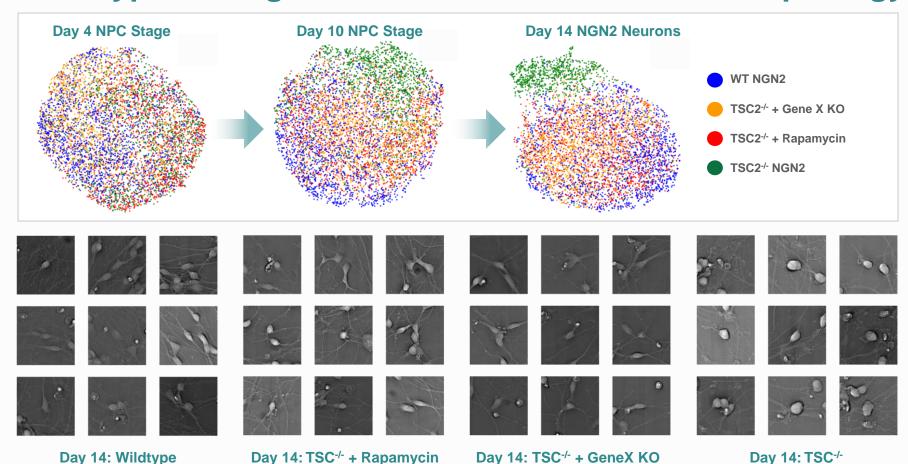
DO NOT DISTRIBUTE

Model Predictions

- WT perturbations are mostly classified as WT ("healthy")
- TSC2^{-/-} are mostly classified as TSC2^{-/-} ("sick")
- Rapamycin treated and X KO "sick" cells mostly classified as "healthy"
- Y and Z KO "sick" cells mostly classified as "sick", consistent with pS6 results
- Some evidence of morphological effects due to X KO

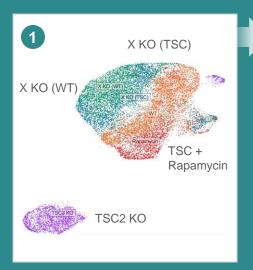
15

Phenotypic Changes and Reversion Visible via Morphology

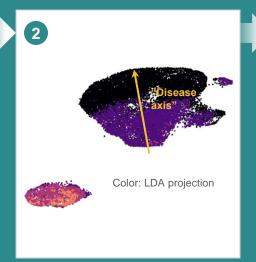


Analysis of scRNA-seq Validates Rapamycin and X as Effective but Distinct Reversions

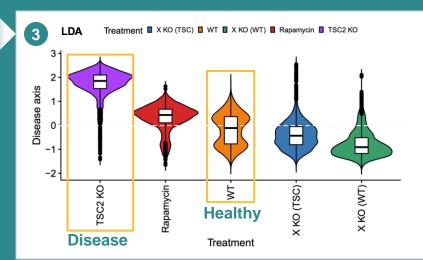
Unbiased Manifold Construction Using ACTIONet



Identifying a "Disease Axis" Using LDA of TSC--- and WT



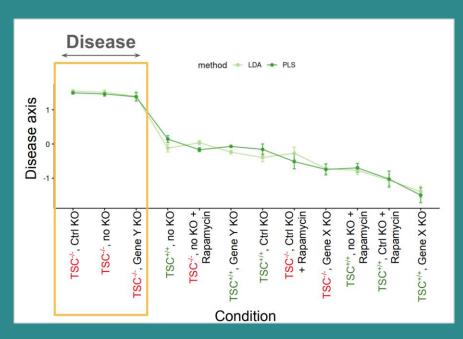
Projection of Cells onto the "Disease Axis"

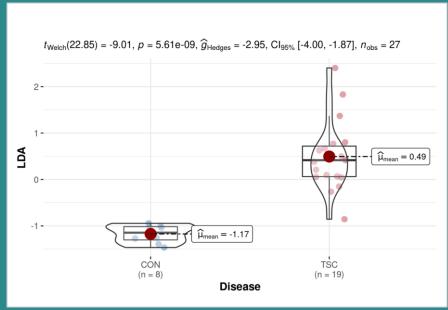


- Both X KO and Rapamycin show reversal characteristics
- Neither X KO or Rapamycin revert cells to exactly the healthy state

DO NOT DISTRIBUTE

Validation of LDA Projections in Bulk RNA-seq Datasets

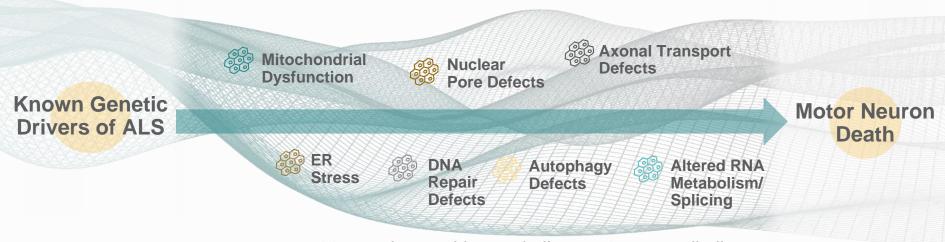




Projection of *in-vivo* Samples Using LDA Gene Loadings Separates Based on Disease Phenotype

Goal: Map the Phenotypic Manifold for CNS Disease

Example: ALS Phenotypic Landscape



60+ engineered isogenic lines, 50+ sporadic lines automated differentiation; dense, multi-modal phenotyping

Identify conserved pathophysiology <u>across heterogeneous genetic causes</u> to discern coherent, responsive patient populations and discover high-impact genetic modifiers of disease

DO NOT DISTRIBUTE