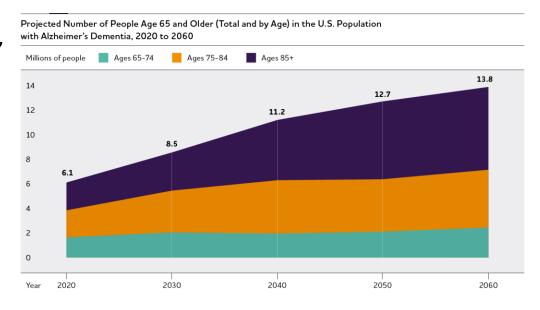
Development, Characterization, and Validation of Genetically Engineered Marmoset Models of Neurodegenerative Disease

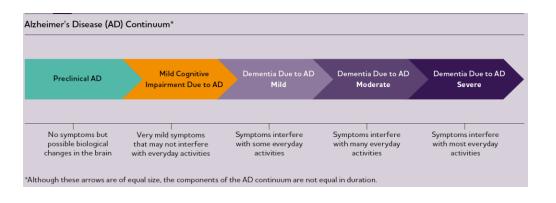
Afonso C. Silva, Ph.D.

Endowed Chair of Translational Neuroimaging,

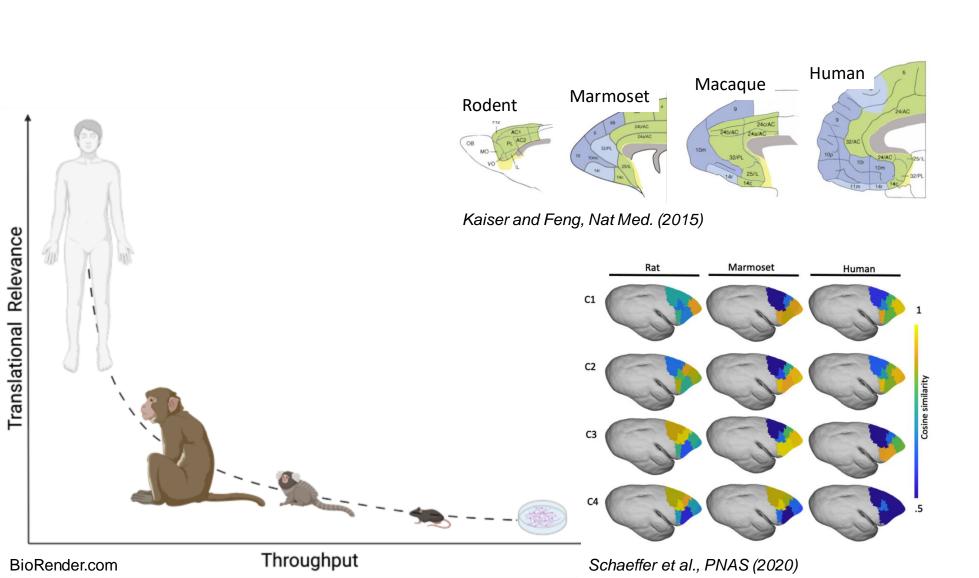
Professor, Department of Neurobiology, University of Pittsburgh

