Progress in Biomarkers for Huntington's Disease

Multimodal biomarkers Development integration and clinical utility barriers and implications lessons learned

National Academies Workshop on Multimodal Biomarkers in CNS Disorders

March 13, 2023
Jane S Paulsen, PhD
Professor and Vice Chair for Research
Department of Neurology
University of Wisconsin Madison

- Review of diagnostic criteria for Huntington's disease (HD)
- Genetic markers
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

- Review of diagnostic criteria for Huntington's disease (HD)
- Genetic markers
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

HD Diagnosis (1979-1999) Standardized HD diagnosis using the UHDRS motor exam

I. MOTOR ASSESSMENT

Horizontal Vertical

1. OCULAR PURSUIT

1a. 1b.

- 0 = complete (normal)
- 1 = jerky movement
- 2 = interrupted pursuits/full range
- 3 = incomplete range
- 4 = cannot pursue

TMS

- 17. DIAGNOSIS CONFIDENCE LEVEL
- 17. DCL

To what degree are you confident that this participant meets the operational definition of the unequivocal presence of an otherwise unexplained extrapyramidal movement disorder (e.g., chorea, dystonia, bradykinesia, rigidity) in a participant at risk for HD?

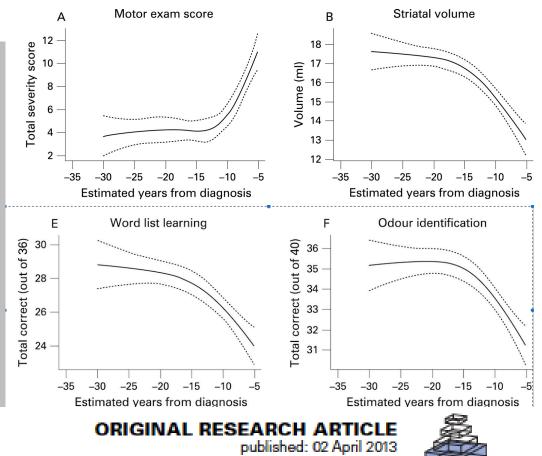
- 0 = normal (no abnormalities)
- 1 = non-specific motor abnormalities (less than 50% confidence)
- 2 = motor abnormalities that may be signs of HD (50%-89% confidence)
- 3 = motor abnormalities that are likely signs of HD (90%-98% confidence)
- 4 = motor abnormalities that are unequivocal signs of HD (≥ 99% confidence)

Marker 1983

Gene 1993

Natural History Studies of HD

COHORT 1995


PREDICT 2000

REGISTRY 2002

TRACK 2008

ENROLL 2012

doi: 10.3389/fnagi.2013.00012

Refining the diagnosis of Huntington disease: the PREDICT-HD study

Kevin M. Biglan¹, Ying Zhang², Jeffrey D. Long³, Michael Geschwind⁴, Gail A. Kang⁴, Annie Killoran¹, Wenjing Lu², Elizabeth McCusker⁵, James A. Mills³, Lynn A. Raymond⁶, Claudia Testa⁷, Joanne Wojcieszek⁸, Jane S. Paulsen^{3*}, and the PREDICT-HD Investigators of the Huntington Study Group

VIEWPOINT

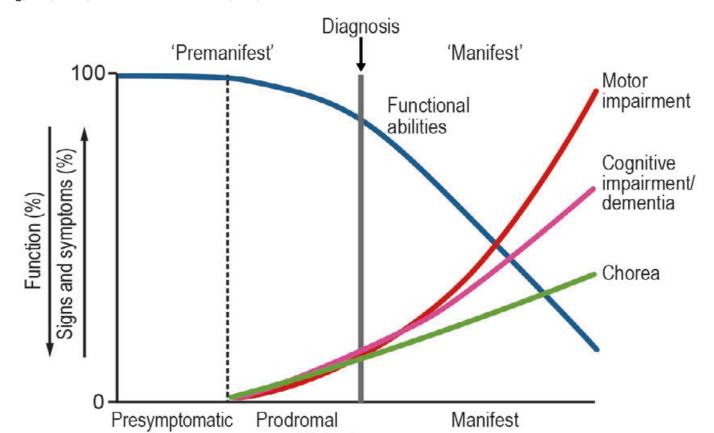
Diagnostic Criteria for Huntington's Disease Based on Natural History

Ralf Reilmann, MD, 1,2* Blair R. Leavitt, MD, CM,3 and Christopher A. Ross, MD4*

¹George-Huntington-Institute, Technology-Park, Muenster, Germany

TABLE 1 Criteria for diagnoses in individuals with a CAG-repeat expansion in Huntingtin

Diagnosis	Motor	Cognitive	Potential Treatment
(1) Presymptomatic HD (2) Prodromal HD (either A or B)	A) Dx conf 2	Normal (A) + Minor or major neurocognitive changes (B) With normal (unchanged) cognition	(1) Disease modifying (2A or B) Symptomatic or disease modifying
(3) Manifest HD (either A or B)	•	(A) + Minor or major neurocognitive changes(B) With normal (unchanged) cognition	(3A or B) Symptomatic or disease modifying


Potential treatments apply to each of the 3 diagnoses regardless of the criteria for meeting the diagnosis. It is expected that the ability to

