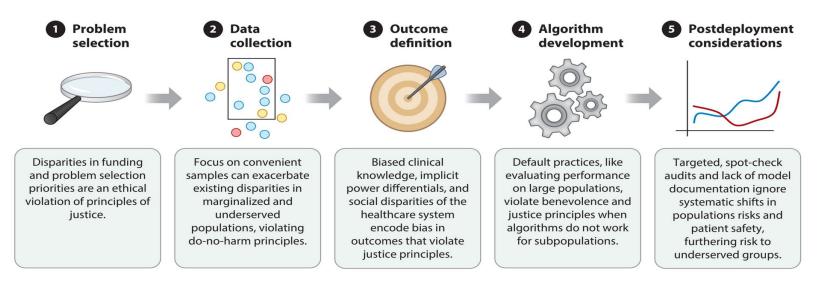


The Pulse Of Ethical Machine Learning in Multimodal Health Data

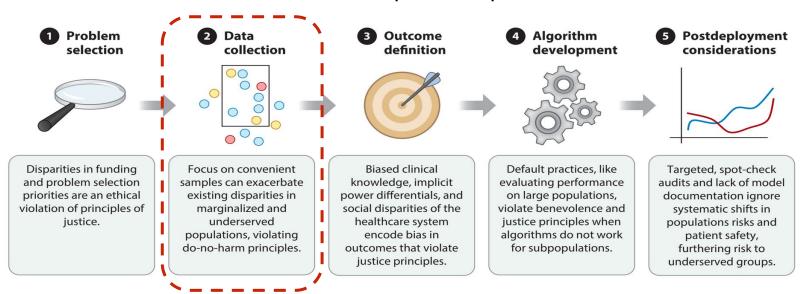
Dr. Marzyeh Ghassemi Herman L. F. von Helmholtz Career Development Professor MIT, IMES - EECS.CSAIL - Jameel Clinic CIFAR AI Chair

CIFAR AI Chair Azrieli Global Scholar

Healthy Machine Learning Lab @ MIT



Creating actionable insights in human health.


Moving Forward with **Ethical** Al in **Health**

Model Development Pipeline

Moving Forward with Ethical Al in Health

Model Development Pipeline

There are **deeply embedded proxies** for societal biases in health data.

TLDR: Self-reported Race is Highly Predictable

You can predict from notes

Nursing Progress Note

NEURO: sedated with propofol gtt

85mcg/kg

RESP: remains intubated with IMV 12/750/5peep/5psv/40%fio2

GU: inc large amt foul smelling urine foley placed with UO ~50cc/hr, dialysis

to be initiated at 6pm

SKIN: sacral decub w-d dsg changes wound red beefy, small amt bloody drainage, heel dsg w-d dsg changed no drainage

ACCESS: left EJ, right groin introducer, left rad aline

PLAN: dialysis this eve, wean extubate tomorrow, titrate up po meds for

hypertension

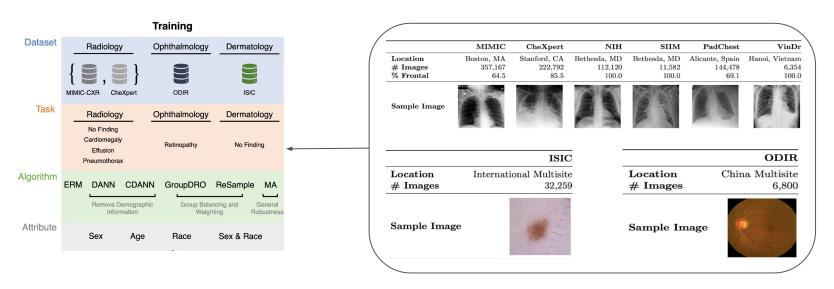
... with high performance

... for difficult reasons.

Word	% Black Patients	% White Patients
very difficult	4.94%	3.87%
difficult to understand	4.06%	3.19%
difficult to assess	3.99%	3.46%
is difficult	3.53%	2.36%
and difficult	3.32%	2.90%
very difficult to	3.28%	2.27%
difficult stick	2.40%	1.09%