Adjunct Professor, Salk Institute for Biological Studies

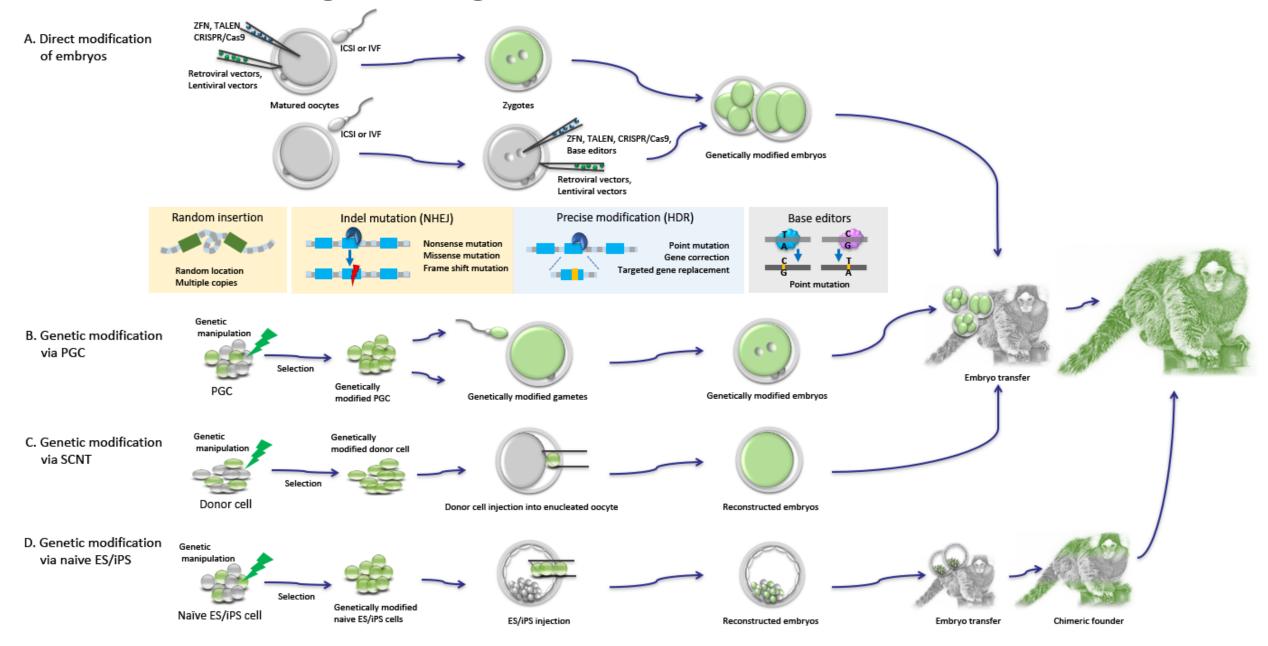




The Need for Better Animal Models of Neurological Disorders


- Neurological disorders are a leading cause of disability worldwide, affecting ~100 million Americans (https://www.ninds.nih.gov)
- Case example: Alzheimer's Disease, the most common cause of dementia
 - 2022: 6.5 million Americans
 13.8 million by 2060
 - Current costs: \$321 Billion
 - 99.6% failure rate of clinical trials
 - No disease-modifying drugs

 There's an urgent need for developing better animal models of AD


Nonhuman primates bridge the translational gap between human studies and rodent models of AD

AD Gene	Marmoset- Human %		
ABCA7	90	78	
APH1B	93	81,84	
APOE	91	71	
BCAM	92	72	
BCL3	96	80	
BTNL2	86	62	
CBLC	86	71	
CD33	79	40, 50, 55	
CLPTM1	99	95	
CLU	93	76	
CR1	15	8	
EPHA1	91	88	
IL34	88	67	
LRCH4	93	85	
MARK4	49	98	
MS4A3	79	57	
MS4A6A	75	47, 47, 39	
PICALM	95	98	
PILRA	72	64	
SORL1	98	93	
TOMM40	75	93	
TREM2	90	54	

Improved marmoset-human sequence homology in AD-relevant loci

Gene-Editing Strategies

Transgenic NHP Models

Transgene	Application	Species	Genetic manipulation	Outcome	Reference
GFP	Reporter gene	Rhesus macaque	Injection of retroviral vectors into oocytes followed by ICSI	One live transgenic offspringGermline transmission not verified	Chan et al., 2001
Human mutant huntingtin gene	Huntington's disease	Rhesus macaque	Injection of lentiviral vectors into oocytes followed by ICSI	 Five live transgenic offspring with clinical features of Huntington's disease: variable extents of motor dysfunction, chorea and dystonia Germline transmission confirmed in a follow up study 	Yang et al., 2008 Moran et al., 2015
GFP	Reporter gene	Common marmoset	Injection of lentiviral vectors into embryos	Five live transgenic offspringGermline transmission confirmed in offspring	Sasaki et al., 2009
EGFP	Reporter gene	Rhesus macaque	Injection of SIV vectors into embryos	- Two live transgenic offspring with mosaic expression of the transgene	Niu et al., 2010
Mutant a- synuclein (A53T)	Parkinson's disease	Rhesus macaque	Injection of lentiviral vectors into oocytes followed by ICSI	 Six live transgenic offspring expressing mutant a-synuclein Subtle cognitive defects and anxiety like behaviors Germline transmission not verified 	Niu et al., 2015
Human MeCP2	Autism	Cynomolgus macaque	Injection of lentiviral vectors into oocytes followed by ICSI	 Autism-like disorder Behavioral abnormalities: repetitive circular locomotion, reduction in social interactions, impairment of cognitive functions Germline transmission confirmed using testicular tissue xenografting 	Liu et al., 2016
GFP	Reporter gene	Cynomolgus macaque	Injection of lentiviral vectors into oocytes or embryos	- Lentivirus injection into oocytes before fertilization achieved homogenous expression of GFP throughout the entire body	Seita et al., 2016
GCaMP	Functional reporter gene	Common marmoset	Injection of lentiviral vectors into embryos	Five live transgenic offspringStable and functional GCaMP expression in several different tissuesGermline transmission confirmed	Park et al., 2016
Human mutant ataxin 3-120Q	Polyglutamine diseases	Common marmoset	Injection of lentiviral vectors into embryos	 Seven live transgenic offspring expressing polyQ expanded ataxin 3 Gradual progression of neurological symptoms and motor impairment Germline transmission confirmed in offspring 	Tomioka et al., 2017
Human mutant ataxin 3-120Q	Polyglutamine diseases	Common marmoset	Injection of lentiviral vectors into embryos	 Mutant human ataxin 3 gene expression controlled by tet-on system Germline transmission confirmed in offspring 	Tomioka et al., 2017

