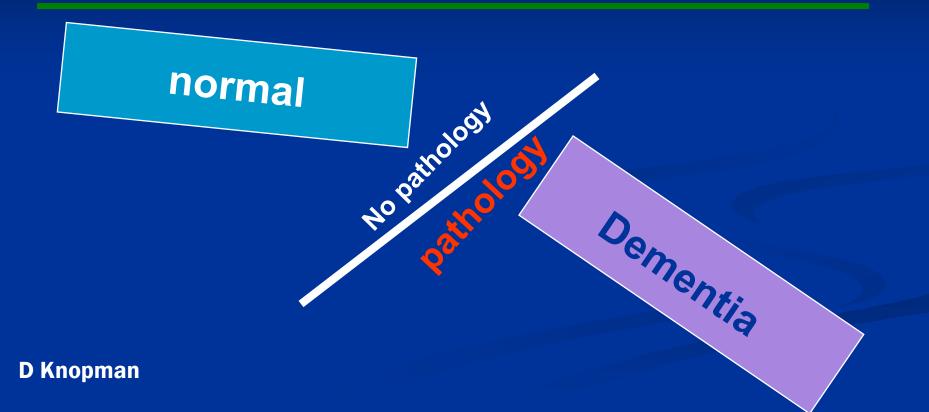

# Multimodal biomarkers and the NIA AA Research Framework

Clifford R. Jack, Jr. M.D.

Prof. of Radiology and Alexander Family Professor of Alzheimer's Disease Research


Dept. Radiology, Mayo Clinic, Rochester, MN



# outline

- History of diagnostic criteria for Alzheimer's disease (AD)
- National Institute on Aging Alzheimer's Association (NIA-AA) research framework
- NIA vs IWG
- Integration of plasma biomarkers into NIA-AA research framework

# Relationship between normal state and dementia The two-state view of early 1980's



# NINCDS-ADRDA Criteria 1984

#### views & reviews

Article abstract.—Clinical criteria for the diagnosis of Alzheimer's disease include insidious onset and progressive impairment of memory and other cognitive functions. These are no motor, sensory, or coordination deficits early the disease. The diagnosis cannot be determined by laboratory tests. These tests are important primarily in identifying other possible causes of dementia that must be excluded before the diagnosis of Alzheimer' diseases may be made with confidence. Neuropsychological tests provide confirmatory evidence of the diagnosis of dementia and help to assess the course and response to therapy. The criteria proposed are intended to serve as a guide for the diagnosis of probable, possible, and definite Alzheimer's disease; these criteria will be revised as more definitive information becomes available.

## Clinical diagnosis of Alzheimer's disease:

Report of the NINCDS-ADRDA Work Group\* under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease

Guy McKhann, MD; David Drachman, MD; Marshall Folstein, MD; Robert Katzman, MD; Donald Price, MD; and Emanuel M. Stadlan, MD

Alzheimer's disease is a brain disorder characterized by a progressive dementia that occurs in middle or late life. The pathologic characteristics are degeneration of specific nerve cells, presence of neuritic plaques, and neurofibrillary tangles. Alterations in transmitter-specific markers include forebrain cholinergic systems, and, in some cases, noradrenergic and somatostatinergic systems that innervate the telencephalor.

A Work Group on the Diagnosis of Alzheimer's Disease was established by the National Institute of Neurological and Communicative Disorders and Stroke (NINCDS) and the Alzheimer's Disease and Related Disorders Association (ADRDA), The group intended to establish and to describe clinical criteria for the diagnosis of Alzheimer's disease of particular importance for research protocols and to describe approaches that would be useful for assessing the natural history of the disease. The need to refine clinical diagnostic criteria has been emphasized because 20% or more of cases with the clinical diagnosis of Alzheimer's disease are found at autopsy to have other conditions and not Alzheimer's disease. Moreover, therapeutic trials can be meaningfully compared only if uniform criteria are used for diagnosis and response to treatment.

The need for this report was suggested by the National Advisory Council of the NINCDS. The report has been reviewed by workshop participants, representatives of the National Advisory Neurological and Communicative Disorders and Stroke Council, representatives of the ADRDA, and designated reviewers representing professional societies concerned with the diagnosis of Alzheimer's disease. (For list of professional societies and designated reviewers, see page 943.)

The report was developed by subgroups that addressed medical history, clinical examination, neuropsychological testing, and laboratory assessments; the report was then discussed in plenary session. Based on a consensus of the participants, criteria were developed to serve as a clinical basis for diagnosis. These criteria should be useful also for comparative studies of patients in different kinds of investigations, including case control studies, therapeutic trials, evaluation of new diagnostic laboratory tests, and clinicopathologic correlations.

The criteria are not yet fully operational because of insufficient knowledge about the disease. The criteria are compatible with definitions in the current Diagnostic and Statistical Manual of Mental Disorders (DSM III) and in the International Classification of Diseases. These criteria must be regarded as tentative and subject to change. Additional longitudinal studies, confirmed by autopsy, are necessary to establish the validity of these criteria in com-

- McKhann et al 1984: clinicalpathologic entity
  - Probable AD diagnosis in life after exclusions
  - Definite AD only at autopsy
  - Over time, however, amnestic dementia became equated with AD – ie nonspecific clinical presentation equated with one specific neuropathology

<sup>\*</sup>For Work Group Participants and Affiliations, see page 943.

Accepted for publication March 20, 2984.