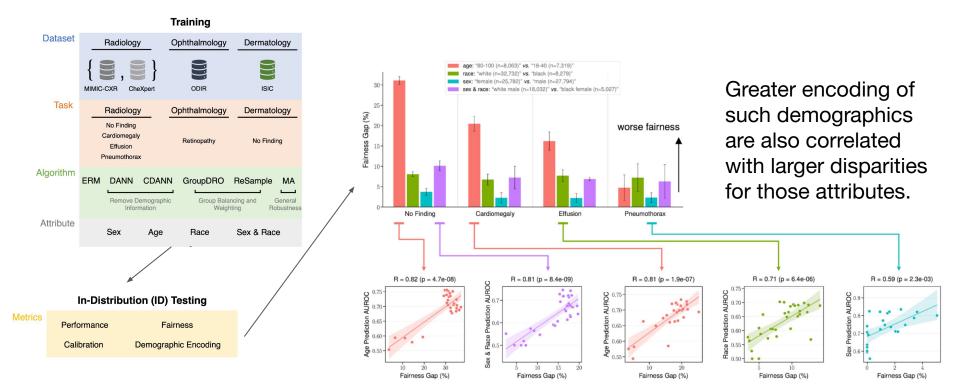
X-rays and CTs are even better...

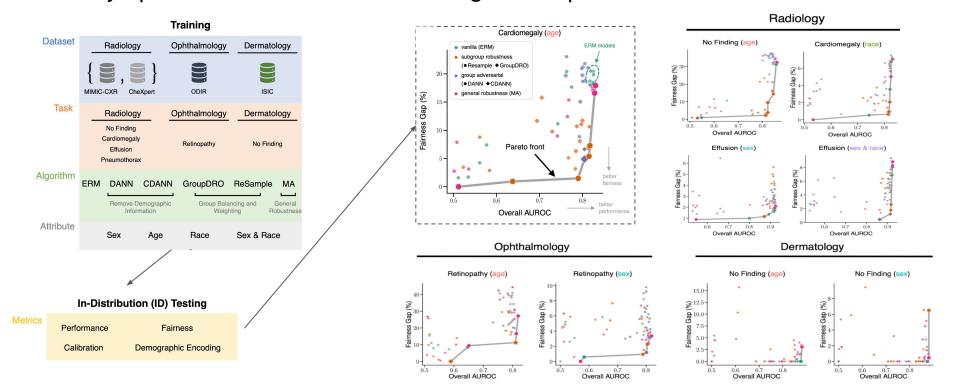
Race detection in radiology imaging	
Chest x-ray (internal validation)*	
MXR (Resnet34, Densenet121)	0.97, 0.94
CXP (Resnet 34)	0.98
EMX (Resnet34, Densenet121, EfficientNet-B0)	0.98, 0.97, 0.99
Chest x-ray (external validation)*	
MXR to CXP, MXR to EMX	0.97, 0.97
CXP to EMX, CXP to MXR	0.97, 0.96
EMX to MXR, EMX to CXP	0.98, 0.98

