

Understanding the Challenges in Developing an Equitable Pulse Oximeter

Kimani C. Toussaint, Jr., Ph.D.

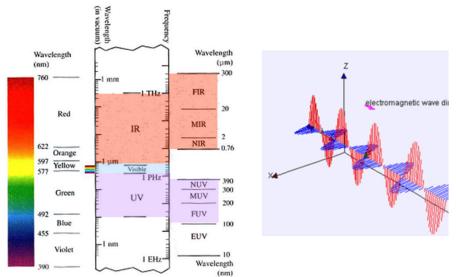
Thomas J. Watson, Sr. Professor of Science
Senior Associate Dean for Research and Strategic Initiatives,
Brown School of Engineering
Director, Brown-Lifespan Center for Digital Health

Race and Ethnicity in Biomedical Research (January 31, 2024)

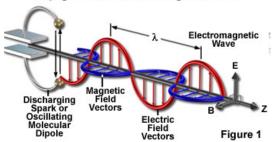
DISCLOSURE STATEMENT

The speakers has no disclosures.

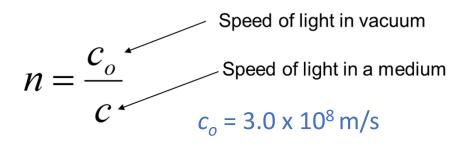
OUTLINE OF TALK

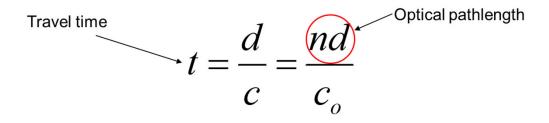

A. Part I: Primer

B. Part II: Photoplethsymography (PPG)


C. Part III: Bias with pulse oximetry

LIGHT AND THE EM SPECTRUM

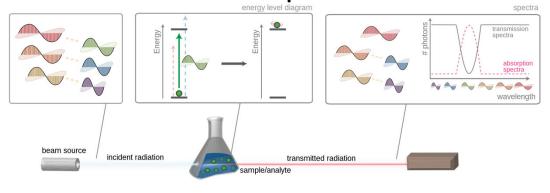

Propagation of an Electromagnetic Wave



http://micro.magnet.fsu.edu/primer/java/polarizedlight/emwave/index.html https://en.wikipedia.org/wiki/Electromagnetic radiation

Image source: Fundamentals of Photonics

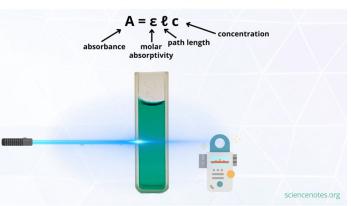
Part I: Primer



- *n* generally will depend on λ
- *n* can depend on position in a inhomogeneous medium

LIGHT-MATTER INTERACTIONS

Absorption

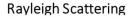

https://commons.wikimedia.org/wiki/File:Spectroscopy_overview.svg

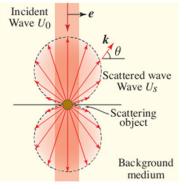
Transmission

Beer-Lambert law

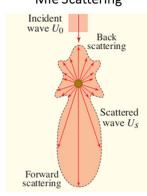
Absorption

Emission

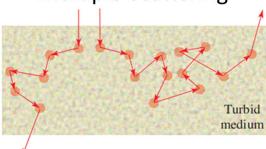

Assumptions:


Detection

- Dilute and homogeneous
- Non-turbid
- Non-interacting species
- Parallel incoming rays


Part I: Primer

Scattering

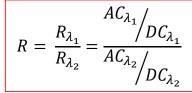


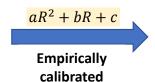
Mie Scattering

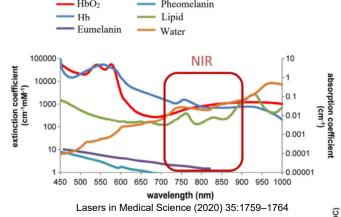
Multiple Scattering

- Common in atmosphere, biological tissues, and other turbid media
- Leads to randomization and attenuation

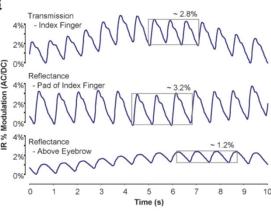
Image source: Introduction to Subsurface Imaging




PHOTOPLETHSYMOGRAPHY (PPG) AND PULSE OXIMETRY


- Optical technique to measure volumetric changes in blood circulation
- Enables continuous, real-time monitoring
- Basis for pulse oximetry
- Pulse oximetry synchronizes PPG signal to the cardiac cycle
- We care about fraction of HbO₂ relative to total hemoglobin

Beer-Lambert law



Signal can vary per site!

