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Engineered Immunity asa Model for Regenerative Medicine

Genetically engineered
T cells (blue) take aim at
cancer cells (purple).
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The rise of engineered T cells as cancer drugs

e Immunotherapy has curative potential

e Immunotherapy must harness T cell specificity, persistence and potency to achieve its goals

e Safety
e Efficacy
i “CART cells are living drugs”
e Sadelain, New York Times, 2012
e Specificity

e lLong-acting
e Potency




T lymphocytes: thymic origin, VDJ recombination and clonal selection

Jacques Miller
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Immunobiology: The Immune System in Health and
Disease. 5th edition. Janeway CA Jr, Travers P, Walport M,
et al. New York: Garland Science; 2001.

The clonal selection theory
eEach lymphocyte bears a single receptor
with a unique specifity. ¢ Interaction
between a foreign molecule and a
lymphocyte receptor capable of binding
that molecule with a high affinity leads to
lymphocyte  activation and  clonal
expansion. e Lymphocytes bearing
receptors specific for ubiquitous self
molecules are deleted at an early stage in
lymphoid cell development
and are therefore absent
from the repertoire of
mature lymphoctyes.

F. Macfarlane Burnet




Mastering T cell responses: induce, derepress, instruct

Active immunization Inhibition of negative regulation CART cell engineering
anti-CTLA-4 anti-PD-1
A
o APC APC
" -

Antibodies against CTLA-4 or PD-1 block
Active immunization induces the brake function leading to activation

Synthetic receptors instruct
protective natural responses of latent anti-tumor responses

supra-physiological immunity



Assembling CARs for cell therapy

Retroviral vectors
DNA transposons Genetic

mRNA transfection| Engineering
Targeted nucleases '

Tumor
Immunology

* T cell immunobiology
¢ Tumor microenvironment

* CD19 paradigm

. Target discovery | C D 1 9 CA R
(solid tumors) Selection T h era p y

* Combinatorial
targeting

Synthetic
Receptor
Design

* T cell signaling
» Safety switches

T cell activation
Cytokines, small molecules
Cell purification

Devices

Cell
Manufacturing
Sciences

* CFR 210

Riviere & Sadelain, Mol Ther, 2017



CAR T cell Manufacturing Flow
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Structure
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Antigen binding
* Epitope
* Affinity

Structure
* Affects binding
» Affects function

Costimulation
* Function
* Metabolism

* Persistence
Activation

* Function trigger
* Proliferation

FDA approvedin 2017
Axicabtagene Ciloleucel Tisagenlecleucel
(Yescarta) (Kymriah)

Prototypic CD19 CARs

Function




Rapid and complete eradication of refractory leukemia by 19-28z CAR T cells
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Brentjens, Davila, Riviere et al,
Science Transl Med, March 2013

Ve Immunotherapy

T cells on the attack

Breakthrough of the year
Science, December 2013

Table 1. Reponses to CAR T-Cell Therapy.*

Disease Response Rate
percent
Leukemia
B-cell acute lymphoblastic leuke- 83-93

mia (in adults)

B-cell acute lymphoblastic leuke- 68-90
mia (in children)

Chranic lymphacytic leukemia 57-71
Lymphoma

Diffuse large B-cell lymphoma 64-86

Follicular lymphoma )

Transformed follicular lymphoma 70-83
Refractory multiple myeloma 25-100
Solid tumors

Glioblastora ND

Pancreatic ductal adenocarcinoma 17

Comments

High initial remission rates; unresolved
issue is whether CAR T-cell therapy is
definitive therapy or should be fol-
lowed by allogeneic hematopoietic
stem-cell therapy

Approximately 25% of patients reported
to have a relapse with CD19-negative
or CD19-low leukemia; CD22 CAR T
cells may improve survival among
some patients with CD19 relapses

Relapse is rare in patients who have a
complete response; ibrutinib appears
to increase response rates

Approximately 40-50% of patients re-
ported to have a durable complete re-
sponse

At a median follow-up of 28.6 mo, the re-
sponse was maintained in 89% of pa-
tients who had a response

Actotal of 3 of 3 patients with transformed
follicular lymphoma had a complete re-
sponse

B-cell maturation antigen CAR T cells;
stringent complete response in ap-
proximately 25% of patients

{q4}In case report from phase 2 study,
complete response on magnetic reso-
nance imaging after intravenous and
cerebrospinal fluid administration of
CAR T cells; complete response last-
ed 7.5 mo

In one patient with liver metastasis, CAR
T-cell treatment produced a complete
metabolic response in the liver but
was ineffective against the primary
pancreatic tumor

Reference

Park et al.,” Davila et al.* Turtle
etal”

Maude et al.,** Maude et al.,* Fry
etal.,” Leeetal.®

Porter et al.," Turtle et al.”