Gene-Edited NHP Models

IL2RG

Prrt2

MECP2

BMAL1

Immunodeficiency

Proof of concept for

CRISPR/Cas9

Circadian rhythm

Autism

disorders

marmoset

Cynomolgu

s macaque

Rhesus /

Cynomolgu

s macaque

Cynomolgu

s macaque

Edited Gene	Application	Species	Genetic manipulation	Outcome	Reference
Nr0b1, Ppar-r, and Rag1	Proof of concept for CRISPR/Cas9	Cynomolgu s macaque	Co-injection of Cas9 mRNA and multiple sgRNAs into single-cell embryos	Simultaneous disruption of Ppar-r, and Rag1 genesGermline transmission confirmed in follow-up study	Niu et al., 2014 Chen et al., 2015
MECP2	Autism	Rhesus / Cynomolgu s macaque	Injection of circular TALEN plasmid into single-cell embryos	One live MECP2 mutant offspringMale embryonic lethality of MeCP2 mutation shown	Liu et al., 2014
MECP2	Autism	Cynomolgu s macaque	Injection of TALEN mRNA into single-cell embryos	- One MECP2 mutant male neonate that did not survive	Liu et al., 2014
NrOb1, Ppar-r, and Rag1	Adrenal hypoplasia congenita (AHC) Hypogonadotropic hypogonadism (HH)	Cynomolgu s macaque	Co-injection of Cas9 mRNA and multiple sgRNAs into single-cell embryos	- Cas9 targeted NrOb1-deficient male monkey fetus displayed defects in adrenal gland development and abnormal testis morphology	Kang et al., 2015
p53	Proof of concept for CRISPR/Cas9	Cynomolgu s macaque	Co-injection of Cas9 mRNA and sgRNA into single-cell embryos	- Single-step live p53 biallelic mutant monkeys	Wan et al., 2015
dystrophin	Duchenne muscular dystrophy (DMD)	Rhesus macaque	Co-injection of Cas9 mRNA and sgRNA into single-cell embryos	 Nine live offspring with multiple mutations of dystrophin gene Muscle changes similar to early stage DMD patients 	Chen et al., 2015
MCPH1	Microcephaly	Cynomolgu s macaque	Injection of TALEN mRNA into single-cell embryos	 One live monkey carrying biallelic MCPH1 mutation Microcephaly, hypoplasia of the corpus callosum, upper limb spasticity 	Ke et al., 2016
II 2RG	Severe Combined	Common	Injection of ZFN or TALEN	 Nine neonates exhibiting mutations in the IL2RG gene Immunodeficient phenotypes included lack of thymus, reduced T-cell and natural 	Sato et al. 2016

mRNA into single-cell embryos

Co-injection of Cas9 mRNA and

sgRNA into single-cell embryos

Co-injection of Cas9 mRNA and

multiple sgRNAs into single-cell

Injection of circular TALEN

plasmid into single-cell

embryos

embryos

killer cell count in cord blood samples

- Complete Prrt2 knockout monkey

exon of the target gene

- Germline transmission confirmed in germ cells

- Four additional live MECP2 mutant offspring

stereotypic behavior and reduced social interaction

- Injection of Cas9 mRNA with multiple adjacent sgRNAs that target only a single key

