Capturing and defining population descriptors in research and health systems

Public Workshop on Use of Race, Ethnicity, and Ancestry as Population Descriptors in Genomics Research - Session II

Eimear Kenny, PhD

Founding Director, The Institute for Genomic Health Professor of Medicine and Genetics Icahn School of Medicine at Mount Sinai Twitter: @EimearEKenny

Institute for Genomic Health

Disclosures

Eimear Kenny has received personal fees from Regeneron Pharmaceuticals, 23&Me, and Illumina, and serves on the advisory boards for Encompass Biosciences and Galateo Bio.

Use of population descriptors in academic research

International HapMap Project

Population Architecture
Using Genomics and
Epidemiology (PAGE)
Consortium

1000 Genomes Project

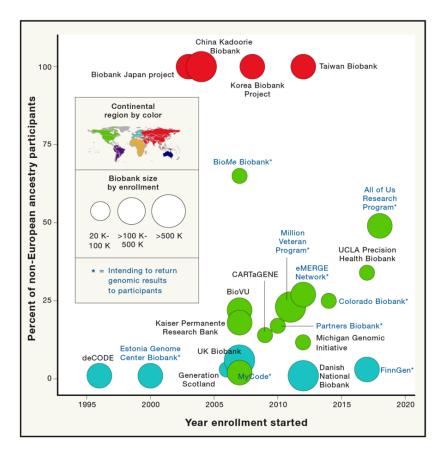
Trans-Omics for Precision Medicine (TOPMed) Program

Project hegan

Polygenic RIsk MEthods in Diverse populations (PRIMED) Consortium

Human Genome Reference Program

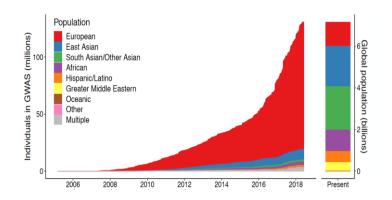
Clinical Sequencing Evidence-Generating Research (CSER)


NHLBI Grand Opportunity Exome Sequencing Project (ESP)

Use of population descriptors in academic research

- Upfront sampling and assignation of population descriptor
- Interested in looking at differences within and between populations as a means to understand both genetic and environmental factors impacting disease
- Long term goal to translate findings to understand impact on real-world populations

NHLBI Grand Opportunity Exome Sequencing Project (ESP)


Population-based recruitment to biobanks as engines of translation

NS Abul-Husn, EE Kenny. *Cell* 2019; 177(1):58-69

Challenges for understanding genetic risk at a population-level

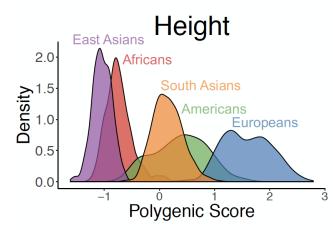
Biases in representation in our genomic databases

.... complexity and admixture in our human demographic history...

Henn R M et al. PNAS 2012:109:17758-17764

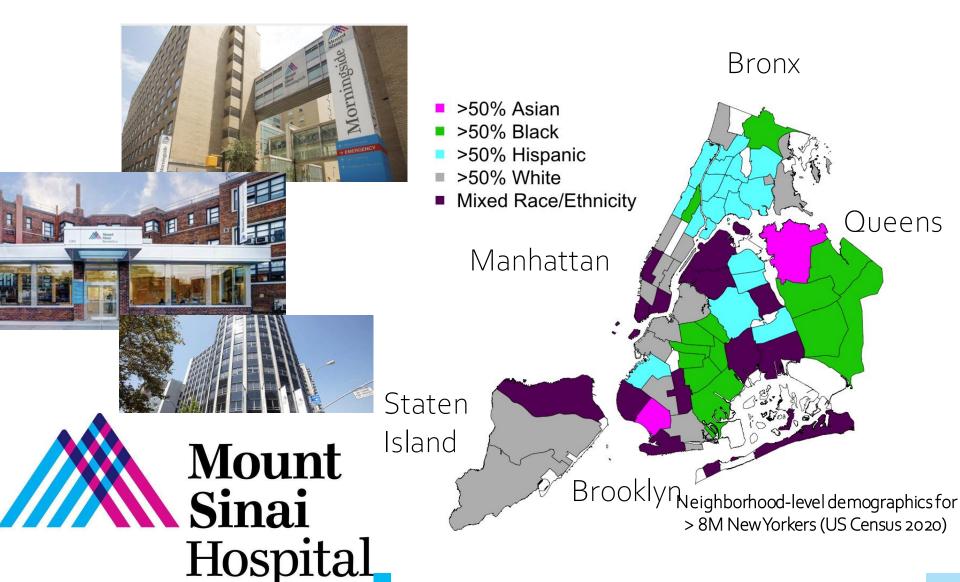
.... and need to integrate genomic information with clinical history, family history, lifestyle factors, and social determinants of health