 ²Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
 ³Centre for Molecular Medicine and Therapeutics, and Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
 ⁴Division of Neurobiology, Department of Psychiatry, and Departments of Neurology, Neuroscience, and Pharmacology, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

CLINICAL PRACTICE

Movement Disorder Society Task Force Viewpoint: Huntington's Disease Diagnostic Categories

Christopher A. Ross, MD, PhD,^{1,*} Ralf Reilmann, MD, PhD,² Francisco Cardoso, MD, PhD, FAAN,³ Elizabeth A. McCusker, MB, BS (Hons), FRACP,⁴ Claudia M. Testa, MD, PhD,⁵ Julie C. Stout, PhD,⁶ Blair R. Leavitt, BSc, MDCM, FRCPC,⁷ Zhong Pei, MD, PhD,⁸ Bernhard Landwehrmeyer, MD, PhD, FRCP,⁹ Asuncion Martinez, BS,¹⁰ Jamie Levey, MBA,^{11,12} Teresa Srajer, BS, MBA,¹⁰ Jee Bang, MD, MPH,¹³ and Sarah J. Tabrizi, MD, PhD^{14,15}

A biological classification of Huntington's disease: the Integrated Staging System

Sarah J Tabrizi*, Scott Schobel*, Emily C Gantman, Alexandra Mansbach, Beth Borowsky, Pavlina Konstantinova, Tiago A Mestre,
Jennifer Panagoulias, Christopher A Ross, Maurice Zauderer, Ariana P Mullin, Klaus Romero, Sudhir Sivakumaran, Emily C Turner, Jeffrey D Long,
Cristina Sampaio, on behalf of the Huntington's Disease Regulatory Science Consortium (HD-RSC)†

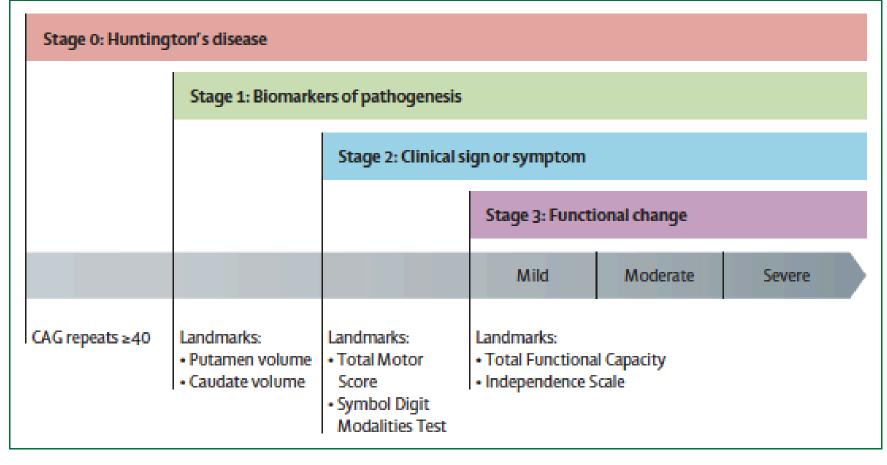


Figure 3: Cumulative staging framework and landmarks of the Huntington's disease Integrated Staging

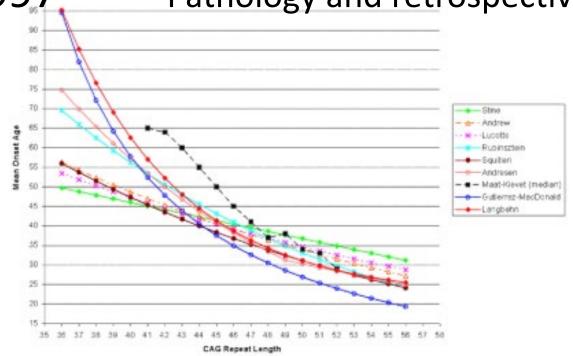
 Review of diagnostic criteria for Huntington's disease (HD)

Genetic markers

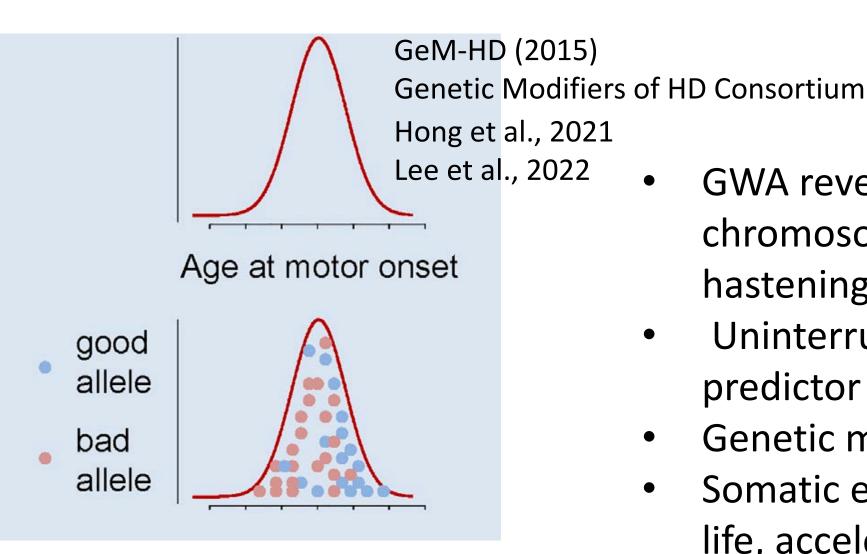
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