- Complex behavioral abnormalities, including fragmented sleep, increased

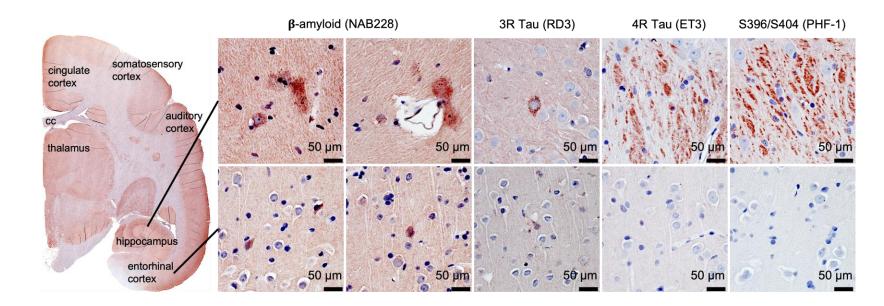
- five macaque monkeys with BMAL1 mutations in both alleles cloned without

mosaicism, with nuclear genes identical to that of the fibroblast donor monkey.

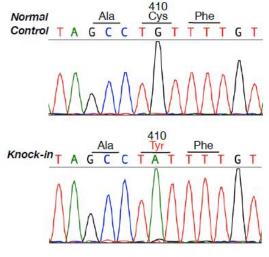
Sato et al., 2016

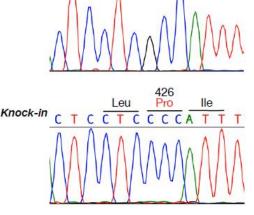
Zuo et al., 2017

Chen et al., 2017


Liu et al., 2019

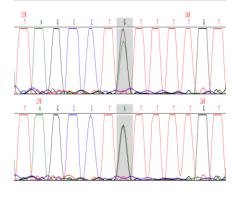
Marmosets as a Model for Alzheimer's Disease


- Genetically diverse and small: 300-600 grams adult body weight
- Life span: 12+ years; age at maturity: 18 months
- Gestation: 144 days; multiple offspring every 6 months
- Spontaneous presentation of Aβ; identical sequence homology to human
- Sophisticated behavioral repertoire
 - · Social behavior, diurnal activity
 - Age-dependent changes in motor, sensorimotor, hearing, vision, cognitive function
- Amenable to genetic engineering
 - PSEN1-ΔE9 marmosets (Sasaguri et al AAIC 2020, 2021; Sato et al BioRxiv 2020)


