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The challenge of longitudinal disease heterogeneity
Schizophrenia spectrum, bipolar and early-onset depressive disorders
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Understanding heterogeneity
Comparative neuroscience based on supervised machine learning

Dwyer, Falkai, Koutsouleris, 2018, AR Clinical Psychology, Vol. 14: 91-118

Dwyer and Koutsouleris, 2021, Journal of Child Psychology and Psychiatry, in press
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Understanding heterogeneity
Comparative neuroscience strategies crossing the borders between psychiatry and neurology
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Understanding heterogeneity
Comparative neuroscience strategies revealing shared clinical phenotypes between SCZ and bvFTD
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Understanding heterogeneity
Comparative neuroscience strategies showing specific predictability of bvFTD brain patterns in SCZ
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Understanding heterogeneity
Comparative neuroscience strategies showing C9orf72 association of SCZ pattern expression in bvFTD
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Understanding longitudinal heterogeneity
Can we learning something from these cross-sectional analyses for predicting outcomes?

Recent-Onset Depression (N=422)
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Functional non-recovery: 

average follow-up functioning ≤ 

lower quartile of the baseline
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Understanding longitudinal heterogeneity
Testing the neuroprogression hypothesis in early-stage disease samples
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From promise to practice
Using diagnostic decompositions to predict 2-years non-recovery courses in CHR and ROD patients
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From promise to practice
Using multiple data domains to predict 2-years non-recovery courses in CHR and ROD patients
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Toward the real-world implementation of biomarkers

Neuroimaging

Proteomics

Transcriptomics

Genetics

Neurocognition

Clinical phenotyping

Digital sensing
To assess and compare data domains for their 

diagnostic, prognostic and theragnostic utility.

Based on lessons learned, to iteratively refine clinical 

applications areas for ‘algorithmic augmentation’.

To test models across different phenotypes, patient 

populations and disease gradients/stages.

To test clinical effectiveness of model-informed 

treatments in biomarker-stratified clinical trials.

To improve models and treatments via bedside-to-

bench and bench-to-beside development cycles.