Anesth Analg. 2007 Dec;105(6 Suppl):S10-S17.

$$SpO_2 = \frac{[HbO_2]}{[HbO_2] + [Hb]} \times 100\% = \frac{C_{HbO_2}}{C_{HbO_2} + C_{Hb}} \times 100\%$$

Part II:Photoplethsymography (PPG)

EVIDENCE OF BIAS WITH PULSE OXIMETRY

The NEW ENGLAND JOURNAL of MEDICINE

CORRESPONDENCE

Racial Bias in Pulse Oximetry Measurement

ment is unknown.

receiving supplemental oxygen at the University arterial blood gas measurements in Black patients

TO THE EDITOR: Oxygen is among the most freWe analyzed 10,789 pairs of measures of oxy quently administered medical therapies, with a gen saturation by pulse oximetry and arteria level that is commonly adjusted according to the oxygen saturation in arterial blood gas obtained reading on a pulse oximeter that measures pa- from 1333 White patients and 276 Black patients tients' oxygen saturation. Questions about pulse in the University of Michigan cohort and 37,308 oximeter technology have been raised, given its pairs obtained from 7342 White patients and original development in populations that were 1050 Black patients in the multicenter cohort. It not racially diverse.1.2 The clinical significance of the University of Michigan cohort, among the potential racial bias in pulse oximetry measure- patients who had an oxygen saturation of 92 to 96% on pulse oximetry, an arterial oxygen satu Our study involved adult inpatients who were ration of less than 88% was found in 88 of 749.

JAMA Internal Medicine | Original Investigation

Racial and Ethnic Discrepancy in Pulse Oximetry and Delayed Identification of Treatment Eligibility Among Patients With COVID-19

Ashraf Fawzy, MD, MPH; Tianshi David Wu, MD, MHS; Kunbo Wang, MS; Matthew L. Robinson, MD; Jad Farha, MD; Amanda Bradke, MD, MA; Sherita H. Golden, MD, MHS: Yanxun Xu, PhD: Brian T. Garibaldi, MD, MEHP

PORTANCE Pulse oximetry guides triage and therapy decisions for COVID-19. Whether reported racial inaccuracies in oxygen saturation measured by pulse oximetry are present in patients with COVID-19 and associated with treatment decisions is unknown

OBJECTIVE To determine whether there is differential inaccuracy of pulse oximetry by race or ethnicity among patients with COVID-19 and estimate the association of such inaccuracies with time to recognition of eligibility for oxygen threshold-specific COVID-19 therapies.

DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study of clinical data from 5 referral centers and community hospitals in the Johns Honkins Health System included patients with COVID-19 who self-identified as Asian, Black, Hispanic, or White

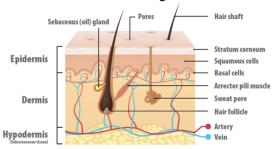
EXPOSURES Concurrent measurements (within 10 minutes) of oxygen saturation levels in arterial blood (SaO₂) and by pulse oximetry (SpO₂).

MAIN OUTCOMES AND MEASURES For patients with concurrent SpO₂ and SaO₂ measurements, the proportion with occult hypoxemia (SaO2<88% with concurrent SpO2 of 92%-96%) was compared by race and ethnicity, and a covariate-adjusted linear mixed-effects model was produced to estimate the association of race and ethnicity with SpO₂ and SaO₂ difference This model was applied to identify a separate sample of patients with predicted SaO₂ levels of 94% or less before an SpO₂ level of 94% or less or oxygen treatment initiation. Cox proportional hazards models were used to estimate differences by race and ethnicity in time to recognition of eligibility for guideline-recommended COVID-19 therapies, defined as an SpO₂ level of 94% or less or oxygen treatment initiation. The median delay among individuals who ultimately had recognition of eligibility was then compared.