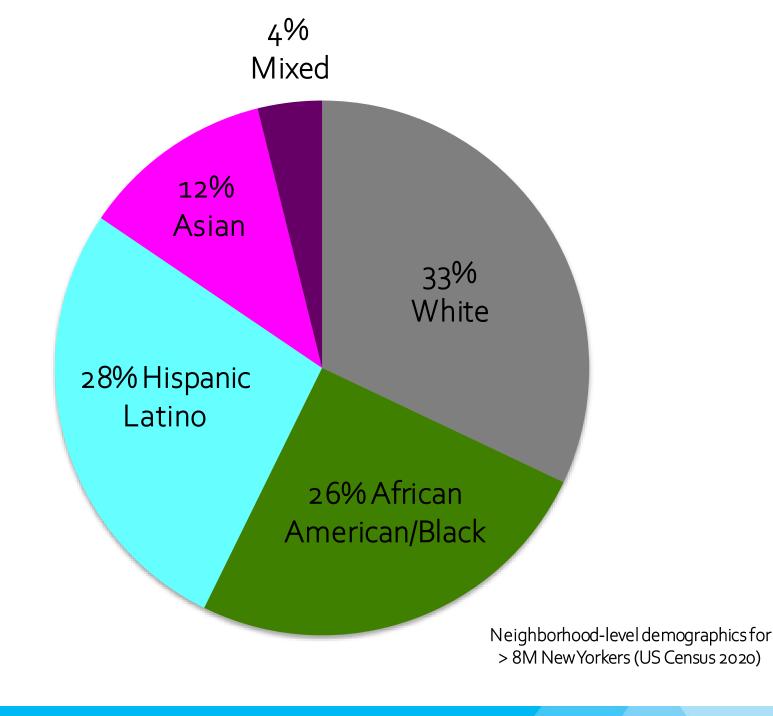
Impact of diversity on polygenic risk prediction


Please cite this article in press as: Martin et al., Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations, The American Journal of Human Genetics (2017), http://dx.doi.org/10.1016/j.ajhg.2017.03.004

ARTICLE

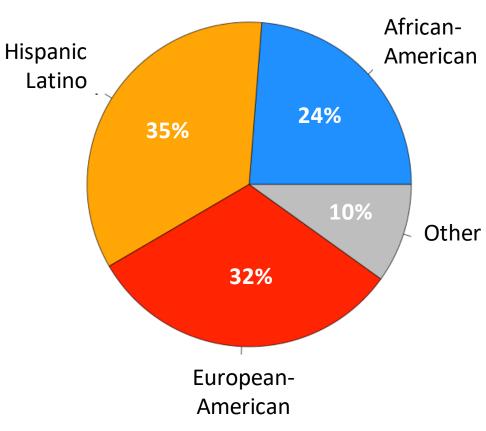
Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations


Alicia R. Martin,^{1,2,3,4} Christopher R. Gignoux,⁴ Raymond K. Walters,^{1,2,3} Genevieve L. Wojcik,⁴ Benjamin M. Neale,^{1,2,3} Simon Gravel,^{5,6} Mark J. Daly,^{1,2,3} Carlos D. Bustamante,⁴ and Eimear E. Kenny^{7,8,9,10,*}