Address correspondence and reprint requests to Dr. Stadlan, 7550 Wisconsin Avenue, Federal Building, Room 700, Bethesda, MD 20205

## Neuropath 1990s+: Pathologic heterogeneity of aging & dementia

- Alzheimer disease (plaques and tangles)
- Alpha synuclein (Lewy body disease)
- Limbic Associated TDP Encephalopathy (LATE disease)
- Cerebrovascular disease
- Argyrophillic grain disease
- All increase in prevalence with age
- Co-occurrence common; isolated pathology rare in old age
- All can be assoc. with dementia: "AD" syndromes not specific for AD
- All can be present in cognitively unimpaired

# Biomarker era: earliest disease specific biomarkers, CSF then amyloid PET



Neuroscience Letters 273 (1999) 5-8

Neuroscience Letters

www.elsevier.com/locate/neulet

# Cerebrospinal fluid tau and Aβ42 as predictors of development of Alzheimer's disease in patients with mild cognitive impairment

N. Andreasen<sup>a,\*</sup>, L. Minthon<sup>b</sup>, E. Vanmechelen<sup>c</sup>, H. Vanderstichele<sup>c</sup>, P. Davidsson<sup>d</sup>, B. Winblad<sup>e</sup>, K. Blennow<sup>d, f</sup>

# Imaging Brain Amyloid in Alzheimer's Disease with Pittsburgh Compound-B

William E. Klunk, MD, PhD,<sup>1</sup> Henry Engler, MD,<sup>2</sup> Agneta Nordberg, MD, PhD,<sup>3,4</sup> Yanming Wang, PhD,<sup>5</sup> Gunnar Blomqvist, PhD,<sup>2</sup> Daniel P. Holt, BS,<sup>5</sup> Mats Bergström, PhD,<sup>2</sup> Irina Savitcheva, MD,<sup>2</sup> Guo-feng Huang, PhD,<sup>5</sup> Sergio Estrada, PhD,<sup>2</sup> Birgitta Ausén, MSCI,<sup>4</sup> Manik L. Debnath, MS,<sup>1</sup> Julien Barletta, BS,<sup>6</sup> Julie C. Price, PhD,<sup>5</sup> Johan Sandell, PhD,<sup>2</sup> Brian J. Lopresti, BS,<sup>5</sup> Anders Wall, PhD,<sup>2</sup>

Ann Neurol 2004;55:306-319

## History of diagnostic criteria for AD – incorporating biomarkers

- IWG (2007, 2010, 2014): clinical-biomarker construct
- NIA-AA 2011: 3 separate committees & 3 sets of guidelines



Alzheimer's & Dementia ■ (2011) 1–13

Alzheimer's & Dementia

Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging and the Alzheimer's Association workgroup

Reisa A. Sperling <sup>a,\*</sup>, Paul S. Aisen<sup>b</sup>, Laurel A. Beckett<sup>c</sup>, David A. Bennett<sup>d</sup>, Suzanne Craft<sup>e</sup>, Anne M. Fagan<sup>†</sup>, Takeshi Iwatsubo<sup>g</sup>, Clifford R. Jack<sup>h</sup>, Jeffrey Kaye<sup>†</sup>, Thomas J. Montine<sup>†</sup>, Denise C. Park<sup>k</sup>, Eric M. Reiman<sup>†</sup>, Christopher C. Rowe<sup>m</sup>, Eric Siemers<sup>n</sup>, Yaakov Stern<sup>o</sup>, Kristine Yaffe<sup>p</sup>, Maria C. Carrillo<sup>q</sup>, Bill Thies<sup>q</sup>, Marcelle Morrison-Bogorad<sup>r</sup>, Molly V. Wagster<sup>r</sup>, Creighton H. Phelps<sup>r</sup>



ELSEVIER

Alzheimer's & Dementia ■ (2011) 1-10

Alzheimer's & Dementia

The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging and Alzheimer's Association workgroup

Marilyn S. Albert<sup>a,\*</sup>, Steven T. DeKosky<sup>b,c</sup>, Dennis Dickson<sup>d</sup>, Bruno Dubois<sup>e</sup>, Howard H. Feldman<sup>f</sup>, Nick C. Fox<sup>g</sup>, Anthony Gamst<sup>h</sup>, David M. Holtzman<sup>i,j</sup>, William J. Jagust<sup>k</sup>, Ronald C. Petersen<sup>l</sup>, Peter J. Snyder<sup>m,n</sup>, Maria C. Carrillo<sup>o</sup>, Bill Thies<sup>o</sup>, Creighton H. Phelps<sup>p</sup>



Alzheimer's & Dementia ■ (2011) 1-7

Alzheimer's G Dementia

The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging and the Alzheimer's Association workgroup

Guy M. McKhann<sup>a,b,\*</sup>, David S. Knopman<sup>c</sup>, Howard Chertkow<sup>d,e</sup>, Bradley T. Hyman<sup>f</sup>, Clifford R. Jack, Jr.<sup>g</sup>, Claudia H. Kawas<sup>h,i,j</sup>, William E. Klumk<sup>k</sup>, Walter J. Koroshetz<sup>l</sup>, Jennifer J. Manly<sup>m,n,o</sup>, Richard Mayeux<sup>m,n,o</sup>, Richard C. Mohs<sup>p</sup>, John C. Morris<sup>q</sup>, Martin N. Rossor<sup>r</sup>, Philip Scheltens<sup>s</sup>, Maria C. Carillo<sup>t</sup>, Bill Thies<sup>t</sup>, Sandra Weintraub<sup>u,v</sup>, Creighton H. Phelps<sup>w</sup>

