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Genetics Suggest Causality

Associating phenotype with
genotype suggests causality

17 Million variants across recent . .
cohort of 123k individuals Many variants with

small effect-sizes
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Rich Phenotypes to Bridge Genetics and Clinical Outcomes

High-content biological data
offers the potential to get closer
to the causal biology

17 Million variants across recent
cohort of 123k individuals is not
sufficiently powered
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Machine Learning

ML models can construct novel, important features

e Traditional ML models required manually defined features
e People are not very good at defining predictive features

e ML models trained end-to-end can discover features
beyond human abilities

SAMOYED (16); PAPILLON (5.7); POMERANIAN (2.7); ARCTIC FOX (1.0); ESKIMO DOG (0.6); WHITE WOLF (0.4); SIBERIAN HUSKY (0.4)

CONVOLUTIONS AND RELU
v e D T e s T e e T TQ000F & w5 e w e
MAX POOLING
WS S S o [ S [ el GRSV ) [faf o S

CONVOLUTIONS AND RELU
V- PPy 4

LT L L5 L
MAX POOLING

sy

CONVOLUTIONS AND RELU

-:i=ns i t ro DO NOT DISTRIBUTE

... which induce a new representation of the data

e ML features define a low-dimensional manifold in
which the data are embedded

e Manifold induces a task-relevant distance function
where semantically related objects are adjacent




Interrogating Disease for Better Medicines

Our Approach

High-content data from human cohorts
and genetically diverse iPSCs empowers
deeper understanding of disease biology

Strong genetic drivers of disease provide
‘positive samples” of disease state for
use by machine learning

Dense biomarker data reveals underlying
heterogeneity in patient population

Discovery of patient segments and
causal drivers of disease enables
identification and de-risking of
therapeutic targets and interventions

insitro .



ML-enabled statistical genetics

Downstream
ML to extract analyses
features (e.g., GWAS)
—> —>
_ Embedding Genetics
ATGECCEGCHACT!
. P
Embedding — ke

Embedding
(a type of
feature vector)

Data
(e.g., histology)

Novel insights into disease
(e.g., genetic drivers)

We leverage ML and high-content data to identify, de-risk, and prosecute new genetic

insights, therapeutic targets, patient populations, and uses for existing molecules
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Pathologist-level Prediction Performance

The ML model was trained on 5 Gilead NASH clinical trials using 4,178 slides* and

evaluated on a held-out set of 463 slides from different patients and clinical centers

Fibrosis (Ishak) score (p = 0.90) Steatosis (p = 0.70) Hepatocyte ballooning (p = 0.71) Lobular inflammation (p = 0.67)
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Example: Novel Genetic Drivers of Fibrosis Progression

What pathologist sees... What insitro sees... What we uncovered...

~54 WEEKS

~54 WEEKS

P =5x10°®

Manhattan plot
(shuffled LD blocks)

e Ordinal scores only e Greater resolution e Two novel, genome-wide
e Binary progression / e Quantitative estimate of significant variants
regression progression/regression e Compelling biology

e Eminently prosecutable

e L]
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ML-enabled Disease Models

Build in vitro systems Build ML models
Use iPSCs and biology at scale Use ML to build phenotypic
to generate multi-modal data manifolds from massive datasets
Analyze
human data From this we get...

e Insights on disease
e Novel genetic drivers
e Screening platform

Derive insights from
genetic, phenotypic,
and clinical data

privee
I

Predictive Disease Models
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@5 Leading edge technology stack integrating =
= iPSC technology, automation, and compute &=

to generate at-scale data that spans genetic diversity
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Screening Using the Phenotypic Manifold

Identifying Relevant Interventions

Genetic interventions*: starting point
for target-based drug discovery

Chemical interventions: existing
molecules, evaluating new hits

Integration with therapeutics design
allowing ML-enabled “phenotypic SAR”

* Has the potential to uncover genetic modifiers —
high-value novel targets, hard to find in other ways
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Introduction — Tuberous Sclerosis (TSC)

e TSC caused by LoF mutations in TSC1 or TSC2,
leading to overactivation of the mTOR pathway

e Benign tumors present in skin, brain, and kidneys

e Neurologic impairment and refractory epilepsy are
most common cause of morbidity

e Rapamycin approved for adjunctive treatment for
partial onset seizures

o ~50% with intractable epilepsy show no benefit

o Issues with BBB penetration and tolerability

nsitro

Brain

* 90% epilepsy

* 80-90% SEN

* 10-15% SEGA

* 90% TAND

* 50% intellectual
disability

* 40% autism spectrum
disorder

Heart

Infants

* 90% cardiac
rhabdomyoma

Adults

* 20% cardiac
rhabdomyoma

Kidney

* 70% angiomyolipoma

* 35% simple multiple
cysts

* 5% polycystic kidney
disease

* 2-3% renal cell
carcinoma

"

Other

* 50% oral fibromas

* 50% retinal astrocytic
hamartomas

Lung

Women

¢ 80% asymptomatic
LAM

* 5-10% symptomatic
LAM, can lead to
respiratory failure

Men and women

* 10% MMPH
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Theilmann et al. (2020) Neuropharmacology 180:108297; Henske et
al. (2016) Nat Rev Dis Primers. 2:16035.