Prognostic and diagnostic genetic biomarkers

Brinkman et al., 1995 Langbehn et al., 2004 Langbehn et al., 2010 Zhang et al., 2011 Penney et al., 1997


Retrospective ww n > 4400

Brinkman data n ~ 2300


Prospectively diagnosed from ww Predict n=81

Prospectively diagnosed n=250 of n~ 1500

Pathology and retrospective AO n=89 brains

HD is the prototypical autosomal dominant genetic disease -----Timing of disease onset is polygenic

- GWA revealed loci on chromosomes 8, 15 and 3 hastening or delaying onset
- Uninterrupted CAG is better predictor of onset
- Genetic mosaicism
- Somatic expansion throughout life, accelerating pathogenesis

Multimodal biomarkers for HD

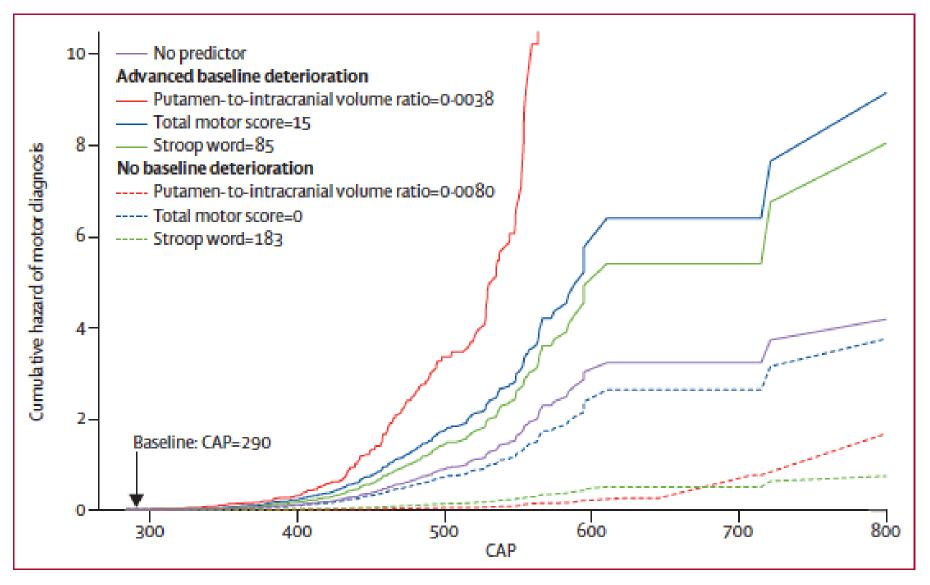
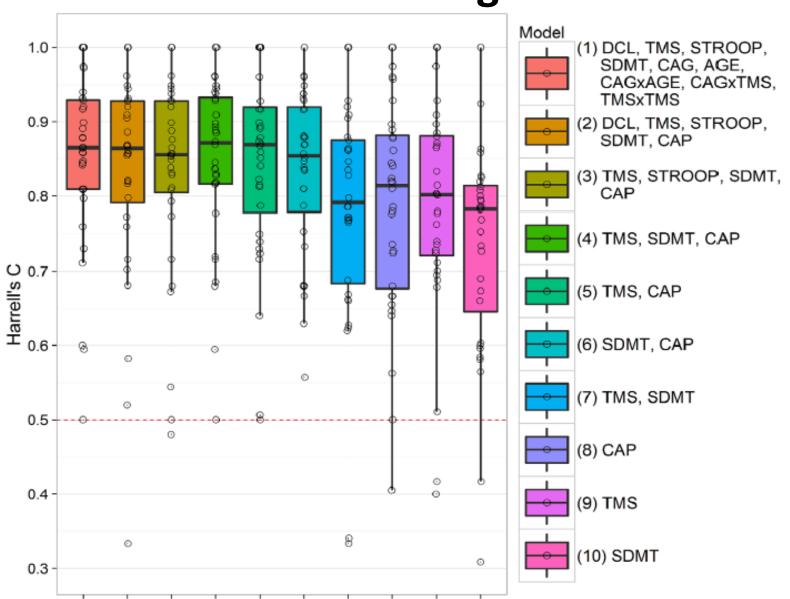
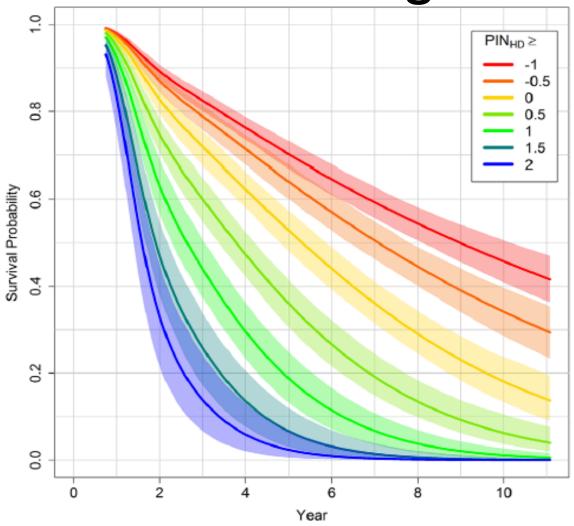




Figure 2: Cumulative hazard (accumulated risk rate) of motor diagnosis by CAP for various baseline predictor values

Prognostic biomarkers to power clinical trials in Huntington disease

Prognostic biomarkers to power clinical trials in Huntington disease

FIG. 3. Cubic spline survival curves (95% CIs) for ranges of the prognosite index normed for Huntington's disease (PIN_{HD}). Curves are based on pooling PREDICT-HD, TRACK-HD, and COHORT.

