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The challenge of longitudinal disease heterogeneity
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Understanding heterogeneity
Comparative neuroscience based on supervised machine learning
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Understanding heterogeneity
Comparative neuroscience strategies crossing the borders between psychiatry and neurology
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Understanding heterogeneity
Comparative neuroscience strategies revealing shared clinical phenotypes between SCZ and bvFTD
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Understanding heterogeneity
Comparative neuroscience strategies showing specific predictability of bvFTD brain patterns in SCZ
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Understanding heterogeneity

Comparative neuroscience strategies showing C9orf72 association of SCZ pattern expression in bvFTD
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Understanding longitudinal heterogeneity
Can we learning something from these cross-sectional analyses for predicting outcomes?
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Understanding longitudinal heterogeneity 'i'fPRONIA

Testing the neuroprogression hypothesis in early-stage disease samples
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From promise to practice
Using diagnostic decompositions to predict 2-years non-recovery courses in CHR and ROD patients
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From promise to practice

Using multiple data domains to predict 2-years non-recovery courses in CHR and ROD patients
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i Toward the real-world implementation of biomarkers

Clinical phenotypin
Digital sensing
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Neurocognition

To assess and compare data domains for their
diagnostic, prognostic and theragnostic utility.

To test models across different phenotypes, patient
populations and disease gradients/stages.

Based on lessons learned, to iteratively refine clinical
applications areas for ‘algorithmic augmentation’.

To test clinical effectiveness of model-informed
treatments in biomarker-stratified clinical trials.

Proteomics
Transcriptomics

Genetics

To improve models and treatments via bedside-to-
bench and bench-to-beside development cycles.