# outline

- History of diagnostic criteria for Alzheimer's disease (AD)
- National Institute on Aging Alzheimer's Association (NIA-AA) research framework
- NIA vs IWG
- Integration of plasma biomarkers into NIA-AA research framework





Alzheimer's

Bementia

Alzheimer's & Dementia 14 (2018) 535-562

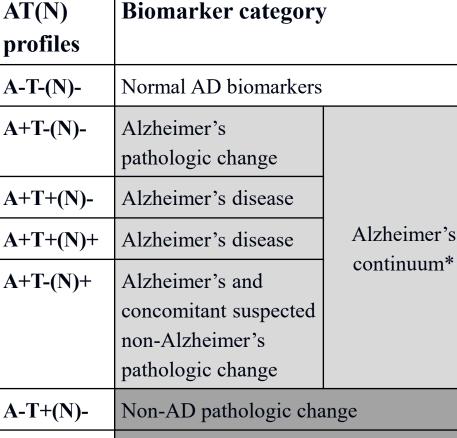
2018 National Institute on Aging—Alzheimer's Association (NIA-AA) Research Framework

# NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease

Clifford R. Jack, Jr., a,\*, David A. Bennett<sup>b</sup>, Kaj Blennow<sup>c</sup>, Maria C. Carrillo<sup>d</sup>, Billy Dunn<sup>e</sup>, Samantha Budd Haeberlein<sup>f</sup>, David M. Holtzman<sup>g</sup>, William Jagust<sup>h</sup>, Frank Jessen<sup>i</sup>, Jason Karlawish<sup>j</sup>, Enchi Liu<sup>k</sup>, Jose Luis Molinuevo<sup>l</sup>, Thomas Montine<sup>m</sup>, Creighton Phelps<sup>n</sup>, Katherine P. Rankin<sup>o</sup>, Christopher C. Rowe<sup>p</sup>, Philip Scheltens<sup>q</sup>, Eric Siemers<sup>r</sup>, Heather M. Snyder<sup>d</sup>, Reisa Sperling<sup>s</sup>

Contributors<sup>†</sup>: Cerise Elliott, Eliezer Masliah, Laurie Ryan, and Nina Silverberg

# Core principles of NIA AA research framework


- Separation of syndrome (impairment) from biology (etiology)
  - Amnestic dementia and AD are <u>not</u> synonymous
- Biological definition
  - Term AD refers to pathologic change (plaques & tangles not to a syndrome(s)
  - Symptoms are a result of the disease process, not its definition
- AD defined by biomarkers in vivo built on AT(N) construct
- Alzheimer's disease exists on a continuum not as discrete clinically defined entities

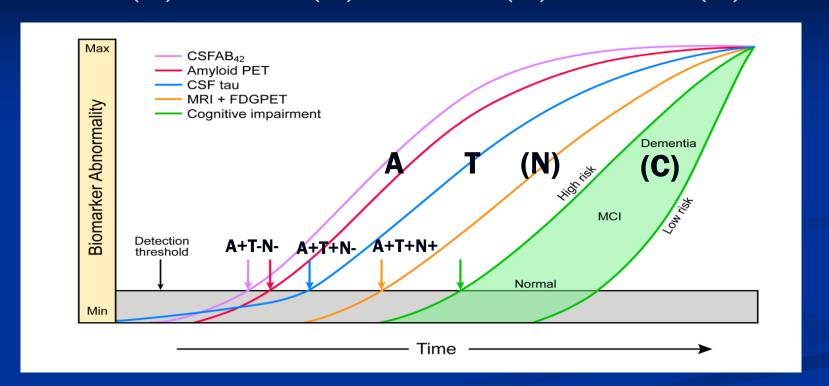
Jack et al Alz & Dem 2018

# Operationalization: how to create orderly, common use framework? AT(N) biomarker grouping

- B-amyloid plaques or associated pathologic state: A
  - $\blacksquare$  CSF A $\beta$  42, or 42/40 ratio
  - Amyloid PET
- Aggregated AD tau or associated pathologic state: T
  - CSF phosphorylated tau
  - Tau PET
- Neuronal injury and neurodegeneration: (N)
  - Structural MRI
  - FDG PET
  - CSF total tau CSF

# AT(N) Biomarker **Profiles** & Categories ■ Each biomarker group (AT(N)) can be dichotomized ■ 8 "profiles" 3 "biomarker categories" Normal biomarkers Alzheimer's continuum ■ Non-AD pathologic change (SNAP) Jack et al Alz & Dem 2018