Turtle et al.,** Kochenderfer et al.,*
Schuster et al.,” Neelapu et
al#

Schuster et al.*
Turtle et al.,** Schuster et al.,

“Neelapu et al.*

Alietal.,” Fan et al., ' Berdeja et
al.#

Brown et al.*®

Beatty et al.™

* ND denotes not determined.

June and Sadelain,
N Engl J Med, 2018




Impact of CD19 CAR therapy

* Good news for patients with relapsed B cell malignancies

* First gene therapy to be approved in the US

* First engineered T cell to be approved worldwide

* Ushers “synthetic biology” in the clinical arena (chimeric proteins, circuits)
* Convinced big pharma to manufacture cells as medicines (“living drugs”)

* Obliges to rethink drug manufacturing, distribution and reimbursement Interventional CAR clinical trials by country
Matthew MacKay et al. Nat Biotechnol. 2020

Y wreniond W) 2

* Poised to extend to other cancers and beyond cancer e

* Paves the way for other cell and gene therapies

CD19 CAR trials account for 41%
of 700 CAR trials listed at clinical
trials.gov (March 2021),
Globerson-Levin et al., Eur J
Immunol, 2021

Atlantic
Qcean

CARGlobalTrials.com









Cellular senescence is a stress response program

Cdk4/6i+MEKi

Vehicle

Proliferating cells

Stably arrested

senescent cells
- \ Stress triggers

Hayflick; Moorhead. Exp Cell Res.; 25; 585-621 (1961) * DNAdamage

Harley et al. Nature.; 345; 458-469 (1990) * Oncogene activation

Serranoetal. Cell.; 88; 593-602 (1997) * Telomere erosion

Weinberg. Cell.; 88; 573-575 (1997) o

Lysosomal stress

— 2 [ "
Gorgoulisetal.Cell.179; 813-827 (2019) « ROS \ W
' O i N |
J -
p53 I Cyclin D
CDK4/6

p2‘| CIP1

B

Cyclin E E2Fs
CDK2

A%
V!

S-phase
genes




Senolytic uPAR CART cells restore tissue homeostasisin senescence-associated liver fibrosis

Senescence-associated pathologies
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Therapeutic potential of senolytic CAR T cells in regenerative medicine

a Healthy body b Abnormalaccumulation ¢© )
of senescent cells Senolytic
Senescent Immune CAR
cell cell gy ey uPAR T cell
L . 4 ) //" —— \\"'\\\ p ..
|\/ oo o ( D=
W’ SASP \‘/c Aﬁ«.»
factor l
Liverv .
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Cancer combat disease

Wagner,V & Gil,J. Nature.538;37-38(2020)

uPAR and uPAR CART cells offer a platform to study and perturb senescence




CAR T cell sources
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Themeli, Riviere & Sadelain,
Cell Stem Cells, 2015



CAR T cells can be differentiated from from TiPS (T cells reprogrammed to pluripotency)

vy—@ — dd

T-iPS CAR Engineered TiPS-derived 19-
T-iPS 28z CART cells

Themeli et al, Nature Biotechnol, 2013

Hematopoietic Lymphoid T cell

specification commitment differentiation

BMP4, bFGF, VEGF, SCF, FIt3L,IL-3, FIt3L, IL-7, SCF, FIt3L, IL-7,
IL-6, IL-11, TPO TPO, IL-3 SCF



Understanding T cell genesis in a dish
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CD19 1XX-CART cells derived from TiPS are efficacious against systemic B-ALL in mice
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Isolate and Expand ~ CP1ICARparadigm — h .o and Manufacture
—

Natural T Cells Engineered T Cells

Bone Marrow
Traniplant

Chimeric antigen
receptors

Tumor Immunology

Gene Transfer

(Gene editing)

Adoptive Immunity (Synthetic biology)

Graftvs Leukemia

Engineered ACT
e The CD19 Paradigm

Natural ACTs

o LAK e Combinatorial

e TIL targeting

e DLI * Gene edited T cells
o VST e Armored CARs

Sadelain. CARs: driving immunology toward synthetic biology, Curr Opin Immunol, 2016
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