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Language is deeply embedded across medical workflows

…and connects disparate stakeholders. 
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Potential of EHR data

Can learn from past data, stay up-to-date, and empower patients 

• What drug would lead to the best outcome for this patient?

 

• Which clinical trials is my patient eligible for?
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…but this data is often underutilized



Much of a patient’s story is only in text

Initial 
Diagnosis

Surgery

Metastasis

1st Line: 
CarboTaxol

Radiologic
Progression

2nd Line:
pembrolizumab

• Disease

• Disease Status

• Interventions

• Symptoms/                   side 

effects

• Confounders

Bone pain Migraines Vomiting

Cirrhosis, CHF, social determinants of health

Stage IV endometrial cancer
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The information often doesn’t exist elsewhere

Example: Deviation from medication plan

Pharmacy records say:

“The doctor ordered 6 weeks of medication starting February 1”

Notes say:

“The patient became nauseous and stopped taking the drug on February 
5th”
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Challenge: Difficulty of parsing clinical texts

…many ways to say the same thing

Fever

= 

Febrile

= 

Pyrexia

=

100+ degree

temperature
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Challenge: Difficulty of parsing clinical texts

“On carbo ia for TNBC. Will dc.”
Carbodome

Carboplatin Intra-arterial

Intra-articular

discontinue

dischargeD/C current

Triple-negative 
breast cancer

…single way to say many things
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Challenge: Difficulty of parsing clinical texts

“On carbo ia for TNBC. Will dc.”
Carbodome

Carboplatin Intra-arterial

Intra-articular

discontinue

dischargeD/C current

Triple-negative 
breast cancer

…traditionally hard for people and
 computers alike
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Challenge #2: Status quo for information                    
extraction

Medical 
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Opportunity: LLMs enable complex reasoning

Image from Jay Alammar, Blog (2018). https://jalammar.github.io/illustrated-transformer/

Clinical note

Answer
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Opportunity: Language models can help us parse text

Medical 

Research

Clinical Notes Structured 

Data

Chart review

Large Language

 Model

Large Language Models are Few-Shot Clinical Information Extractors

Empirical Methods in Natural Language Processing (EMNLP), 2022.

Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, David Sontag
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Large Language Models are Few-Shot Clinical 
Information Extractors

1) Creation of clinical datasets for benchmarking LLMs
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Large Language Models are Few-Shot Clinical 
Information Extractors

1) Creation of clinical datasets for benchmarking LLMs

2) Method for extracting complicated outputs from LLMs

• Decreasing hallucinations

• Improving performance of out-of-the-box models

14



Large Language Models are Few-Shot Clinical 
Information Extractors

1) Creation of clinical datasets for benchmarking LLMs

2) Method for extracting complicated outputs from LLMs

• Decreasing hallucinations

• Improving performance of out-of-the-box models

3) Results of LLMs on clinical information extraction

• Clinical concept disambiguation

• Clinical trial parsing

• Clinical coreference resolution

• Medication + status (active, discontinued) identification

• Medication + attribute relation (dosage, reason) extraction
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Example: Medication status identification

8. Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE: This is an 80-year-
old female who was hospitalized about 2 months ago for chronic obstructive pulmonary 
disease exacerbation…she was put on Augmentin ES and…

- medication: "Albuterol", dosage: "2 puffs", frequency: "every 4-6 hours", duration: "as needed"
-medication: "Augmentin ES", duration: "2 months"
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Extraction of Social Determinants of Health

Guevara et al. examined the capabilities of LLMs for extracting SDoH

• Employment, housing, parent, relationship, social support, transport

• Evaluated both few-shot prompting of commercial models (GPT series) and 
fine-tuned models  

• Their models identified 90%+ of patients with an adverse SDoH, compared 
to 2% by ICD codes

Guevara et al., Nature Digital Medicine 2024

However, artificially injecting demographics (e.g. “person” → “Asian woman”) did 
change answers ~10-20% of the time, indicating room for increased robustness
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How can we leverage LLMs towards equity? 

Use large language models to promote equity, 2023.

Pierson, Shanmugam, Movva, Kleinberg, Agrawal, Dredze, Ferryman, Gichoya, Jurafsky, Koh, Levy, 
Mullainathan, Obermeyer, Suresh, Vafa
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Opportunities for LLMs to promote equity

Pierson, Shanmugam, Movva, Kleinberg et al, 2023 19



Improving access to information

• Access to clinical notes can enable:

• Memory of appointment

• Ability to further understand medical conditions

• Patients from less privileged backgrounds cite higher importance to this 
access

• Unfortunately only 25% of patients could adequately understand own 
surgical summary

How can we make clinical notes more approachable for patients?

Gerard et al., JMIR  2018; Choudhry et al, Am J Surg 2016      20



Improving access to information

We investigated the 
impact of LLM 
assistance on 

comprehension of 
clinical notes

Mannhardt and Bondi-Kelly et al, 2024

Understanding improved 
(including vulnerable 
subgroups), but errors 

persist
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Opportunities for LLMs to promote equity

Pierson, Shanmugam, Movva, Kleinberg et al, 2023 22



Trial matching

“Black patients account for just 

5% of clinical trial participants

in the US”

Boyle 2021, AAMC News; Alegria et al 2021, JAMA Network Open 23



Language is deeply embedded across medical workflows
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