Non-AD pathologic change

Non-AD pathologic change

A-T-(N)+

A-T+(N)+

# Biomarker profiles: implicit disease staging A-T-(N)- $\rightarrow$ A+T-(N)- $\rightarrow$ A+T+(N)+



## Integrating syndromal cognitive staging with biomarker profiles

|                   | Cognitive stage      |                                                                                                 |                                                                                  |                                                                                       |  |  |  |
|-------------------|----------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
|                   |                      | Cognitively Unimpaired                                                                          | Mild Cognitive Impairment                                                        | Dementia                                                                              |  |  |  |
|                   | A- T- N-             | normal AD biomarkers, cognitively unimpaired                                                    | normal AD biomarkers with MCI                                                    | normal AD biomarkers with dementia                                                    |  |  |  |
|                   | A+ T- N-             | Preclinical Alzheimer's pathologic change                                                       | Alzheimer's pathologic change with MCI                                           | Alzheimer's pathologic change with dementia                                           |  |  |  |
| ofile             | A+ T+ N-             | Preclinical Alzheimer's disease                                                                 | Alzheimer's disease with                                                         | Alzheimer's disease with                                                              |  |  |  |
| Biomarker Profile | A+ T+ N+             |                                                                                                 | MCI(Prodromal AD)                                                                | dementia                                                                              |  |  |  |
|                   | A+ T- N+             | Alzheimer's and concomitant suspected non Alzheimer's pathologic change, cognitively unimpaired | Alzheimer's and concomitant suspected non Alzheimer's pathologic change with MCI | Alzheimer's and concomitant suspected non Alzheimer's pathologic change with dementia |  |  |  |
|                   | A- T+ N-             | non-Alzheimer's pathologic                                                                      | non-Alzheimer's pathologic change                                                | non-Alzheimer's pathologic                                                            |  |  |  |
|                   | A- T- N+<br>A- T+ N+ | change, cognitively<br>unimpaired                                                               | with MCI                                                                         | change with dementia                                                                  |  |  |  |

Jack et al Alz & Dem 2018

## Integrating syndromal cognitive staging with biomarker profiles

|                   |                                  | Cognitive stage                                                                                 |                                                                                  |                                                                                       |  |  |  |  |
|-------------------|----------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
|                   |                                  | Cognitively Unimpaired                                                                          | Mild Cognitive Impairment                                                        | Dementia                                                                              |  |  |  |  |
|                   | A- T- N-                         | normal AD biomarkers, cognitively unimpaired                                                    | normal AD biomarkers with MCI                                                    | normal AD biomarkers with dementia                                                    |  |  |  |  |
|                   | A+ T- N-                         | Preclinical Alzheimer's pathologic change                                                       | Alzheimer's pathologic change with MCI                                           | Alzheimer's pathologic change with dementia                                           |  |  |  |  |
| ile               | A+ T+ N-                         | D 1' ' 1 A1.1 ' 2 1'                                                                            | Alzheimer's disease with                                                         | Alzheimer's disease with                                                              |  |  |  |  |
| Biomarker Profile | A+ T+ N+                         | Preclinical Alzheimer's disease                                                                 | MCI(Prodromal AD)                                                                | dementia                                                                              |  |  |  |  |
|                   | A+ T- N+                         | Alzheimer's and concomitant suspected non Alzheimer's pathologic change, cognitively unimpaired | Alzheimer's and concomitant suspected non Alzheimer's pathologic change with MCI | Alzheimer's and concomitant suspected non Alzheimer's pathologic change with dementia |  |  |  |  |
|                   | A- T+ N-<br>A- T- N+<br>A- T+ N+ | non-Alzheimer's pathologic<br>change, cognitively unimpaired                                    | non-Alzheimer's pathologic change<br>with MCI                                    | non-Alzheimer's pathologic<br>change with dementia                                    |  |  |  |  |

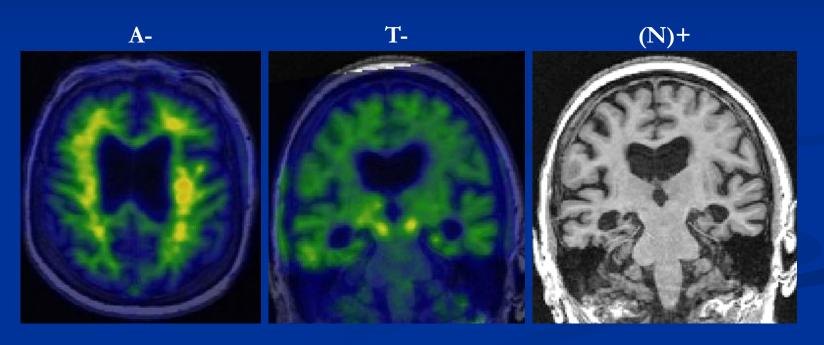
## Integrating syndromal cognitive staging with biomarker profiles

|           |                                  | Cognitive stage                                                                                 |                                                                                  |                                                                                       |  |  |  |  |
|-----------|----------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|
|           |                                  | Cognitively Unimpaired                                                                          | Mild Cognitive Impairment                                                        | Dementia                                                                              |  |  |  |  |
|           | A- T- N-                         | normal AD biomarkers, cognitively unimpaired                                                    | normal AD biomarkers with MCI                                                    | normal AD biomarkers with dementia                                                    |  |  |  |  |
|           | A+ T- N-                         | Preclinical Alzheimer's pathologic change                                                       | Alzheimer's pathologic change with MCI                                           | Alzheimer's pathologic change with dementia                                           |  |  |  |  |
| ile       | A+ T+ N-                         | Preclinical Alzheimer's disease                                                                 | Alzheimer's disease with                                                         | Alzheimer's disease with                                                              |  |  |  |  |
| Profile   | A+ T+ N+                         | 1 reclinical Alzhenner's disease                                                                | MCI(Prodromal AD)                                                                | dementia                                                                              |  |  |  |  |
| Biomarker | A+ T- N+                         | Alzheimer's and concomitant suspected non Alzheimer's pathologic change, cognitively unimpaired | Alzheimer's and concomitant suspected non Alzheimer's pathologic change with MCI | Alzheimer's and concomitant suspected non Alzheimer's pathologic change with dementia |  |  |  |  |
|           | A- T+ N-<br>A- T- N+<br>A- T+ N+ | non-Alzheimer's pathologic<br>change, cognitively unimpaired                                    | non-Alzheimer's pathologic change<br>with MCI                                    | non-Alzheimer's pathologic<br>change with dementia                                    |  |  |  |  |