CRISPR Gene Editing of Presenilin 1 Mutations in Marmosets

FO: $PSEN1-C_{410}Y$

PSEN1-A₄₂₆P

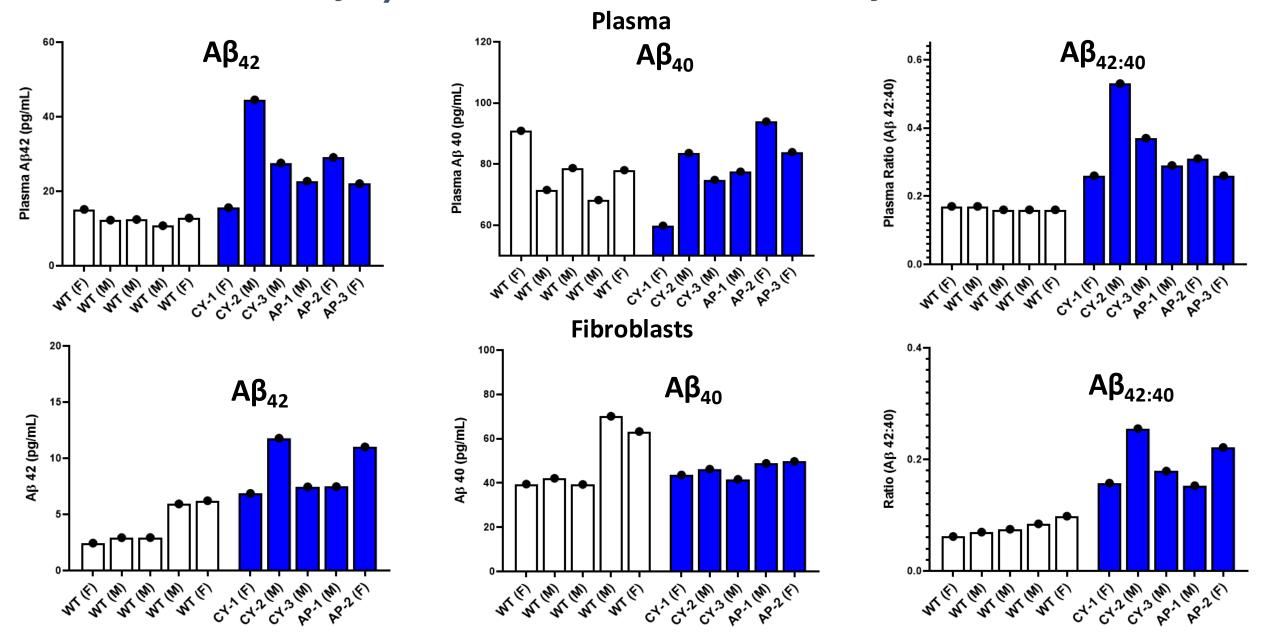

Normal Control C T C C T C G C C A T T T

N=3 males, N=2 females

N=1 male, N=2 females

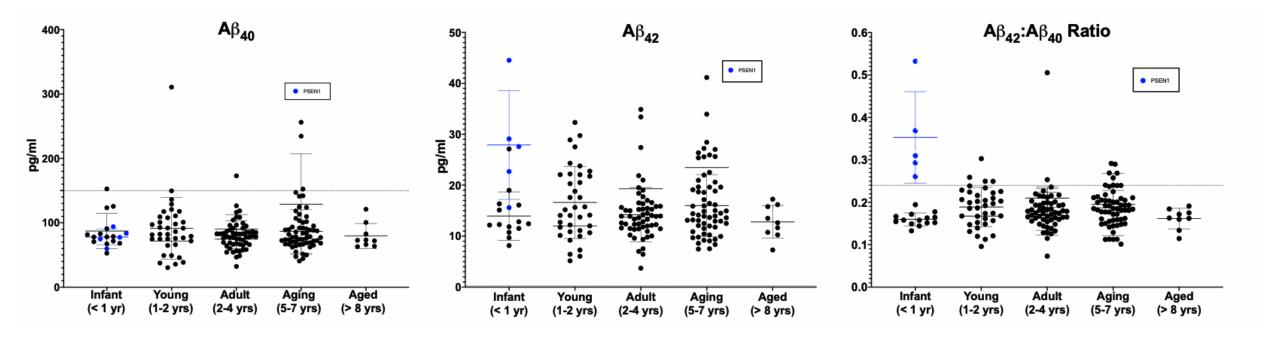
F1:

N=1 male, N=1 female

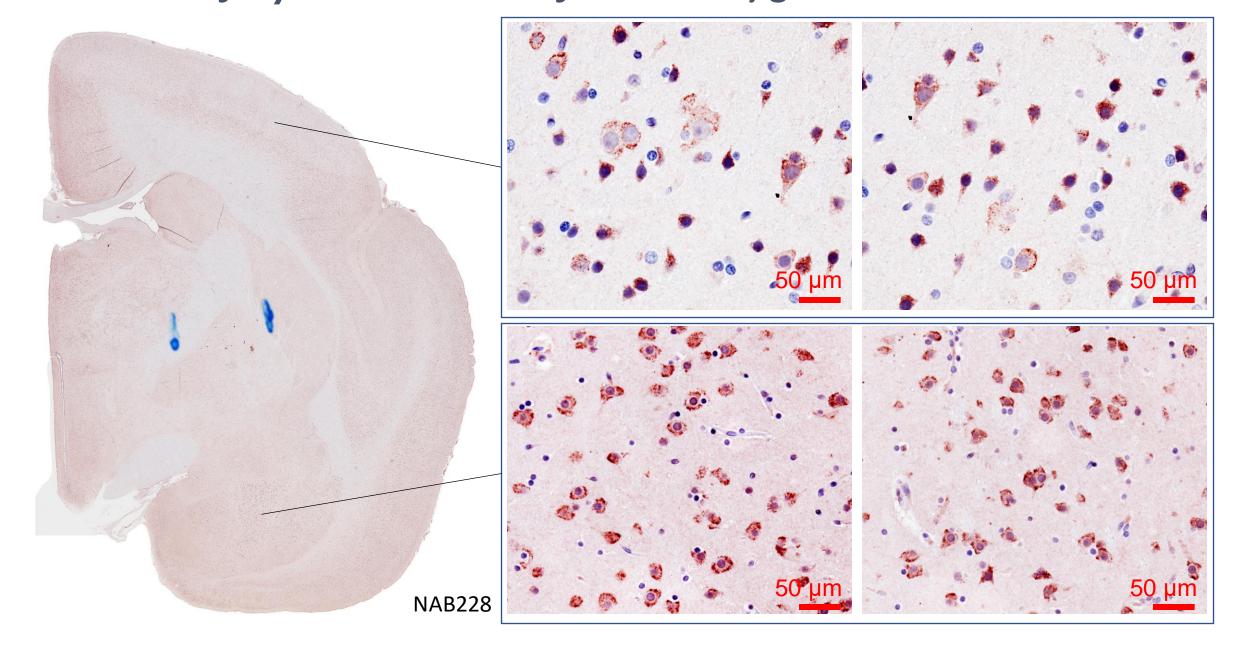


ID	Sex	PSEN1 Mutation	Genotype	Mosaic
M27-20	F	C410Y	KI/D5/KID1/WT	Yes
M28-20	M	C410Y	KI/KI	No
M31-20	M	C410Y	KI/KI	No
M32-20	M	C410Y	KI/+1	Yes
M154-20	F	C410Y	KI/D1/+2/?	Yes
M155-20	-	C410Y	WT/WT	-
M215-21	M	C410Y	D2/D5+14	No
M216-21	F	C410Y	Multiple Indels	Yes
M217-21	M	C410Y	KI/D2	No
-	-	A426P	KI/KID2	No
-	-	A426P	KI/KID1	No
-	-	A426P	KI/KID1	No
M101-20	M	A426P	KI/D20	No
M186-20	F	A426P	KI/Indel	No
M2-21	F	A426P	KI/D7	No

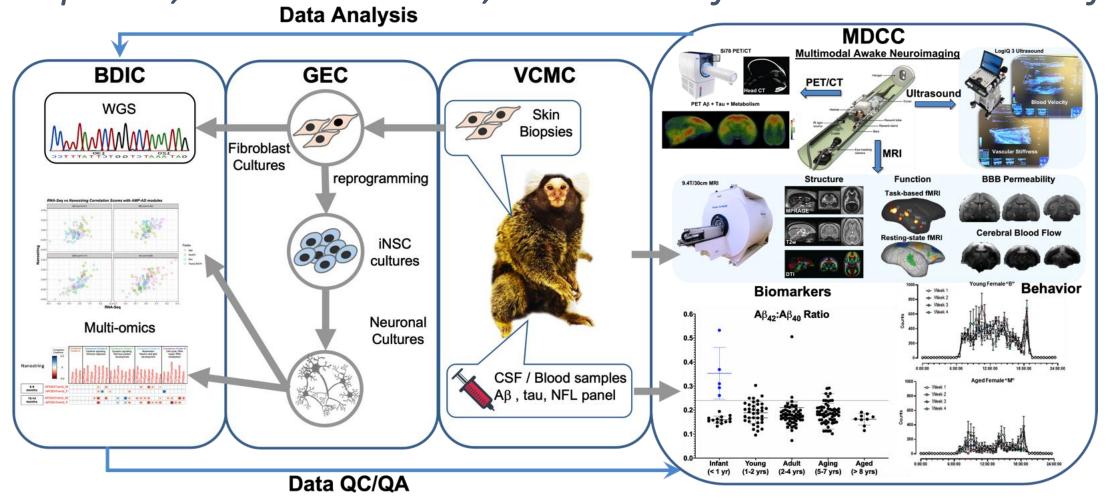
Table 1: Summary of PSEN1 founder marmosets created with CRISPR gene editing. KI=knockin; Δ =deletion; +=insertion; #=number of base pairs (bp); sub=substitution; indel=65bp imperfect duplication plus 14bp insertion.


