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Consumer Sleep Technology: An American Academy of Sleep Medicine
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= Clinicians should have a general awareness of CST and a readiness
fo discuss CST with patients.

« Clinicians should understand the general framework of devices and
apps avallable and have a basic knowledge of available evidence or
lack thereof.

« Most C-5Ts are not FDA cleared or validated clinical devices/
applications, but widespread accessibility and use by patients (and
potential patients) may augment patient engagement.

= Data can be utihzed as a tool for opening discussions with patients.

« Clinicians should recognize the patient's use of C5T as a
commitment to focus on sleep wellness.



Consumer Sleep Technology

|Wearable] |Contactless]




Consumer Sleep Sensing Technologies: History

*First mass market device:
Fitbit Classic, 2009

- Steps

- Sleep

- 7 days Battery

Consumer, Contact, Motion, Single 5ensor
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Consumer Sleep Technologies: General
Concepts Utilized P
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* Acoustic Monitoring
. Transform Phone into an Active Sonar

e Binaural Beats
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Can CSTs Differentiate Those with Insomnia from Healthy
Sleepers?

 N=44 individuals meeting ICSD-3 criteria for chronic insomnia
(ages 19-63y, 30 males) and 29 healthy sleeper controls (ages
19-54y, 21 females) participated in an at-home sleep
monitoring study

* Participants used the SleepScore Max to record their sleep
periods each night for 8 weeks

 Sleep measurements were analyzed for group differences in
both means (characterizing sleep overall) and within-subject
standard deviations (quantifying night-to-night variability),
using mixed-effects regression controlling for systematic
between-subject differences

Hansen D, Peterson ME, Raymann RJ, Van Dongen H, Watson NF. Long-Term, Naturalistic, Non-Contact Measurement of Sleep in Chronic
Insomnia. SLEEP 2021;44:A130 ; updated analysis submitted to World Sleep 2022
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Within-Subject Standard Deviations (Quantifying Night-to-Night Variability)
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Multinight Prevalence, Variability, and Diagnostic Misclassification of

Obstructive Sleep Apnea

@ Bastien Lechat', Ganesh Naik', Amy Reynolds’, Atgiya Aishah', Hannah Scott’, Kelly A. Loffler’, Andrew Vakulin',
Pierre Escourrou®, R. Doug McEvoy', Robert J. Adams', Peter G. Catcheside', and Danny J. Eckert'

A
67,278 individuals aged 18 - 90 years underwent in-home 100 -
nightly monitoring with Withings Sleep Analyzer over an
average of approximately 170 nights o 807
OSA defined as AHI > 15 events/hour g
OSA global prevalence was 22.6% S 601
OSA misdiagnosis (based on a single night) was 20% 3‘§ “0-
Misdiagnosis error rates decreased with increased o
monitoring nights (e.g., 1-night F1-score = 0.77 vs. 0.94 for = 20
14 nights) and remained stable after 14 nights of
monitoring. 0d

ROC curves

B 1 night
2 nights
7 nights

N 14 nights

Lechat, Naik, Reynolds, et al.: Night-to-Night Variability of Sleep Apnea Severity. American Journal
of Respiratory and Critical Care Medicine Volume 205 Number 5 | March 1 2022
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Can “Brain Age” Be Predicted by the EEG?

* Brain age (BA) serves as a potential aging biomarker where the
variation of BA between individuals of the same chronological age
may carry important information about the risk of cognitive
impairment, neurological or psychiatric disease, or death

* Alzheimer’s disease, schizophrenia, epilepsy, traumatic brain injury,
bipolar disorder, major depression, cognitive impairment, diabetes
mellitus, and HIV, are associated with excess BA (on MRI)

* Machine learning model developed to predict BA based on 2 large
sleep EEG data sets: the Massachusetts General Hospital (MGH) sleep

lab data set (N = 2,532; ages 18-80); and the Sleep Heart Health Study
(SHHS, N = 1,974, ages 40-80).

Sun et al. Brain age from EEG of sleep. Neurobiology of Aging 2019;74:112-120
Nygate YN et al. EEG-Based Deep Neural Network Model for Brain Age Prediction and Its Association with
Patient Health Conditions. SLEEP 2021;44:A214
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Neurobiology of Aging 2019;74:112-120

Nygate YN et al. EEG-Based Deep Neural
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Sun et al. Brain age from EEG of sleep. Neurobiology of Aging 2019;74:112-120
Nygate YN, Rusk S, Fernandez CR, Glattard N, Arguelles J, Shi JM, Hwang D, Watson NF. EEG-Based Deep Neural
Network Model for Brain Age Prediction and Its Association with Patient Health Conditions. SLEEP 2021;44:A214
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Where we would like to go...
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Does Good Sleep Produce More Happiness?

 Sleep data from the SleepScore Mobile Application

* The data set included 1,234,462 nights (72,819 users, aged 18-85,
mean age: 51.03 +/- 15.17 years, 51.04% female, from 26
countries). All nights were recorded in 2019

* |In this analysis we only included countries for which there were
>1000 subjects

* Happiness Index data were taken from the World Happiness
Report 2020. This Index is calculated based on individuals’ own
assessment of their wellbeing in nationally representative
surveys, using a 11-point Cantril scale

* Linear mixed effect modelling was used for analysis

Gahan L, Ruder MJ, O’Mullane B, Raymann R. The Global Connection Between Happiness and a Good Night’s Sleep: A
Big Data Analysis. 2020 Journal of Sleep Research;29:393




A significant positive relationship between a
country’s Happiness Index and the Total
Sleep Time (TST) of users who tracked in the
respective nations was found (p<0.001,
R=0.69)

A 1-point increase in Happiness Score was
shown to be associated with an extra 8.16
minutes of sleep

A significant positive relationship between
Time in Bed (TIB) and Happiness Index was
also revealed (p<0.001, R=0.68)

A 1-point increase in Happiness Score was
shown to be associated with an extra 9.48
minutes of TIB
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CASE REPORTS

Orthosomnia: Are Some Patients Taking the Quantified Self Too Far?
Kelly Glazer Baron, PhD, MPH'; Sabra Abbott, MD, PhD? Nancy Jao, MS?, Natalie Manalo, MD?; Rebecca Mullen, MS?
"Rush University Medical School, Chicago IL; *Feinberg School of Medicine, Northwestern University, Chicago, IL

The use of wearable sleep tracking devices is rapidly expanding and provides an opportunity to engage individuals in monitoring of their sleep patterns.
However, there are a growing number of patients who are seeking treatment for self-diagnosed sleep disturbances such as insufficient sleep duration and
insomnia due to periods of light or restless sleep observed on their sleep tracker data. The patients’ inferred correlation between sleep tracker data and
daytime fatigue may become a perfectionistic quest for the ideal sleep in order to optimize daytime function. To the patients, sleep tracker data often feels
more consistent with their experience of sleep than validated techniques, such as polysomnography or actigraphy. The challenge for clinicians is balancing
educating patients on the validity of these devices with patients’ enthusiasm for objective data. Incorporating the use of sleep trackers into cognitive
behavioral therapy for insomnia will be important as use of these devices is rapidly expanding among our patient population.

Keywords: insomnia, technology, cognitive behavioral therapy

Citation: Baron KG, Abbott S, Jao N, Manalo N, Mullen R. Orthosomnia: are some patients taking the quantified self too far? J Clin Sleep Med.
2017;13(2):351-354.

On Foucault and Panopticism Today — Pharos. (pharosmagazine.org)



https://pharosmagazine.org/2020/03/27/on-foucault-and-panopticism-today/
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