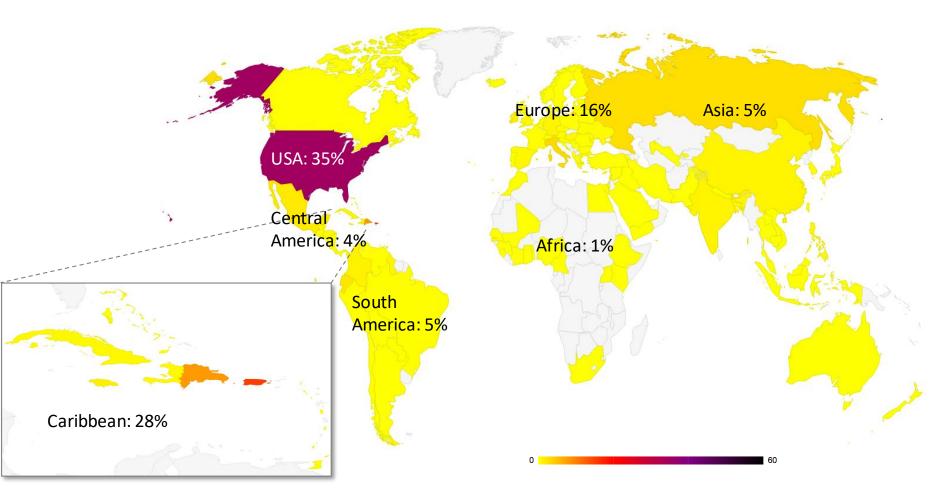

Genetic prediction accuracy decays with increasing divergence between the discovery populations and the target populations

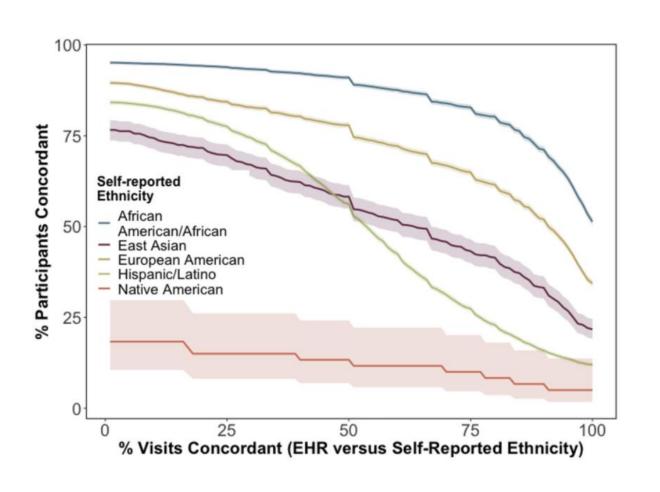
Martin AR et. al. AJHG 2017 Correction: Martin AR et. al. AJHG 2020

Mount Sinai Health System covers the lives of >3M New Yorkers



Genomic discovery and clinical genomics in a diverse patient population

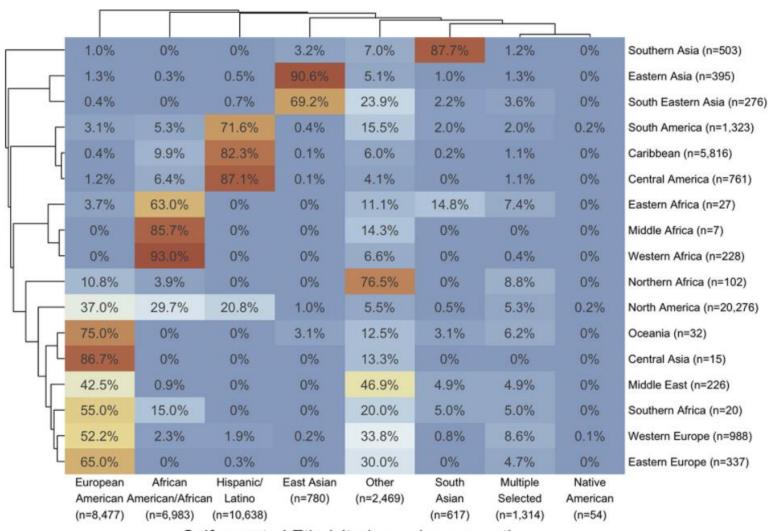

- Research biobank recruiting since 2007
- >70,000 participants currently enrolled
- ► GS, ES, array data
- Rich survey information for those enrolled