- Low incidence of mosaicism
- Germline transmission confirmed in two offspring

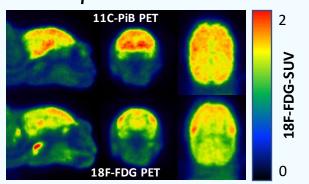
Elevated Levels of A β in Plasma and Fibroblasts of PSEN1 Marmosets

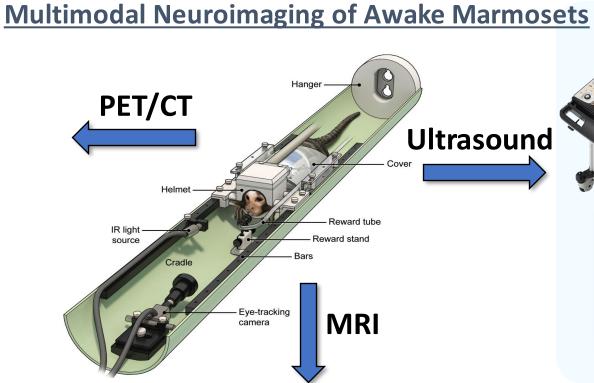


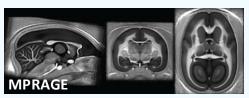
MesoScale Discovery 4G8 AB ELISA

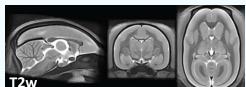

Comparison of Plasma A β of PSEN1 KI marmosets relative to normal aging controls

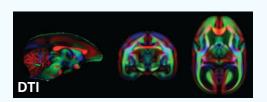
Presence of Aeta in the brain of a homozygous PSEN1 marmoset

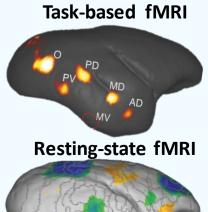

Development, Characterization, Validation of Marmoset Models of AD


- Longitudinal assessment of marmosets using non-invasive neuroimaging, behavioral and cognitive assessment, and fluid-based biomarkers, in line with clinical assessment of AD patients
- Use of skin-derived fibroblasts and induced neuronal cultures for WGS, transcriptomics, and proteomics