# Biggest controversy for 2018 NIA AA framework: What is the definition of AD? How should the term AD be used?

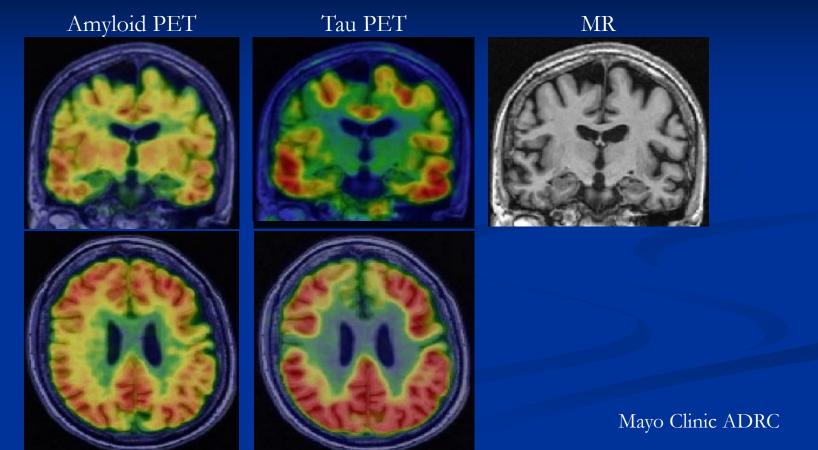
## Two camps

- Biological definition is appropriate
- Biological definition is not appropriate


# Consequence of defining AD as progressive amnestic dementia – illustrations of usefulness of biological definition of AD

- Interpretation of "probable AD" (progressive amnestic dementia) & neuropathologic and biomarker diagnoses (*Beach 2012*; Sensitivity 70-87%; Specificity 44-70%)
- Failure modes of defining AD as a syndrome
  - Progressive amnestic syndrome due to non AD pathology
  - AD can present with non amnestic syndromes
  - Clinical definition of AD does not acknowledge preclinical disease

# Amnestic Dementia Phenotype - yes: AD Biology - no


86 yo, F, progressive amnestic dementia. Clinic Dx "AD". Biomarker profile A-T-N+, suspected non-Alzheimer's pathologic change with dementia.

Autopsy, Hipp Scl with TDP43 (LATE Dz)



## Amnestic Dementia Phenotype - no: AD Biology - yes

52 yo, F, behavioral/dysexecutive presentation, memory intact, limbic Sparing EOAD



# outline

- History of diagnostic criteria for Alzheimer's disease (AD)
- National Institute on Aging Alzheimer's Association (NIA-AA) research framework
- NIA vs IWG
- Integration of plasma biomarkers into NIA-AA research framework

## **IWG**

# Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria

Bruno Dubois\*, Howard H Feldman\*, Claudia Jacova, StevenT DeKosky, Pascale Barberger-Gateau, Jeffrey Cummings, André Delacourte, Douglas Galasko, Serge Gauthier, Gregory Jicha, Kenichi Meguro, John O'Brien, Florence Pasquier, Philippe Robert, Martin Rossor, Steven Salloway, Yaakov Stern, Pieter J Visser, Philip Scheltens

2007

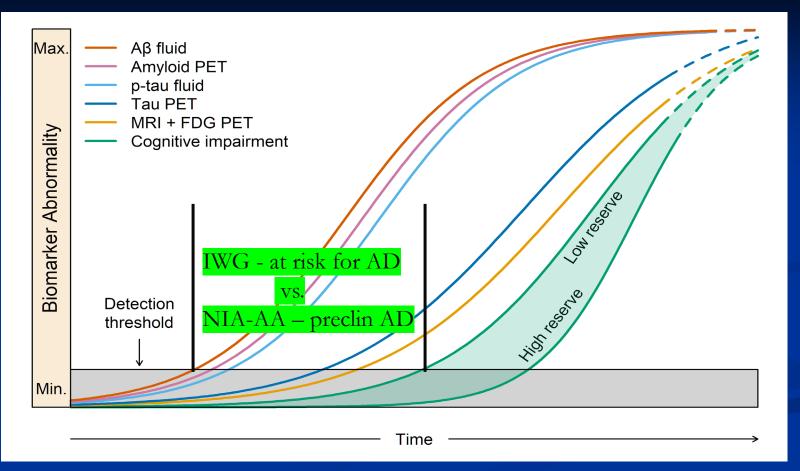
#### Revising the definition of Alzheimer's disease: a new lexicon

Bruno Dubois, Howard H Feldman, Claudia Jacova, Jeffrey L Cummings, Steven T DeKosky, Pascale Barberger-Gateau, André Delacourte, Giovanni Frisoni, Nick C Fox, Douglas Galasko, Serge Gauthier, Harald Hampel, Gregory A Jicha, Kenichi Meguro, John O'Brien, Florence Pasquier, Philippe Robert, Martin Rossor, Steven Salloway, Marie Sarazin, Leonardo C de Souza, Yaakov Stern, Pieter J Visser, Philip Scheltens