- Review of diagnostic criteria for Huntington's disease (HD)
- Genetic markers
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

Biofluid biomarkers for Huntington's disease

- Contributions consistent and frequent; Reviews 2016, 2018, 2021 and 2023
- Evaluations take one of a few approaches:
 - Reflecting/revealing pathogenic process
 - Replications to increase rigor towards validation

Biomarker research summarized by pathogenesis

Neuro degen'n	NFL	GABA	NGF	Tau	NSE	YKL-40	UCHL1	PENK		
immune	IL-6, IL-8	sCD27	IL-18	IL-23	TGF-β1	Chemokines	Clusterin	CRP	Neopterin	GFAP
metabolic	240HC	5-HT	АроЕ	Choles'l	Citrulline	HVA	Isoleucine	Phenylalanine	tryptophan	valine
endocrine	Cortisol	Ghrelin	GH	IGF-1	Leptin	Melatonin	transthyretin	BDNF	angiotensin	
oxidative stress	ЗНАА	Cu/Zn-SOD	Ferritin	8-OHDG	UA	Kynurenine	Lipid peroxid'n			
miRNA	miR-486-5p	miR-34	miR-10b-5	Has-miR- 323b-ep	more					

Clinically useful Biomarkers

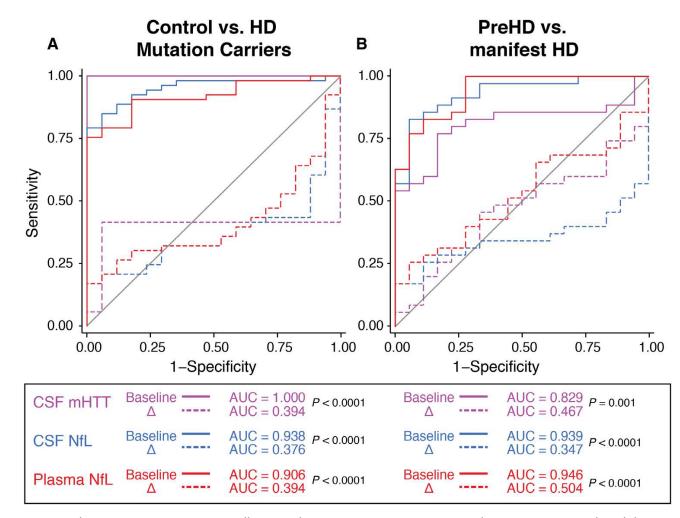
Mutant huntingtin protein (mHTT) and Neurofilament Light Chain (NFL)

I. Value as pharmacodynamic marker is explicit

Requiring novel and ultra-sensitive assays

Associations with disease burden, advancing stage, estimated time (or probability) of onset (stronger in CSF than blood)

Used in multiple RCTs in HD


II. mHTT and NfL show X-sect'l discrimination

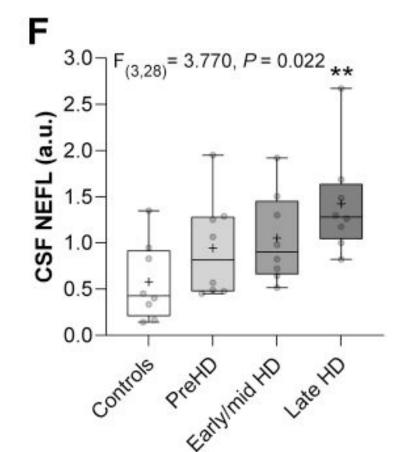
Longitudinal change ineffective for monitoring HD progression. Why?

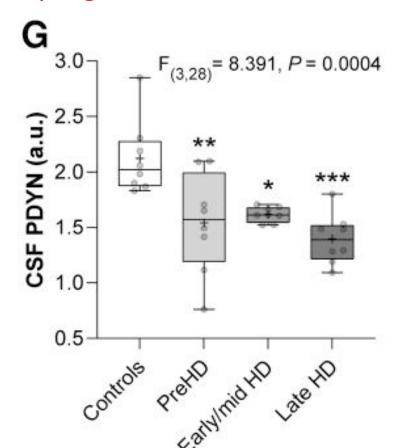
sample size

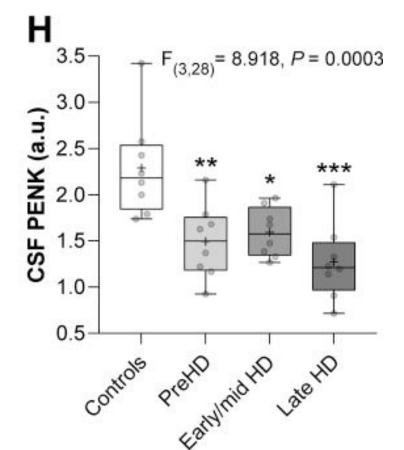
follow up time

Or mHTT and NFL are ineffective at detecting change over time

F.B. Rodrigues, L.M. Byrne, R. Tortelli, E.B. Johnson, P.A. Wijeratne, M. Arridge, E. De Vita, N. Ghazaleh, R. Houghton, H.J.S.T.M. Furby, Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease, Sci. Transl. Med. 12 (574) (2020)