Diversity is deep and multidimensional

Grandparents Country of Birth

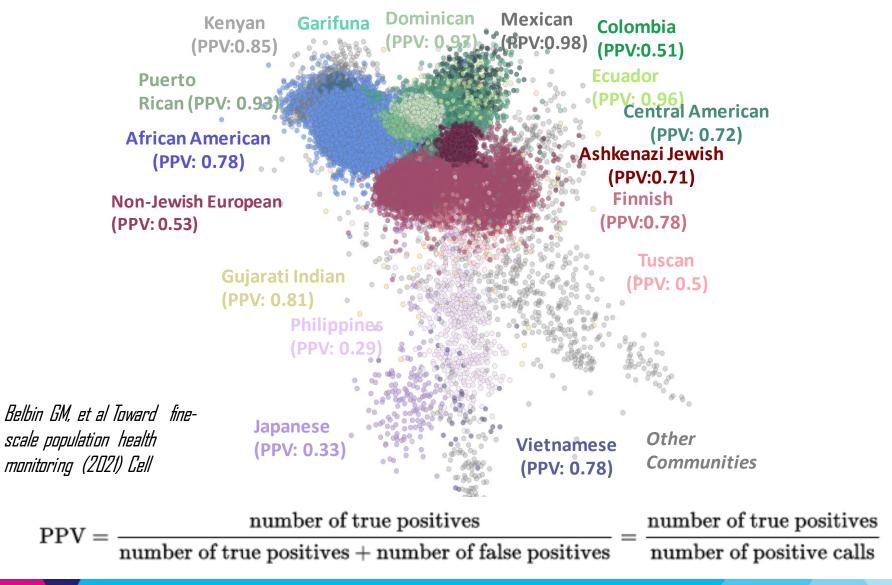
But diversity is poorly captured in a health system



30,376 Bio *Me* participants

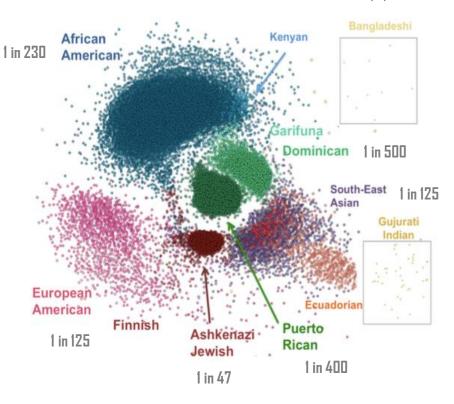
1,310,279 total health system visits

January 2007 and December 2014


Nuance and complexity in self-identity

Self-reported Ethnicity (row-wise percent)

Belbin GM, et al Toward fine-scale population health monitoring Cell (2021)


Genetic ancestry unlocks nuance and scale

Some Populations Are at Higher Risk of Many Types of Cancers

Cancer type	Average lifetime risk	Risk by age 70 when <i>BRCA1+</i>	Risk by age 70 when <i>BRCA2+</i>
Female breast	12%	46 - 87%	38 - 84%
Male breast	<0.1%	1 – 2%	Up to 9%
Ov arian	1 – 2%	39 - 63%	16 - 27%
Prostate	11%	Elev ated	15 – 20%
Pancreatic	<1%	1 – 3%	2 – 7%
Melanoma	1.6%	?	Elev ated

Prevalence of BRCA1 and BRCA2 across populations

Exome sequencing reveals a high prevalence of *BRCA1* and *BRCA2* founder variants in a diverse population-based biobank

Noura S. Abul-Husn ☑, Emily R. Soper, Jacqueline A. Odgis, Sinead Cullina, Dean Bobo, Arden Moscati, Jessica E. Rodriguez, CBIPM Genomics Team, Regeneron Genetics Center, Ruth J. F. Loos, Judy H. Cho, Gillian M. Belbin, Sabrina A. Suckiel & Eimear E. Kenny

Genome Medicine 12, Article number: 2 (2019) Cite this article

For inherited large effect risk variants, genetic ancestry may be a better tie to risk than population descriptors.....