2010

# Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria

Bruno Dubois, Howard H Feldman, Claudia Jacova, Harald Hampel, José Luis Molinuevo, Kaj Blennow, Steven T DeKosky, Serge Gauthier, Dennis Selkoe, Randall Bateman, Stefano Cappa, Sebastian Crutch, Sebastiaan Engelborghs, Giovanni B Frisoni, Nick C Fox, Douglas Galasko, Marie-Odile Habert, Gregory A Jicha, Agneta Nordberg, Florence Pasquier, Gil Rabinovici, Philippe Robert, Christopher Rowe, Stephen Salloway, Marie Sarazin, Stéphane Epelbaum, Leonardo C de Souza, Bruno Vellas, Pieter J Visser, Lon Schneider, Yaakov Stern, Philip Scheltens, Jeffrey L Cummings


2014

# Clinical diagnosis of Alzheimer's disease: recommendations of the International Working Group

2021

Bruno Dubois\*, Nicolas VIlain\*, Giovanni BFrisoni, Gil D Rabinovici, Marwan Sabbagh, Stefano Cappa, Alexandre Bejanin, Stéphanie Bombois, Stéphane Epelbaum, Marc Teichmann, Marie-Odile Habert, Agneta Nordberg, Kaj Blennow, Douglas Galasko, Yaakov Stern, Christopher C Rowe, Stephen Salloway, Lon S Schneider, Jeffrey L Cummings, Howard H Feldman

### NIA-AA vs IWG



# AT(N) classification and clinical progression in subjective cognitive decline Ebenau et al Neurology 2020

| Table 2 Clinical progression in 8 ATN biomarker profiles |     |                              |        |       |                      |                                |                      |                                             |
|----------------------------------------------------------|-----|------------------------------|--------|-------|----------------------|--------------------------------|----------------------|---------------------------------------------|
|                                                          |     | Clinical progression details |        |       |                      | Cox proportional hazard models |                      |                                             |
|                                                          | N   | Total progression, n (%)     | MCI, n | AD, n | Other<br>dementia, n | Progression to de              | ementia <sup>a</sup> | Progression to MCI or dementia <sup>a</sup> |
| A-T-N-                                                   | 175 | 9 (5)                        | 7      | 0     | 2 <sup>b</sup>       | 1 (reference)                  |                      | 1 (reference)                               |
| A-T-N+                                                   | 17  | 0 (0)                        | 0      | 0     | 0                    | е                              |                      | е                                           |
| A-T+N-                                                   | 66  | 5 (8)                        | 2      | 1     | 2 <sup>c</sup>       | 3.2 (0.5–19.3)                 |                      | 1.0 (0.3–3.1)                               |
| A-T+N+                                                   | 7   | 1 (14)                       | 0      | 1     | 0                    | 18.5 (1.6-211.4)               |                      | 3.6 (0.4–29.7)                              |
| A+T-N-                                                   | 28  | 7 (25)                       | 4      | 3     | 0                    | 9.7 (1.6-59.3)                 |                      | 5.3 (2.0–14.4)                              |
| A+T-N+                                                   | 7   | 0 (0)                        | 0      | 0     | 0                    | е                              |                      | e                                           |
| A+T+N-                                                   | 35  | 18 (51)                      | 8      | 8     | 2 <sup>d</sup>       | 20.2 (3.7–110.2)               |                      | 9.1 (3.6–22.5)                              |
| A+T+N+                                                   | 7   | 6 (86)                       | 3      | 3     | 0                    | 62.3 (9.5-408.4)               |                      | 30.9 (9.6–99.3)                             |

#### N= 693 Amsterdam cohort

# outline

- History of diagnostic criteria for Alzheimer's disease (AD)
- National Institute on Aging Alzheimer's Association (NIA-AA) research framework
- NIA vs IWG
- Integration of plasma biomarkers into NIA-AA research framework

# Major limitation of biological definition (until recently), major reason for "research framework" terminology

- Problem: CSF and PET imaging are invasive, expensive limits use to specialty clinics or clinical trials
- Solution: plasma biomarkers



**2018** 

doi:10.1038/nature25456

I

# High performance plasma amyloid-β biomarkers for Alzheimer's disease

Akinori Nakamura<sup>1</sup>, Naoki Kaneko<sup>2</sup>, Victor L. Villemagne<sup>3,4</sup>, Takashi Kato<sup>1,5</sup>, James Doecke<sup>6</sup>, Vincent Doré<sup>3,6</sup>, Chris Fowler<sup>4</sup>, Qiao-Xin Li<sup>4</sup>, Ralph Martins<sup>7</sup>, Christopher Rowe<sup>3,4</sup>, Taisuke Tomita<sup>8</sup>, Katsumi Matsuzaki<sup>9</sup>, Kenji Ishii<sup>10</sup>, Kazunari Ishii<sup>11</sup>, Yutaka Arahata<sup>5</sup>, Shinichi Iwamoto<sup>2</sup>, Kengo Ito<sup>1,5</sup>, Koichi Tanaka<sup>2</sup>, Colin L. Masters<sup>4</sup> & Katsuhiko Yanagisawa<sup>1</sup>

Published online: April 6, 2018



Alzheimer's & Dementia

Theoretical Article

Alzheimer's & Dementia (2017) 1-9

Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis

Vitaliy Ovod<sup>a,1</sup>, Kara N. Ramsey<sup>a,1</sup>, Kwasi G. Mawuenyega<sup>a</sup>, Jim G. Bollinger<sup>a</sup>, Terry Hicks<sup>a</sup>, Theresa Schneider<sup>a</sup>, Melissa Sullivan<sup>a</sup>, Katrina Paumier<sup>a</sup>, David M. Holtzman<sup>a,b,c</sup>, John C. Morris<sup>a,c</sup>, Tammie Benzinger<sup>d,c</sup>, Anne M. Fagan<sup>a,b,c</sup>, Bruce W. Patterson<sup>e</sup>, Randall J. Bateman<sup>a,b,c,\*</sup>