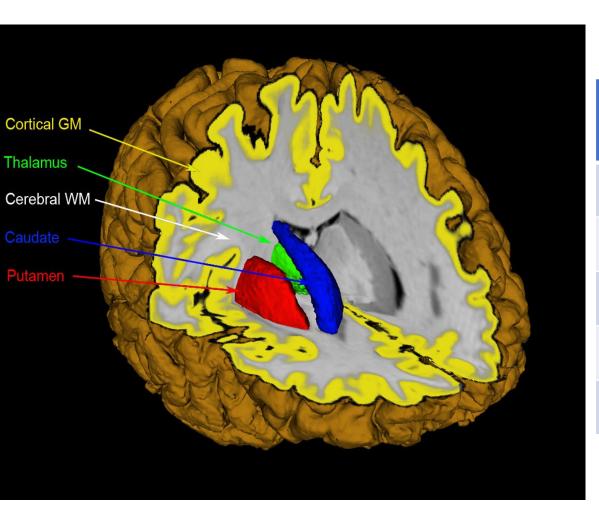

Multimarker comparisons allow interpretation for **Context of Use**


Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity


®Nicholas S. Caron, Arsalan S. Haqqani, BAkshdeep Sandhu, Amirah E. Aly, Hailey Findlay Black, Jeffrey N. Bone, Jodi L. McBride, Abedelnasser Abulrob, Danica Stanimirovic, Blair R. Leavitt and Michael R. Hayden

Linear progressive changes: progression

NC vs. HD: threshold for treatment



- Review of diagnostic criteria for Huntington's disease (HD)
- Genetic markers
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

Structural volumetric changes in prodromal HD

CROSS-SECTIONAL – DETECT diffs from NC LONGITUDINAL – progression

% Volume difference	Cross- sect'l Effect size	Long'l Effect Size	Brain structure
- 2.6	0.669	.18	Cortical GM
-12.7	1.328	.46	Thalamus
-10.3	1.445	1.17	CerebralWM
-31.7	2.290	.81	Caudate
-26.4	2.456	.63	Putamen

Aylward et al (2011); JNNP Aylward et al (2011); PlosCurrents HD

Structural changes in Huntington's disease

Combined datasets:

Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease

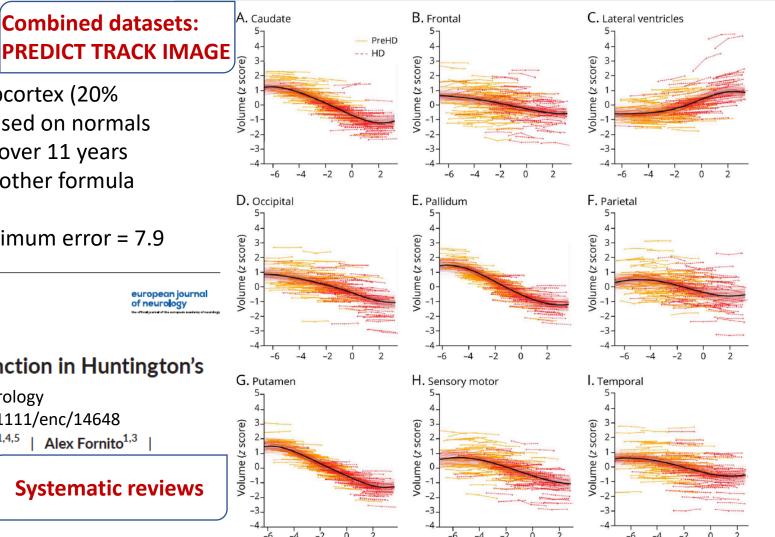
Figure 1 Regional Brain Volume Trajectories in the TRACK-HD Cohort

Peter A. Wijeratne, PhD, Sara Garbarino, PhD, Sarah Gregory, PhD, Eileanoir B. Johnson, PhD, Rachael I. Scahill, PhD, Jane S. Paulsen, PhD, Sarah J. Tabrizi, MD, PhD, Marco Lorenzi, PhD,* and Daniel C. Alexander, PhD.* on behalf of the PREDICT-HD investigators and the TRACK-HD investigators.

- 1. Largest and earliest changes in subcortex (20% change 2 years before impaired based on normals
- Followed by a cascade of changes over 11 years
- Imaging measures combined with other formula improve prediction of onset
- Mean square error=4.5 years; maximum error = 7.9

Accepted: 12 November 2020 Received: 27 July 2020 DOI: 10.1111/ene.14648

REVIEW


Cortical morphometry and neural dysfunction in Huntington's disease: a review **European Journal of Neurology**

November 2020 COI: 10.1111/enc/14648

Brendan Tan¹ | Rosita Shishegar^{1,2,3} | Govinda R. Poudel^{1,4,5} | Alex Fornito^{1,3}

Nellie Georgiou-Karistianis¹ ©

Systematic reviews

Diffusion Measures: Structural Connectivity

Diffusion imaging in Huntington's disease: comprehensive review

Carlos Estevez-Fraga , ¹ Rachael Scahill, ¹ Geraint Rees, ^{2,3} Sarah J Tabrizi, ¹ Sarah Gregory ⁰