Table 1.	Continued							•	
Gene	Mode of inheritance	Physical position (GRCh38)	c.DNA position	Protein modification	Self-reported ethnic group	Self-reported country of birth	IBD community	Condition	IBD community prevelance
DNAI2	AR	17: 74309345	c.1304G>A	p.Trp435Ter	AJ(5); C(9); B(4); O(1)	US(17); O(2)	AJ(19)	rimary ciliary yskinesia	1 in 216
CFAP298	AR	21: 32602299	c.735C>G	p.Tyr245Ter	AJ(5); C(6); B(1); O(2)	US(12); O(2)	AJ(15)	rimary ciliary yskinesia	1 in 293
DHDDS	AR	1: 26438228	c.124A>G	p.Lys42Glu	AJ(4); C(18); B(7); O(6)	US(31); O(4)	AJ(35)	etinitis pigmentosa, onsyndromic	1 in 117
PCDH15	AR	10: 54317414	c.733C>T	p.Arg245Ter	AJ(5); C(10); B(1); O(1)	US(15); O(2)	AJ(17)	Jsher syndrome ype 1	1 in 241
CLRN1	AR	3: 150972565	c.144T>G	p.Asn48Lys	AJ(8); C(29); B(5); O(3)	US(41); O(4)	AJ(44); O(1)	Jsher syndrome ype 3A	1 in 93
PR founder	r variants (N =	3)							
BRCA2	AD	13: 32338277	c.3922G>T	p.Glu1308Ter	HL(7)	US(3); PR(4)	PR(7)	ereditary breast ancer	1 in 729
COL27A1	AR	9: 114195977	c.2089G>C	p.Gly697Arg	HL(82); B(1); O(4)	US(47); PR(38); O(2)	PR(87); O(2)	steel syndrome	1 in 60
SGCG	AR	13: 23324452	c.787G>A	p.Glu263Lys	HL(49); O(6)	US(31); PR(22); O(2)	PR(54); O(2)	mb girdle dystrophy	1 in 96

Belbin GM, et al Toward fine-scale population health monitoring Cell (2021)

Population Characteristics	All <i>BRCAI/2</i> -Associated Cancers	Ev idence of clinical genetic testing	
rupulauun Gilaratierisuts	Personal History N (%)	N(%)	
A II V ariant Positive (N = 217)	54 (24.9)	57 (26.3)	
By Gender			
Female (N = 134)	48 (35.8)	52 (38.8)	
Male (N = 83)	G (7.2)	5 (6.0)	
P-v alue (chisq test)	3.4x10 ⁻⁷	3.1x10 ⁻⁷	
By Founder Variants			
W ith AJ Founder Variant (N = 80)	22 (27.5)	31 (38.8)	
W ithout A J Founder V ariant (N = 137)	32 (23.4)	26 (19.0)	
P-v alue (chisq test)	0.18	1.5X1U*	

.... but knowledge of population risk may improve health outcomes

Thoughts for the future

- Population labels are labile, nuanced, and tied to social and political forces -> but are an important anchor to understand the gene x environment impact on disease
- Genetic ancestry can be an excellent biomarker for the environment factors and social determinants impacting disease -> an additional way to incorporate population information into genomic research
- Genomic information will be increasing centered in routine clinical care, but many questions remain about how to translate and implement genomic medicine -> need better approaches to reconciling individual and population-based risk

Acknowledgements

Noura Abul-Husn, Clinical Director

Gillian Belbin, Population

Genetics Director

Giovanna Braganza

Sinead Cullina

Kate Donahue

Julia Galasso

David Wang

Ayuko Iverson

Karla Lopez

Jacqueline Odgis

Jessica Rodriguez

Joe Rothstein

Roohy Shemirani

Emily Soper

Sabrina Suckiel

Nicole Yelton

Chris Gignoux

Harvard/Broad:

Alicia Martin

Stanford University:

Carlos Bustamante

Johns Hopkins University:

Geneviève Wocjik

THANK YOU

to the thousands of research participants who make this work possible.

PAGE Collaborators:

Lucia Hindorff (NHGRI)

Kari North (UNC)

Chris Carlson (Fred Hutch)

Charles Kooperberg (Fred

Hutch)

Chris Haiman (MEC)

Ruth Loos (MSSM)

Tara Matise (Rutgers)

Steve Buyske (Rutgers)

Jose-Luis Ambite (USC)

Christy Avery (UNC)

Ulrike Peters (Fred Hutch)

NIH Funding:

NHGRI/U01HG109391 NHGRI/U01HG009080 NHLBI/X01HL134588 NIDDK/R01HL104608 NHLBI/R01DK110113