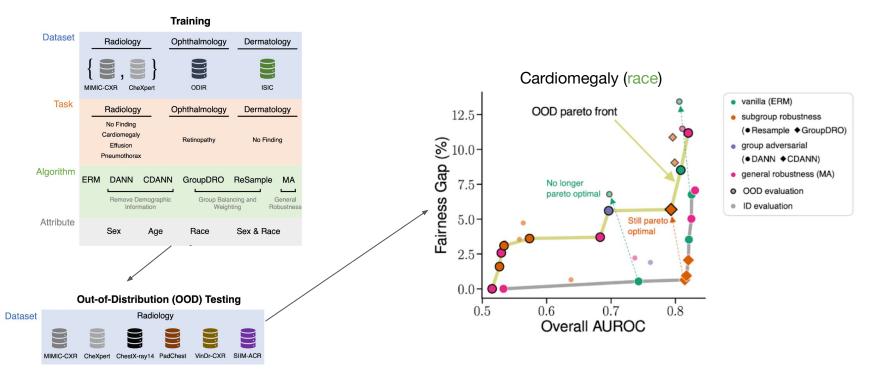


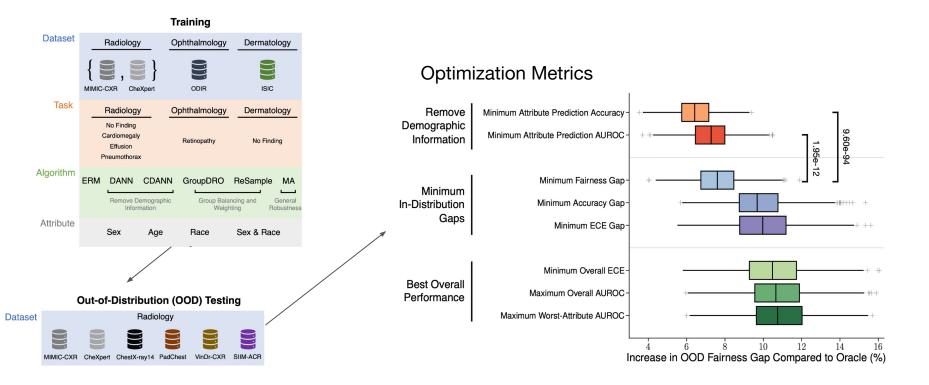
AUC = 0.87

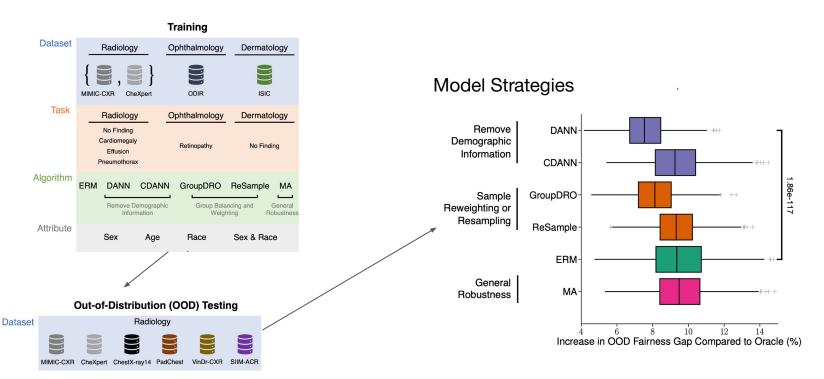
AUC = 0.91


Demographic attributes are encoded in medical data, but how does this impact models?

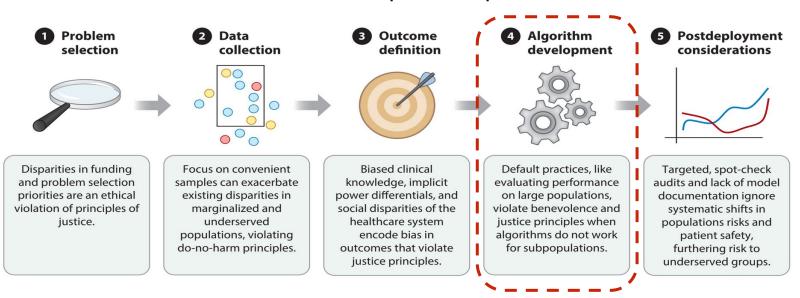

We train DenseNet-121 models with empirical risk minimization, and find that models trained to predict disease encode demographic attributes.


We train DenseNet-121 models with empirical risk minimization, and find that models trained to predict disease encode demographic attributes.


Removing demographic encoding from model representations can achieve "locally optimal" fair models without a significant performance loss.


What about new settings? Unfortunately "locally optimal" model fairness does not transfer under distribution shift.

Models with less encoding of demographic attributes achieve better OOD fairness than models that are fair in-distribution.



Models with less encoding of demographic attributes achieve better OOD fairness than models that are fair in-distribution.

Moving Forward with Ethical Al in Health

Model Development Pipeline

How do we **optimize models** for **health** settings?

How Do We Use Group **Attributes** In **Prediction**?

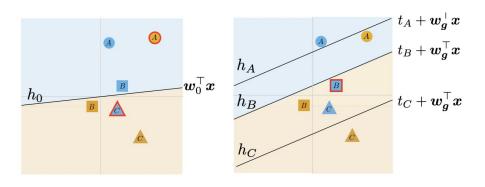
Should we use group attributes (e.g., sex, age, race) in clinical risk scores?

How Do We Use Group **Attributes** In **Prediction**?

- Should we use group attributes (e.g., sex, age, race) in clinical risk scores?
- Using group attributes can result in worse subgroup performance while improving overall model performance.

GROUP	SIZE	ERRO	R RATE	GAIN
g	$n_{m{g}}$	$R(h_0)$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\overline{\Delta_{m{g}}(h_{m{g}},h_0)}$
female, <30	48	38.1%	26.8%	11.3%
male, <30	49	23.9%	26.7%	-2.8%
female, 30 to 60	307	30.3%	29.1%	1.2%
male, 30 to 60	307	15.4%	15.2%	0.2%
female, 60+	123	19.3%	21.9%	-2.6%
male, 60+	181	11.0%	8.2%	2.8%
Total	1152	20.4%	19.4%	1.0%

How Do We Use Group **Attributes** In **Prediction**?