Estevez-Fraga C, et al. J Neurol Neurosurg Psychiatry 2021;92:62-69. doi:10.1136/jnnp-2020-324377

Critical Review of White Matter Changes in Huntington's Disease

Movement Disorders, Vol. 35, No. 8, 2020

Chiara Casella, MSc, 1* D Ilona Lipp, 3 Anne Rosser, 2 Derek K. Jones, 1,4 and Claudia Metzler-Baddeley 1

Systematic reviews

Reported Change	Proposed Interpretation	Possible Alternative Interpretation
Reduced WM volume	Decreased number of axons attributed to Wallerian degeneration ⁵⁰⁻⁵⁴	Decrease in axon myelination ^{6,5}
Reduced axial diffusivity	Axonal degeneration ²	Inflammation, nonuniform axonal oedema, beads, varicosities parallel to the axon segments, microglia/macrophage activation 100
Increased radial diffusivity	Demyelination ^{2,9,18,60,69,70}	Less coherent alignment of fibers, more crossing fibers from other bundles, lower density or less myelination of the fibers, or a combination of any or all these factors ¹⁰¹
Reductions in the neurite density index	Decrease in axonal density ⁷⁶	Reduced MRI signal because of demyelination ¹⁰²
Reductions in MPF	Demyelination ⁵⁹	Changes in cells and water content attributed to inflammation 79,83
Shortened T2	Increased ferritin levels ^{86,89}	Remyelination ¹⁰³

PREMANIFEST HD

Prefrontal white matter tracts Prefrontal white matter tracts ↓ FA ↑ diffusivity in inferior and ↓ FA ↑↑ diffusivity lateral regions generalized Corpus callosum Corpus callosum ↑ diffusivity in the ↓ ↓ FA and ↑ ↑ diffusivity callosal isthmus across the whole CC Corticospinal tract Corticospinal tract No differences ↓ FA and ↑ diffusivity Basal ganglia Basal ganglia ↑FA ↑ diffusivity ↑FA ↑ ↑ diffusivity Deep white matter Deep white matter 1 diffusivity ↓ FA ↑ ↑ diffusivity Superficial white Superficial white natter matter ↑ diffusivity in ↓ FA and ↑ ↑ diffusivity

corticostriatal tract and ensorimotor network

osterior areas

FA ↑ diffusivity between the nutamen/caudate and prefrontal/premotor, motor/sensory preas

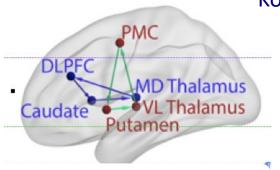
the diffusivity in the sensorimotor network associating with CAG epeats

Corticostriatal tract and sensorimotor network

across the whole brain

SYMPTOMATIC HD

↓ FA and ↑ diffusivity in M1 and S1 areas of the striatum

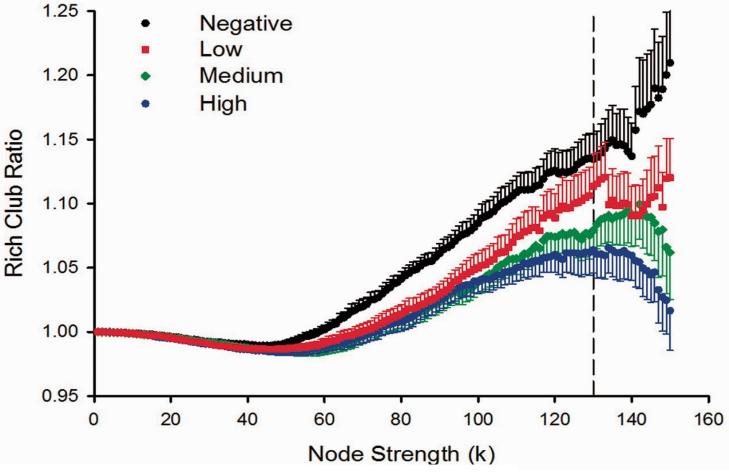

↓ FA and ↑ diffusivity between the striatum and thalamus with prefrontal, motor and parietal areas

MPF, macromolecular proton fraction; MRI, magnetic resonance imaging; WM, white matter.

iqure 4 Summary of cross-sectional diffusion studies in HD. 1, increase;

Functional connectivity in Prodromal HD

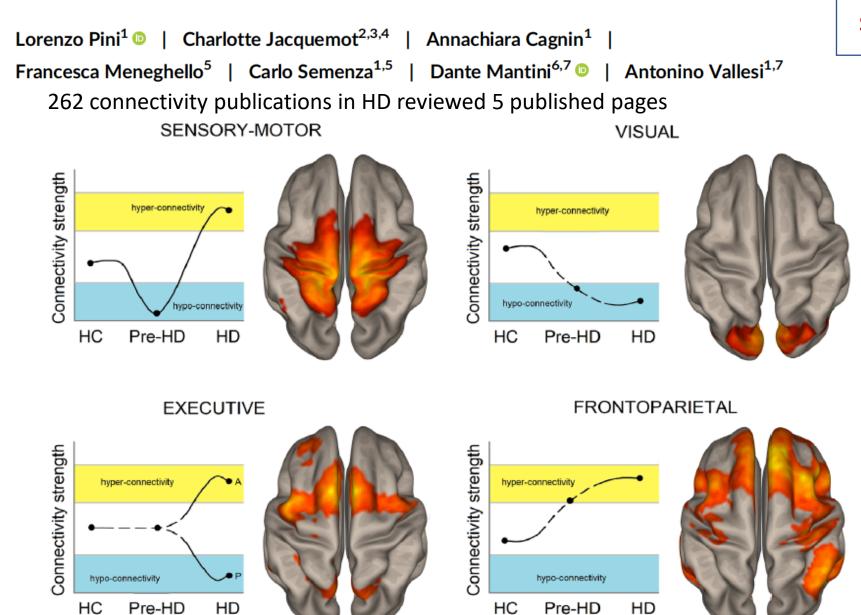
Harrington et al (2015) Koenig et al (2014)



