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Language is deeply embedded across medical workflows
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Potential of EHR data

Can learn from past data, stay up-to-date, and empower patients

* What drug would lead to the best outcome for this patient? .“ ‘ .“

* Which clinical trials is my patient eligible for? "\f

...but this data is often underutilized




Much of a patient’s story is only in text

e Disease Stage IV endometrial cancer
Initial _ Radiologic

. Diagnosis Metastasis Progression

* Disease Status | | |
Sureer 15t Line: 2nd Line:
* [nterventions . CarboTaxol pembrolizumab
. Bone pain Migraines Vomitin

* Symptoms/ side g ° s

* Confounders Cirrhosis, CHF, social determinants of health



The information often doesn’t exist elsewhere

Example: Deviafion from medication plan

Pharmacy records say:

“The doctor ordered 6 weeks of medication starting February 17

Notes say:

“The patient became nauseous and stopped taking the drug on February

5fh"



Challenge: Difficulty of parsing clinical texts

...many ways to say the same thing

Fever

Febrile

Pyrexia

100+ degree
temperature



Challenge: Difficulty of parsing clinical texts

..single way to say many things

Triple-negative
Carboplatin Intra-arterial breast cancer dlscontmue

“On carbo ia for TNBC. Will dc.’
Carbedeme |ntraarticular D/Ceurrent €hseharge




Challenge: Difficulty of parsing clinical texts

..traditionally hard for people and
computers alike

Triple-negative
Carboplatin Intra-arterial breast cancer dlscontmue

“On carbo ia for TNBC. Will dc.’
Carbedeme |ntraarticular D/Ceurrent €hseharge




Challenge #2: Status quo for information

extraction
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Opportunity: LLMs enable complex reasoning
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Image from Jay Alammar, Blog (2018). https://jalammar.github.io/illustrated-trarisformer/



Opportunity: Language models can help us parse text
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Large Language Models are Few-Shot Clinical Information Extractors
Empirical Methods in Natural Language Processing (EMNLP), 2022.

Monica Agrawal, Stefan Hegselmann, Hunter Lang, Yoon Kim, David Sontag
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Large Language Models are Few-Shot Clinical
Information Extractors

1) Creation of clinical datasets for benchmarking LLMs
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Large Language Models are Few-Shot Clinical
Information Extractors

1) Creation of clinical datasets for benchmarking LLMs

2) Method for extracting complicated outputs from LLMs

* Decreasing hallucinations
* Improving performance of out-of-the-box models
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Large Language Models are Few-Shot Clinical
Information Extractors

1) Creation of clinical datasets for benchmarking LLMs

2) Method for extracting complicated outputs from LLMs

* Decreasing hallucinations
* Improving performance of out-of-the-box models

3) Results of LLMs on clinical information extraction
* Clinical concept disambiguation
* Clinical trial parsing
* Clinical coreference resolution
* Medication + status (active, discontinued) identification
* Medication + attribute relation (dosage, reason) extraction
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Example: Medication status identification

8. Albuterol 2 puffs every 4-6 hours as needed. HOSPITAL COURSE: This is an 80-year-
old female who was hospitalized about 2 months ago for chronic obstructive pulmonary
disease exacerbation...she was put on Augmentin ES and...

- medication: "Albuterol", dosage: "2 puffs", frequency: "every 4-6 hours", duration: "as needed"
-medication: "Augmentin ES", duration: "2 months"
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Extraction of Social Determinants of Health

Guevara et al. examined the capabilities of LLMs for extracting SDoH
* Employment, housing, parent, relationship, social support, transport

* Evaluated both few-shot prompting of commercial models (GPT series) and
fine-tuned models

* Their models identified 90%+ of patients with an adverse SDoH, compared
to 2% by ICD codes

However, artificially injecting demographics (e.g. “person” =2 “Asian woman”) did
change answers ~10-20% of the time, indicating room for increased robustness

Guevara et al., Nature Digital Medicine 2024 17



How can we leverage LLMs towards equity?

Among LLM papers which focus on equity-related impacts...

85% focus on | Only 15% focus on
equity harms | equity opportunities

Use large language models to promote equity, 2023.

Pierson, Shanmugam, Movva, Kleinberg, Agrawal, Dredze, Ferryman, Gichoyaq, Jurafsky, Koh, Levy,
Mullainathan, Obermeyer, Suresh, Vafa
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Opportunities for LLMs to promote equity

Detecting
human biases

Creating structured datasets
for equity research

Improving equity of 3
access to information
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Pierson, Shanmugam, Movva, Kleinberg et al, 2023
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Improving access to information

* Access to clinical notes can enable:
* Memory of appointment

* Ability to further understand medical conditions

* Patients from less privileged backgrounds cite higher importance to this
access

e Unfortunately only 25% of patients could adequately understand own
surgical summary

How can we make clinical notes more approachable for patients?

Gerard et al., JIMIR 2018; Choudhry et al, Am J Surg 2016 20



Improving access to information

We investigated the
impact of LLM
assistance on
comprehension of
clinical notes
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Opportunities for LLMs to promote equity

Detecting
human biases

Creating structured datasets
for equity research

Improving equity of 3

access to information

Making matching

systems more equitable
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Pierson, Shanmugam, Movva, Kleinberg et al, 2023 22




Trial matching

AAMCNEWS

Clinical trials seek to fix their
lack of racial mix

Most drugs have been tested primarily on White men, casting
doubt about their efficacy for others. Researchers are trying
to diversify who participates in studies.

By Patrick Boyle, Senior Staff Writer

Aug. 20, 2021

“Black patients account for just

5% of clinical trial participants
in the US”

Boyle 2021, AAMC News; Alegria et al 2021, JAMA Network Open
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Language is deeply embedded across medical workflows
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