Remote sleep monitoring: a statistical perspective on challenges and opportunities

Vadim Zipunnikov, PhD
Department of Biostatistics

Remote sleep monitoring: challenges

- Current studies/results are contingent on device/algorithm
- Proprietary hardware/algorithms
 - may prevent generalization of results
 - · harmonization of data across studies
- Need for a common language/rules
 - resting HR is different in fitbit/apple watch
- Setup uniform standards for validation
 - require companies to publish evidence/validation for claims
 - require external validation/replication/critical assessment
 - currently, post-release validation by interested researchers

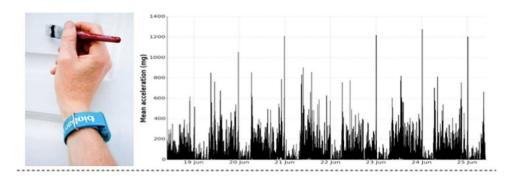
Remote sleep monitoring: challenges

- Ownership/privacy of data
- Device/algorithm independent solutions
 - platforms/devices dropped by manufactures (what if Fitbit is off the market?)
 - legacy data in longitudinal studies (Phillips Actiwatch, switching platforms/devices)
- Need for open-source platforms/software/algorithms
- Need for harmonization and collaborative work.
- Integration across PSG/Actigraphy/HR/Oxygen

Remote sleep monitoring: opportunities

- Create normative population level references for sleep patterns
 - by age, gender, clinical group
- Establish patient-level normative values and longitudinal trajectories
- Account for day-to-day variability, weekly and seasonal patterns
- Improve reliability of assessment
- Account for state (now) vs trait (past)
- Explore/improve specificity of sleep phenotypes/signatures
- Integrate sleep with daytime motor activity and circadian rhythm
- Account for social schedules/encounters/experiences and environmental context (temperature, light)

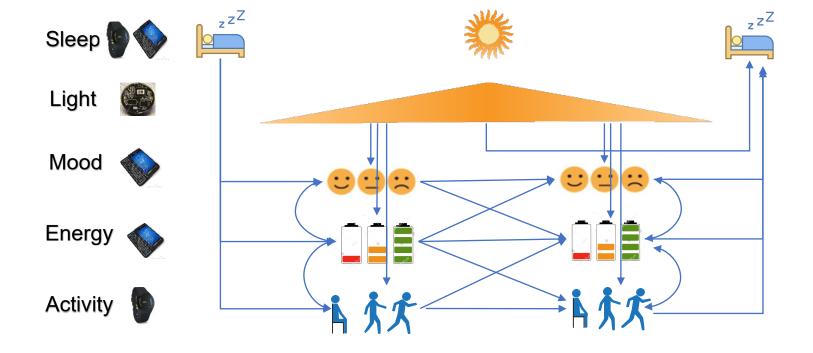
Data repositories


- NHLBI initiative
- Replication exiting results/algorithms
- Development/validation novel algorithms
- Cohort-based normative data

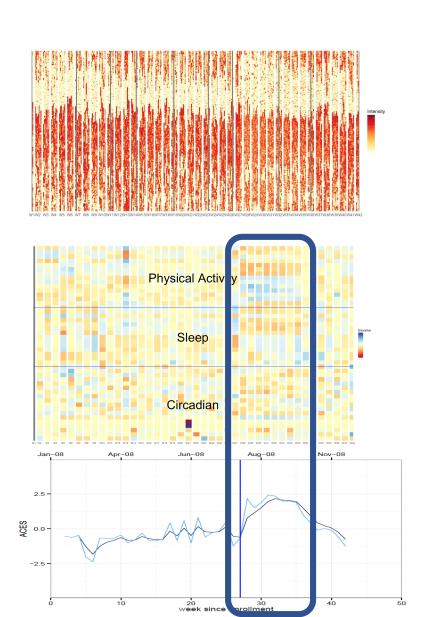
raphy	DATA Polysomnograp	TIMEFRAME 2003 - 2012	AGES 65 - 89	SUBJECTS 2,911	Mr. Sleep
est Data Access	Request		ables	11,841 Files · 1.18 TB 649 Vari	MrOS Sleep Study
	DATA	TIMEFRAME	AGES	SUBJECTS	
	Polysomnograp Actigraphy	2010 - 2013	54 - 95	2,237	Mesa
est Data Access	Request		885 GB 627 Variables	of Atherosclerosis 10,345 Files - 3	Multi-Ethnic Study o
	DATA	TIMEFRAME	AGES	SUBJECTS	MOM
raphy	Polysomnograp	2011 - 2013	14 - 44	3,012	nu VOM 2b Tulliprono, Programy Observed Budy Bradding Wilders on de
est Data	Request		thers-to-be 10,722 Files · 316 GB 392 Va		Nulliparous Pregnai

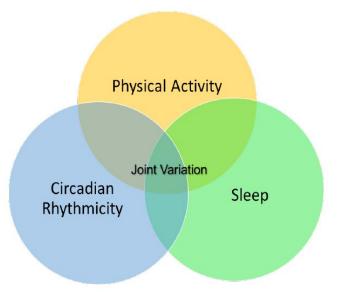
Large national cohorts

• UK Biobank (45-79 y.o, ~100K participants with wrist actigraphy)


• All of US (fitbit, ~17K, self-selected adults 18-82 y.o)

Sleep and beyond


- Sleep is a part of 24-hour cycle
- What about physical activity and circadian rhythmicity?
- How to account for social (schedules, experiences, stressors) and environmental context (light, temperature, seasons)


Advantages of using EMA and light sensors

- Self-perceived sleep quality, energy, mood,
- Social context (current location, immediate experiences, social encounters)
- Environmental context (temperature, weather, light exposure, light at night)
- Real-time recalls that can be integrated with ambulatory actigraphy/PSG
- Natural environment (home, work)

Multi-week monitoring CHF patients

BYOD (Bring your own device)

- Jonhs Hopkins patients can "donate" their fitbit data (5 mins)
- Automated report on prior trajectories of sleep & physical activity
- Train clinician to interpret in a consistent fashion
- Informs about current functional status of a patient
- More accurate placement of a patient in a risk category
- Tracking post-surgery recovery

•Thank you!