seed-based

graph theory

rsfMRI whole brain using seedbased networks, graph theory & rich club analyses



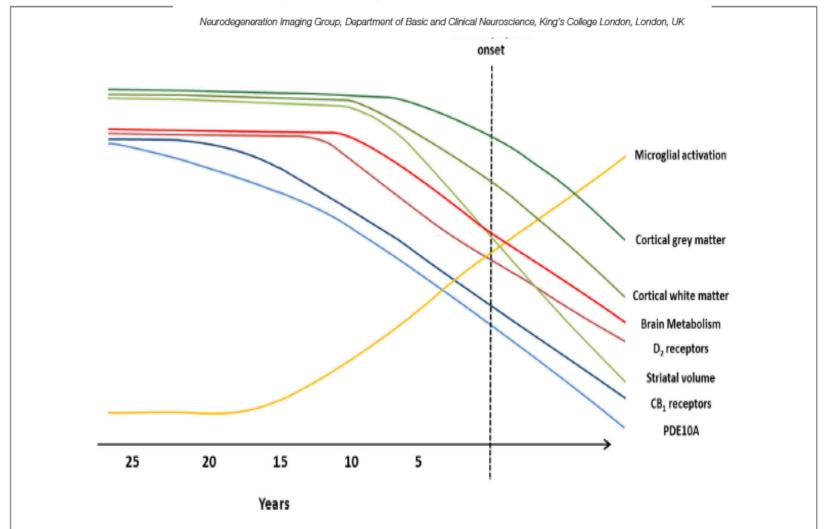
Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease

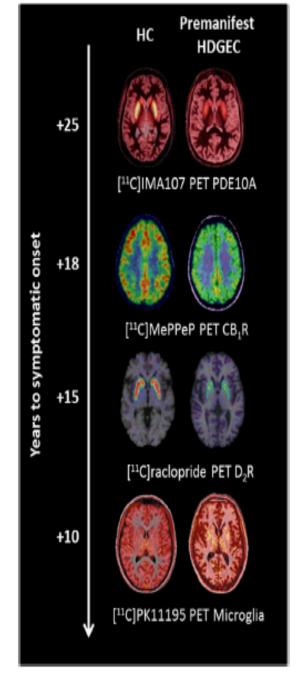
Peter McColgan,¹ Kiran K. Seunarine,² Sarah Gregory,¹ Adeel Razi,³,⁴ Marina Papoutsi,¹ Jeffrey D. Long,⁵,⁶ James A. Mills,⁵ Eileanoir Johnson,¹ Alexandra Durr,² Raymund A.C. Roos,⁶ Blair R. Leavitt,⁶ Julie C. Stout,¹⁰ Rachael I. Scahill,¹ Chris A. Clark,² Geraint Rees,³ Sarah J. Tabrizi,¹¹¹ and the Track-On HD Investigators¹²

Aberrant brain network connectivity in presymptomatic and manifest Huntington's disease: A systematic review

Systematic reviews

FIGURE 2 Pattern of aberrant connectivity in the sensory-motor and visual networks (top row) and executive and frontoparietal networks (bottom row) in the clinical Huntington disease (HD) spectrum. Dashed lines: unclear pattern of connectivity based on preliminary results from literature for presymptomatic HD. A, anterior/frontal regions; HC, healthy controls; P, posterior/parietal regions; pre-HD, presymptomatic HD