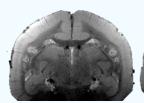

PET $A\beta$ + Metabolism






Structure

Function


BBB Permeability

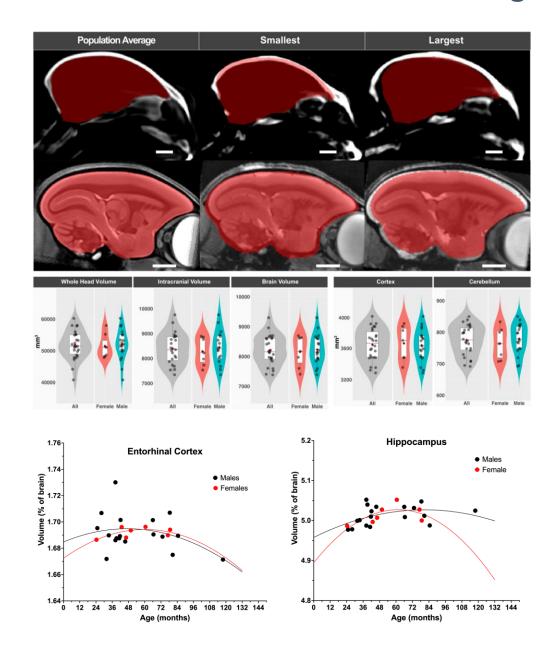
Vascular Stiffness

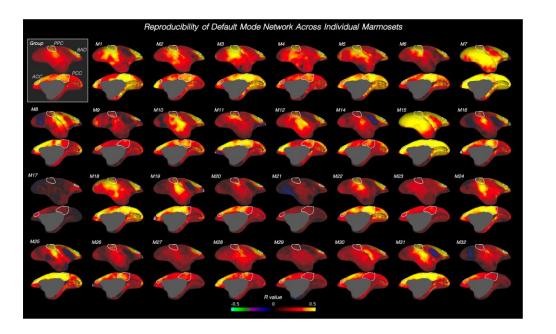
Ultrasound

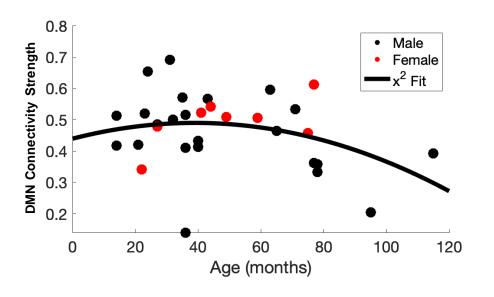
Blood Velocity

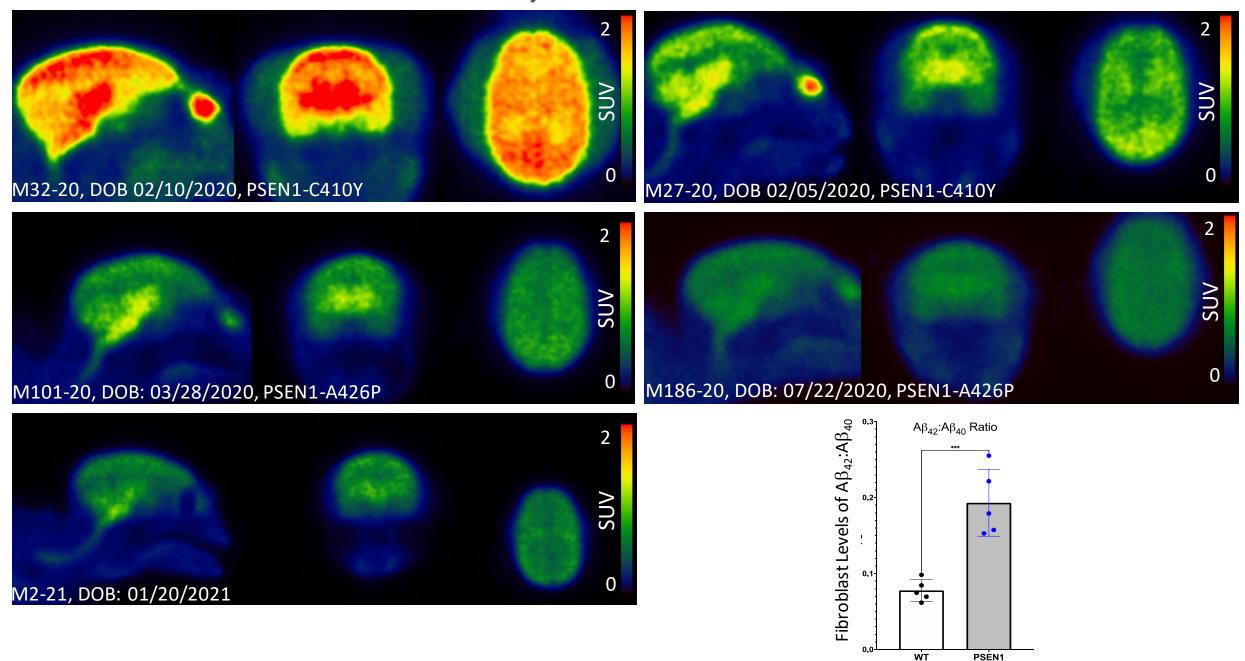
RK-50

Focused Ultrasound


Cerebral Blood Flow






Anatomical and Functional Age Trajectories of the Marmoset Brain

¹¹C-PiB PET-Amyloid in PSEN 1 Marmosets

Conclusions

- Marmosets have many advantages as a model of aging and aging-related diseases
- We successfully generated gene-edited marmosets containing point mutations in PSEN1 that lead to early-onset, familial Alzheimer's disease in humans.
- Germline transmission from PSEN1 mutants!
- The time course, signs and pathology should mirror the natural onset and progression of the more common sporadic form of AD.
- PSEN1 KI marmosets can be studied from birth throughout lifespan via longitudinal multimodal measures (neuroimaging, behavior, biomarkers) in line with clinical disease staging and may help identify the earliest primate-specific events that are the root cause of disease.

Acknowledgements

University of Pittsburgh

- Afonso Silva, PhD
- Stacey Rizzo, PhD
- Peter Strick, PhD
- Gregg Homanics, PhD
- Jung Eun Park, PhD
- David Schaeffer, PhD
- Seung Kwon Ha, PhD
- Sang-Ho Choi, PhD
- Julia Oluoch, DVM
- Bri Stein
- Erica Griffith
- Kevin Thiel
- William Klunk, MD
- Oscar Lopez, MD
- Julia Klofler, MD
- N. Scott Mason, PhD

Rizzo Lab

- Takeshi Murai, PhD
- Laura Schultz
- Marlena Karavolis
- Gabi Little
- Sean Williams
- Zackary Cope, PhD
- Suzanne Doolen, PhD
- Katy Haynes, PhD

Collaborators

- Greg Carter, PhD The Jackson Laboratory
- Nick Seyfried, PhD Emory University
- Benedict Paten, PhD UC Santa Cruz
- Anna Greenwood, PhD Sage Bionetworks
- Angela Roberts, PhD University of Cambridge

Support