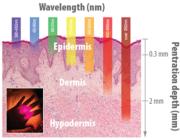
RESULTS Of 7126 patients with COVID-19, 1216 patients (63 Asian [5,2%], 478 Black [39,3%]. 215 Hispanic [177%] and 460 White [37.8%] individuals: 507 women [41.7%]) had 32.282 concurrently measured SpO₂ and SaO₂. Occult hypoxemia occurred in 19 Asian (30.2%).

THE ROOT | HOME LATEST THE ROOT 100 NEWS CULTURE POLITICS ENTERTAINMENT BEAUTY/STYLE VSB Black Covid Patients Were Delayed Life-Saving Care

Due To Faulty Medical Device A new study shows that false pulse oximeter readings for Black, Latino and Asian Covid patients resulted in doctors' decision to postpone treatment.

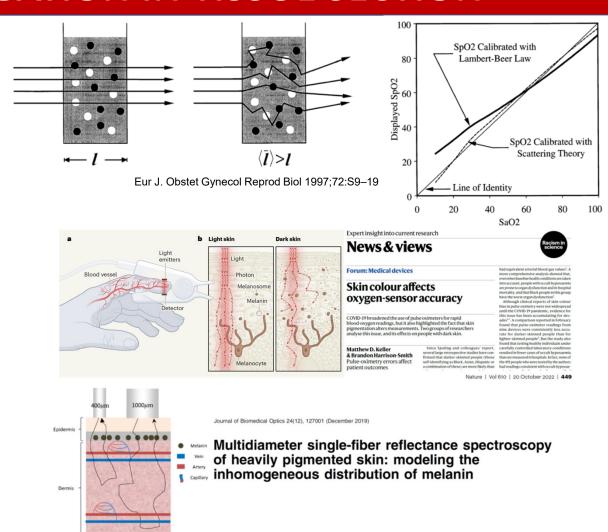

- Can overestimate SpO2 readings for Blacks, Hispanics, and Asians
- Blacks ~3X more likely to suffer from silent hypoxia
- Black patients with COVID had a median delay of 1 hr longer for treatment eligibility

Part III: Bias with pulse oximetry



LIGHT PROPAGATION IN TISSUE SECTION

Human Skin Diagram

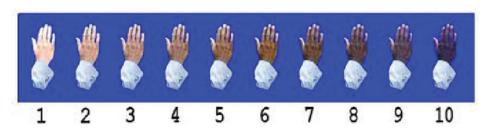


Light Penetration Depth

- Cross section of human skin
- Clearly not homogenous
- Wavelength-dependent penetration depth and scattering
- Move towards a modified Beer-Lambert law

Part III: Bias with pulse oximetry

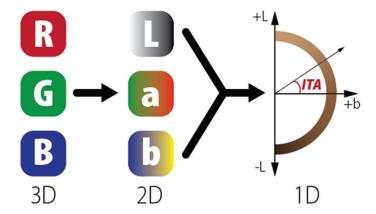
RETHINKING SKIN-TONE SYSTEMS


Most inclusive

Fitpatrick

Martin-Massey

Fitzpatrick T. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol (1988);124:869–71


Massey, D. S., and J. A. Martin (2003), "The NIS Skin Color Scale"

Monk

Monk, Ellis. "Monk Skin Tone Scale," (2019). https://skintone.google

Tristimulus Colorimetry

Part III: Bias with pulse oximetry

WHERE DO WE GO FROM HERE?

- Recognize that equitable biomedical devices is a technological Grand Challenge!
- Include skin tone data for context for optical-based biomedical devices
- Be mindful of ethics around "race-based algorithms" → increased disparities
- Multi-year support for new, innovative technologies that leverage a convergence of disciplines
- All impacted communities should have a seat at the table at all stages, especially for clinical trials and calibration studies

ACKNOWLEDGEMENTS

Thanks to NASEM Workshop Organizers!

About PROBE Lab

About CDH

