

Being Premier in Neuroscience

Focus on promising biology

De-risking early in development (biomarkers)

Let the biology speak

Let the molecule speak

Let the patient speak

Integrate patient insights in everything we do

Premier in Neuroscience

Let the organization speak

Focus on promising biology

Four biology clusters feeding into our strategy

- Scientifically well-described areas still rich in targets with untapped potential
- High feasibility for early de-risking and maintaining a competitive edge

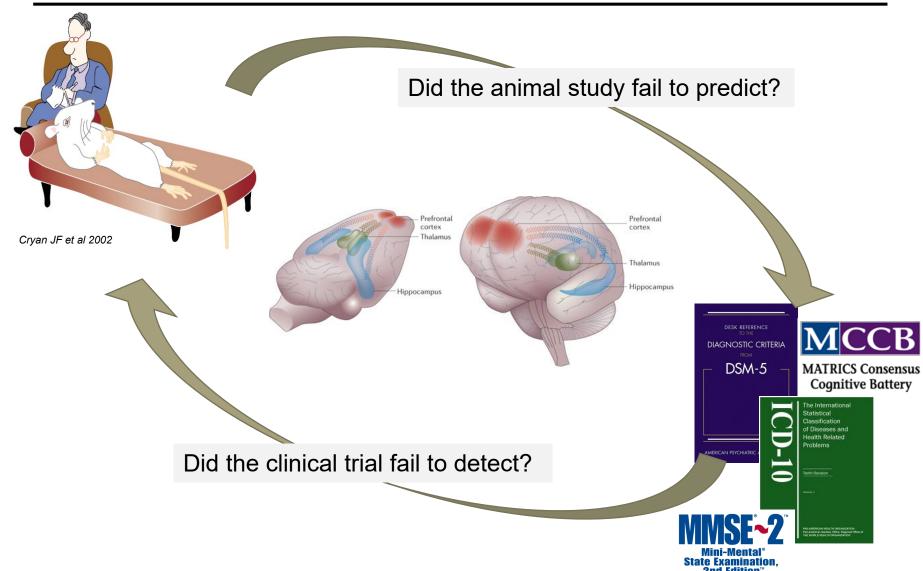
Circuitry / Neuronal biology Targeting neurotransmission or synaptic dysfunction to restore brain circuits Well-established clusters Well-established clusters

Protein aggregation, folding and clearance

Targeting protein-related neurodegenerative disorders

Hormonal / Neuropeptide signaling

Targeting selected pathways of pain signals and stress response


Neuroinflammation / Neuroimmunology

Targeting brain function through the immune system

Modality agnostic approach to drug discovery, driven by target-specific requirements

4 4 November, 2022 STRICTLY CONFIDENTIAL Lundbeck

The "translational gap"

2nd Edition" Lundbeck

Questions to be addressed

- We have two different approaches to sleep disorders Sleep disorders per se (narcolepsy, insomnia, ect) and sleep disturbances related to brain disorders
- We use sleep assessment across clinical studies (search for indication, basket trials) so qualify directionality and indication choices in our clinical programs
- Can we move from pseudospecificity to real indications?
 - Is it possible to create understanding of specific neuronal pathways that drives sleep disturbances in a given disease or indication (PD, AD, PAIN)?
- What will it take to generate enough evidence to have specific indications in the sleep area?
- Causality vs consequence We need to strengthen the causality part of that equation to enable investment in new drugs