Skin

* 75% angiofibroma

* 20-80% ungual
fibroma

* 25% fibrous cephalic
plaques

* >50% shagreen
patches

* 90% focal
hypopigmentation
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Example: Disease Phenotypes in iNeurons

KO1-DMSO
KO1-PBS
KO2-DMS0
KO2-PBS
WT1-DMSO
WT1-PBS
WT2-DMSO
WT2-PBS

[N N NN NN N]

Hoechst Concanavalin A Wheat Germ Ag./Phalloidin Mitotracker Red

IPSC-derived disease models with genetic engineering allow data generation at a

scale that enabled machine learning for sick vs. healthy phenotypes

i'n S i t ro DO NOT DISTRIBUTE 12



Negative Controls Do Not Revert Disease Phenotype

Low Mid-Low Mid-High High
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® KO1-DMSO

OCJ ® KO1-PBS

o ® KO2-DMSO

o= ® KO2-PBS

% ® WT1-DMSO
® WTLPBS

o ® WT2-DMSO
® WT2-PBS

EV, RAPA - known effective compounds
ROT, LOXA - orthogonal compounds Wildtype
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Positive Controls Show Disease Reversion

Low Mid-Low Mid-High

Everolimus

KO1-DMSO
KO1-PBS

Rapamycin
(NN NN NNN]

EV, RAPA - known effective compounds
ROT, LOXA - orthogonal compounds Wildtype
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Morphology Model Predicts Rapamycin Treated and X KO
Cells as “Healthy”

1) Train model to classify cells

sick (TSC2) or healthy (WT)

given DAPI and MAP2 staining

2) Test perturbations:
Are cells WT-like?
Model Predictions

DAPI, MAP2

Perturbation

% Predicted as
WT Control KO

TSC2/ +DMSO ctrl

8

WT perturbations are mostly
classified as WT (“healthy”)

TSC2/- are mostly classified
as TSC27 (“sick”)

91.7
TSC2 parental line 7.8
62.3*

Rapamycin treated and X KO

U VKO 19.3 “sick” cells mostly classified
40d old neurons } TSC2"-Z KO 16.4 “healthy” !
WT +DMSO ctrl 88.7 as ealt y
WT +Rapamycin 95.2 Y and Z KO “sick” cells mostly
WT parental line e classified as “sick”, consistent
—» TSC2"Control KO WT Control KO 89.6 .
with pS6 results
[ ReSNetSO ] —3 WT Control KO WT X KO 70.0 p
WT Y KO 76.1 Some evidence of morphological
WT Z KO 70.1 effects due to X KO

*X KO: 70% efficiency
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Phenotypic Changes and Reversion Visible via Morphology

Day 4 NPC Stage Day 14 NGN2 Neurons

@ WT NGN2
@ T1SC2 + Gene X KO

@ T7sC2’ + Rapamycin

@ TsC2- NGN2

: TSC/ + Rapamycin TSC” + GeneX KO Day 14: TSC



Analysis of scRNA-seq Validates Rapamycin and X as
Effective but Distinct Reversions

Unbiased Manifold Identifying a “Disease Axis” Projection of Cells onto
Construction Using ACTIONet Using LDA of TSC* and WT the “Disease Axis”

e LDA Treatment @ X KO (TSC) @ WT @ X KO (WT) B Rapamycin @ TSC2 KO

Tesdd

Healthy

X KO (TSC)

X KO (WT) &

2
x
©
]
]
©
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Rapamycin 1
X KO (TSC)A

Disease Treatment

e Both X KO and Rapamycin show reversal characteristics
e Neither X KO or Rapamycin revert cells to exactly the healthy state
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Validation of LDA Projections in Bulk RNA-seq Datasets

Disease

method LDA -=- PLS tWalch(22'85} =-9.01, p= 5.61e-09, aHadas =-2.95, Clgse, [-4.00, -1.87], Nops = 27

T

Disease axis

—

TSC”, Gene Y KO1
TSC**, no KOf
TSC™, no KO +]
Rapamycin

*, Gene Y KO
TSC*"*, Ctrl KO7
TSC”, Ctrl KO|

+ Rapamycin
TSC”, Gene X KO1
TSC**, no KO +|
Rapamycin
TSC**, Ctrl KO +|
Rapamycin

*, Gene X KO

TSCH
TSCH

Disease
Condition

Ordering of Bulk (in-house) Samples Based on their Projection of in-vivo Samples Using LDA Gene
LDA Projections Uncovers Ordering of Samples Loadings Separates Based on Disease Phenotype
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935755/

Goal: Map the Phenotypic Manifold for CNS Disease

Example: ALS Phenotypic Landscape

(Lo
Mitochondrial 4% Nuclear L Al 1A DR
Dysfunction % Ppore Defects

Defects

Known Genetic _

_ > Motor Neuron
Drivers of ALS '

; : Death
5
W & ER % DNA~ A o
oL 00 utophagy ' 5= Altered RNA
<. Stress 7 Repair Defects - Metabolism/
= Defects Splicing

60+ engineered isogenic lines, 50+ sporadic lines
automated differentiation; dense, multi-modal phenotyping

Identify conserved pathophysiology across heterogeneous genetic causes to discern coherent,

responsive patient populations and discover high-impact genetic modifiers of disease
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