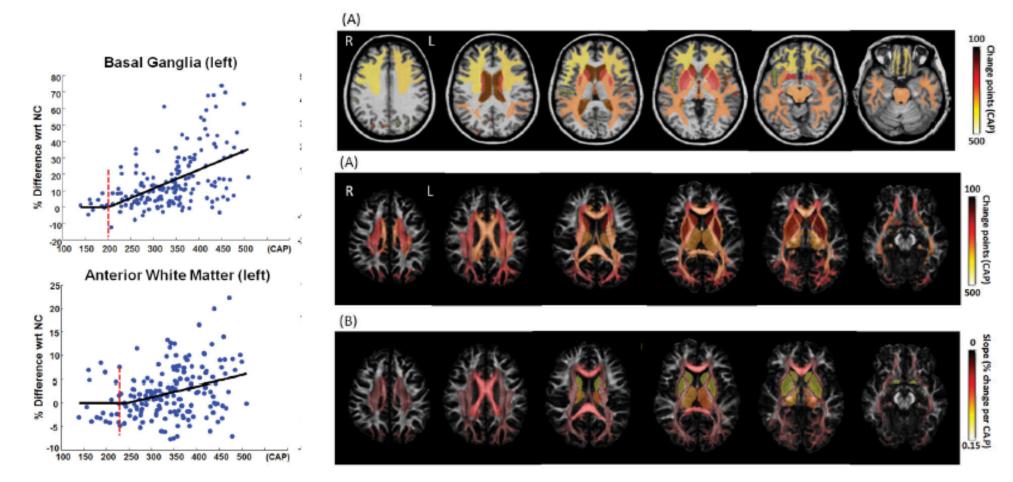

Functional connectome = rsfMRI



Molecular Imaging Markers to Track Huntington's Disease Pathology

Published: 30 January 2017 doi: 10.3389/fneur.2017.00011

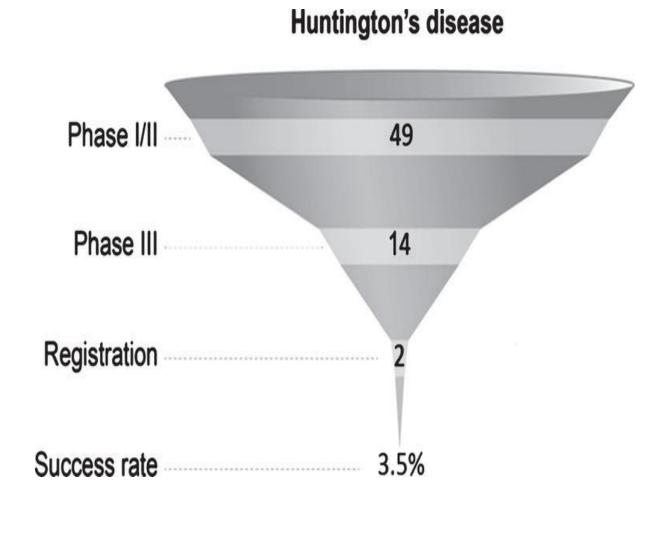
Heather Wilson, Rosa De Micco, Flavia Niccolini and Marios Politis*


Mapping the order and pattern of structural MRI changes in the brain using change-point analysis in premanifest Huntington's Disease

Human Brain Mapping 2017

Dan Wu¹, Andreia V. Faria¹, Laurent Younes^{2,3,4}, Susumu Mori^{1,6}, Timothy Brown², Hans Johnson⁷, Jane S. Paulsen⁷, Christopher A. Ross⁸, Michael I. Miller^{2,3,9}, and the PREDICT-HD Investigators and Coordinators of the Huntington Study Group

Disease Course Maps using MRI


- Atrophy deep gray to white matter
- Posterior-to-anterior gradient
- Early MD increases in the basal ganglia & occipital lobe, Late but rapid increases in corpus callosum & thalamus

- Review of diagnostic criteria for Huntington's disease (HD)
- Genetic markers
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

15 years (>60) clinical trials in HD

Therapeutic Area	Probability of Success
Oncology	3.4
Central Nervous System	15.0
Autoimmune/Inflammation	15.1
Metabolic/Endocrinology	19.6
Genito Urinary	21.6
Infectious Disease	25.2
Cardiovascular	25.5
Opthalmology	32.6
Vaccines	33.4
Overall	13.8

RCT Clinical Trials in HD

- ASO lowering HTT protein; n=791; 69 wks; placebo=trts dc'd
 - Follow-on analyses show off-trt>on-trt and low age/low CAP improved
 - New design developing
- ASO selectively lowering mHTT protein;
 - SNP1 and SNP2 dc'd; Now SNP3 ongoing
- AAV-based gene therapy to lower total HTT n=26, n=15, n=18
- VIBRANT-HD; oral HTT lowering ongoing
 - Branaplam is the small molecule splice modulator; RCT in SMA previously
 - ongoing
- PIVOt-HD Orally taken small molecule splicing modifiers cross BBB and lower HTT ~50-60%; return to baseline in 72 hr developing
 - Adding wearables
 - TFC and IS at max; age >25; CAG=42-50;
 - Prodromal RCT .18-.493 enriched w/PIN

- Review of diagnostic criteria for Huntington's disease (HD)
- Genetic markers
- Biofluid markers
- Imaging markers
- Applications in clinical trials
- Barriers and opportunities

Barriers and Opportunities

Limitations to direct comparisons:

- 1. Absence of standard disease nomenclature
- 2. Insufficient descriptions: methods & findings
- 3. Lack of standard burden scores
- 4. Variation in modalities and methods
- 5. Dearth of psychometrics
- 6. Deficiency of statistical detail
- 7. Different considerations for confounding/covariance

Reproducibility and Replicability in Science

A = All ... = should

Barriers and Opportunities

- 1. All researchers ... complete description of research.
- 2. A institutions managing science ... train in statistics.
- 3. A funding agencies ... open-source tools and infrastructure
- 4. A Journals ... ensure reproducibility and enforce transparency
- 5. The National Science Foundation ...
 - criteria for open repositories;
 - •harmonize repository criteria & data management plans
 - •endorse archiving and preservation of digital artifacts
 - •Ww nonpublic data to develop transparency
- 6. Professional societies ... educate public & professionals about the evolving tools & methods of science
- 7. Researchers ... collaborate to meet the multi-disciplinary requirements of research