EMBO
OPEN
ACCESS

Molecular Medicine

#### Amyloid blood biomarker detects Alzheimer's disease

Andreas Nabers<sup>1,†</sup>, Laura Perna<sup>2,†</sup>, Julia Lange<sup>1</sup>, Ute Mons<sup>2</sup>, Jonas Schartner<sup>1</sup>, Jörn Güldenhaupt<sup>1</sup>, Kai-Uwe Saum<sup>2</sup>, Shorena Janelidze<sup>3</sup>, Bernd Holleczek<sup>4</sup>, Dan Rujescu<sup>5</sup>, Oskar Hansson<sup>3,6</sup>, Klaus Gerwert<sup>2,\*</sup> & Hermann Brenner<sup>2,7</sup>

# plasma (N)

JAMA Neurology | Original Investigation

Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease

Niklas Mattsson, MD, PhD; Ulf Andreasson, PhD; Henrik Zetterberg, MD, PhD; Kaj Blennow, MD, PhD; for the Alzheimer's Disease Neuroimaging Initiative

2017



Contents lists available at ScienceDirect

#### Neuroscience Letters

iournal homepage; www.elsevier.com/locate/neulet

Research article

Plasma neurofilament light chain levels in Alzheimer's disease\*

Wenjun Zhou<sup>a,1</sup>, Jie Zhang<sup>b,\*,1</sup>, Fanlong Ye<sup>b</sup>, Guangzheng Xu<sup>c</sup>, Hang Su<sup>d</sup>, Yindan Su<sup>e</sup>, Xiangyang Zhang f, \*\*, Alzheimer's Disease Neuroimaging Initiative

- <sup>2</sup> Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- b Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- c Xuitahut community health service center, Xuhut District, Shanghai, China
- d Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- \* The Affiliated High School to Hangzhou Normal University, Hangzhou, China
- F Betting HullongGuan Hospital, Peking University, Betting, China

## Plasma and CSF neurofilament light

Relation to longitudinal neuroimaging and cognitive measures

Michelle M. Mielke, PhD, Jeremy A. Syrjanen, MS, Kaj Blennow, MD, PhD, Henrik Zetterberg, MD, PhD, Prashanthi Vemuri, PhD, Ingmar Skoog, MD, PhD, Mary M. Machulda, PhD, Walter K. Kremers, PhD, David S. Knopman, MD, Clifford Jack, Jr., MD, Ronald C. Petersen, MD, PhD, and Silke Kern, MD, PhD

Neurology® 2019;93:e252-e260. doi:10.1212/WNL.000000000007767

Plasma neurofilament light chain in the presentlin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional and longitudinal cohort study

Yaked T Ouiroz\*, Henrik Zetterberg\*, Eric M Reiman\*, Yinghua Chen, Yi Su, Joshua T Fox-Fuller, Gloria Garcia, Andres Villegas, Diego Sepul veda-Falla, Marina Villada, Joseph F Arboleda-Velasguez, Edmarie Guzmán-Vélez, Clara Vila-Castelar, Brian A Gordon, Stephanie A Schultz, Hillary D Protas, Valentina Ghisays, Margarita Giraldo, Victoria Tirado, Ana Baena, Claudia Munoz, Silvia Rios-Romenets, Pierre NTariot, Kaj Blennow†, Francisco Lopera†

Lewczuk et al. Alzheimer's Research & Therapy (2018) 10:71 https://doi.org/10.1186/s13195-018-0404-9

Alzheimer's Research & Therapy

RESEARCH

Open Access

Plasma neurofilament light as a potential

( CrossMark

biomarker of neurodegeneration in Alzheimer's disease

Piotr Lewczuk<sup>1,2\*</sup> Natalia Ermann<sup>1</sup>, Ulf Andreasson<sup>3,4</sup>, Christian Schultheis<sup>5</sup>, Jana Podhorna<sup>6</sup>, Philipp Spitzer<sup>1</sup>, Juan Manuel Maler<sup>1</sup>, Johannes Kornhuber<sup>1</sup>, Kai Blennow<sup>3,4</sup> and Henrik Zetterberg<sup>3,4,7,8</sup>

JAMA Neurology | Original Investigation

Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease 2019

Niklas Mattsson, MD, PhD; Nicholas C. Cullen, BSc; Ulf Andreasson, PhD; Henrik Zetterberg, MD, PhD; Kai Blennow, MD, PhD

## plasma T

Molecular Psychiatry https://doi.org/10.1038/s41380-020-00923-z

#### IMMEDIATE COMMUNICATION

Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative

Thomas K. Karikari<sup>1</sup> et al.

Received: 1 July 2020 / Revised: 1 October 2020 / Accepted: 8 October 2020



ARTICLE

https://doi.org/10.1038/541591-020-0755-1

Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia

Shorena Janelidze<sup>©, 13\*</sup>, Niklas Mattsson<sup>1,2,3,10</sup>, Sebastian Palmqvist<sup>1,2</sup>, **Ruben Smith**<sup>1,2</sup>, Thomas G. Beach<sup>4</sup>, Geidy E. Serrano<sup>4</sup>, Xiyun Chai<sup>5</sup>, Nicholas K. Proctor<sup>5</sup>, Udo Eichenlaub<sup>4</sup>, Henrik Zetterberg<sup>2,8,9,0</sup>, Kaj Blennow<sup>7,8</sup>, Eric M. Reiman<sup>©,11</sup>, Erik Stomrud<sup>1,12</sup>, Jeffrey L. Dage<sup>5</sup> and Oskar Hansson<sup>©,11,2</sup>



Alzheimer's & Dementia ■ (2018) 1-9

Alzheimer's & Dementia

#### Featured Article

Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography

Michelle M. Mielke<sup>a,b,\*</sup>, Clinton E. Hagen<sup>c</sup>, Jing Xu<sup>d</sup>, Xiyun Chai<sup>d</sup>, Prashanthi Vemuri<sup>c</sup>, Val J. Lowe<sup>e</sup>, David C. Airey<sup>d</sup>, David S. Knopman<sup>b</sup>, Rosebud O. Roberts<sup>a,b</sup>, Mary M. Machulda<sup>f</sup>, Clifford R. Jack, Jr.<sup>c</sup>, Ronald C. Petersen<sup>a,b</sup>, Jeffrey L. Dage<sup>d</sup>



#### ARTICLES

https://doi.org/10.1038/s41591-020-0762-2



#### Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration

Elisabeth H. Thijssen<sup>1,2</sup>, Renaud La Joie<sup>1</sup>, Amy Wolf<sup>1</sup>, Amelia Strom<sup>1</sup>, Ping Wang<sup>1</sup>, Leonardo Iaccarino<sup>1</sup>, Viktoriya Bourakova<sup>1</sup>, Yann Cobigo<sup>1</sup>, Hilary Heuer<sup>1</sup>, Salvatore Spina<sup>1</sup>, Lawren VandeVrede<sup>1</sup>, Xiyun Chai<sup>3</sup>, Nicholas K. Proctor<sup>3</sup>, David C. Airey<sup>3</sup>, Sergey Shcherbinin<sup>3</sup>, Cynthia Duggan Evans<sup>3</sup>, John R. Sims<sup>3</sup>, Henrik Zetterberg<sup>4,5,6,7</sup>, Kaj Blennow<sup>4,5</sup>, Anna M. Karydas<sup>1</sup>, Charlotte E. Teunissen<sup>2</sup>, Joel H. Kramer<sup>1</sup>, Lea T. Grinberg<sup>1,8</sup>, William W. Seeley<sup>1,8</sup>, Howie Rosen<sup>1</sup>, Bradley F. Boeve<sup>9</sup>, Bruce L. Miller<sup>1</sup>, Gil D. Rabinovici<sup>1,10</sup>, Jeffrey L. Dage<sup>1,2</sup>, Julio C. Rojas<sup>1</sup>, Adam L. Boxer<sup>1</sup> and Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) investigators<sup>1</sup>

#### JAMA | Original Investigation

# Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

Sebastian Palmqvist, MD, PhD; Shorena Janelidze, PhD; Yakeel T. Quiroz, PhD; Henrik Zetterberg, MD, PhD; Francisco Lopera, MD; Erik Stomrud, MD, PhD; Yi Su, PhD; Yinghua Chen, MSc; Geidy E. Serrano, PhD; Antoine Leuzy, PhD; Niklas Mattsson-Carlgren, MD, PhD; Olof Strandberg, PhD; Ruben Smith, MD, PhD; Andres Villegas, MD; Diego Sepulveda-Falla, MD; Xiyun Chai, MD; Nicholas K. Proctor, BS; Thomas G. Beach, MD, PhD; Kaj Blennow, MD, PhD; Jeffrey L. Dage, PhD; Eric M. Reiman, MD; Oskar Hansson, MD, PhD

# Update of AT(N) multimodal biomarker system in NIA AA framework

- Incorporate plasma biomarkers
- Eliminate assumption of equivalence between imaging and fluid biomarkers
- Clinical applicability: updated system must be practical, usable in clinical setting to meet needs of era of disease modifying treatments

## AD biomarker harmonization

- The Alzheimer's Association QC program:

  <a href="https://www.gu.se/en/neuroscience-physiology/the-alzheimers-association-qc-program-for-csf-and-blood-biomarkers">https://www.gu.se/en/neuroscience-physiology/the-alzheimers-association-qc-program-for-csf-and-blood-biomarkers</a>
- International Federation of Clinical Chemistry and Laboratory Medicine working group for CSF and plasma proteins: <a href="https://www.ifcc.org/ifcc-scientific-division/sd-working-groups/csf-proteins-wg-csf/">https://www.ifcc.org/ifcc-scientific-division/sd-working-groups/csf-proteins-wg-csf/</a>
- Global Biomarker Standardization Consortium:
   <a href="https://www.alz.org/research/for\_researchers/partnerships/gbsc">https://www.alz.org/research/for\_researchers/partnerships/gbsc</a>
- The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET: Klunk et al Alz and Dem 2015

# Integrating clinical presentation (6 numeric stages) with biomarker staging: Independent sources of information

#### **Clinical staging**

|          | 1 | 2 | 3 | 4 | 5 | 6 |
|----------|---|---|---|---|---|---|
| A+T-(N)- |   |   |   |   |   |   |
| A+T+(N)- |   |   |   |   |   |   |
| A+T+(N)+ |   |   |   |   |   |   |

Biomarker staging