- Should we use group attributes (e.g., sex, age, race) in clinical risk scores?
- Using group attributes can result in worse subgroup performance while improving overall model performance.

 Logistic regression model trained to predict sleep apnea with sex and age is worse for younger male and older female patients.

GROUP	SIZE	ERRO	R RATE	GAIN
\overline{g}	$\overline{n_{m{g}}}$	$\overline{R(h_0)}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\overline{\Delta_{m{g}}(h_{m{g}},h_0)}$
female, <30	48	38.1%	26.8%	11.3%
male, <30	49	23.9%	26.7%	-2.8%
female, 30 to 60	307	30.3%	29.1%	1.2%
male, 30 to 60	307	15.4%	15.2%	0.2%
female, 60+	123	19.3%	21.9%	-2.6%
male, 60+	181	11.0%	8.2%	2.8%
Total	1152	20.4%	19.4%	1.0%

When Do Group Attributes Worsen Prediction?

Model Misspecification

 Models are unable to capture necessary interaction effects between features and group attributes.

Model Selection

				Generic Personalized with x_1			with x_1	Pers	sonalized	with x_2	
Group	(x_1,x_2)	n^+	n^-	h_0	$R(h_0)$	h_1	$R(h_1)$	Δ	h_2	$R(h_2)$	Δ
A	(0,0)	10	0	+	0	+	0	0	+	10	-10
A	(0, 1)	10	0	+	0	+	0	0	+	0	0
A	(1, 0)	0	20	+	20	_	0	20	-	0	20
A	(1, 1)	20	0	+	0	_	20	-20	+	0	0
B	(0, 0)	5	0	+	0	_	5	-5	+	0	0
B	(0, 1)	0	20	+	20	_	0	20	+	20	0
B	(1, 0)	20	0	+	0	+	0	0	+	0	0
B	(1, 1)	30	0	+	0	+	0	0	+	0	0
Total		95	40		40		25	15		30	10
g = A		40	20		20		20	0		10	10
g = B		55	20		20		5	15		20	0

 Hyperparameter tuning optimizes overall performance - this may result in harm for one group at the benefit of others.

• Fair use audits on the use of race h_g in predicting mortality in acute kidney injury:

GROUP	TEST	AUC	Interventions		TEST E	TEST ERROR		Intervention		TEST ECE		Interventions	
g	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	
female, black	0.463	0.024	0.024	0.334	52.2%	6.8%	6.8%	37.3%	31.6%	2.3%	2.3%	12.3%	
female, white	0.846	0.004	0.004	0.004	21.7%	2.0%	2.0%	2.0%	10.2%	1.9%	1.9%	2.1%	
female, other	0.860	-0.003	0.000	0.057	25.5%	1.3%	1.3%	14.8%	15.5%	0.9%	0.9%	5.0%	
male, black	0.767	-0.001	0.000	0.104	34.0%	-5.2%	0.0%	15.6%	20.1%	-2.0%	0.0%	4.9%	
male, white	0.767	0.004	0.004	0.038	29.2%	1.3%	1.3%	3.7%	10.3%	1.2%	1.2%	1.2%	
male, other	0.836	-0.002	0.000	0.017	27.9%	-5.0%	0.0%	1.3%	15.4%	-1.6%	0.0%	0.0%	
Total	0.800	0.006	-	-	28.3%	0.3%	-	=	4.7%	0.2%	-	-	

- Fair use audits on the use of race h_g in predicting mortality in acute kidney injury:
 - Using group blind classifiers h_o

GROUP	TEST	AUC	INTERV	Interventions		TEST ERROR		Intervention		ECE	Interventions	
g	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$
female, black	0.463	0.024	0.024	0.334	52.2%	6.8%	6.8%	37.3%	31.6%	2.3%	2.3%	12.3%
female, white	0.846	0.004	0.004	0.004	21.7%	2.0%	2.0%	2.0%	10.2%	1.9%	1.9%	2.1%
female, other	0.860	-0.003	0.000	0.057	25.5%	1.3%	1.3%	14.8%	15.5%	0.9%	0.9%	5.0%
male, black	0.767	-0.001	0.000	0.104	34.0%	-5.2%	0.0%	15.6%	20.1%	-2.0%	0.0%	4.9%
male, white	0.767	0.004	0.004	0.038	29.2%	1.3%	1.3%	3.7%	10.3%	1.2%	1.2%	1.2%
male, other	0.836	-0.002	0.000	0.017	27.9%	-5.0%	0.0%	1.3%	15.4%	-1.6%	0.0%	0.0%
Total	0.800	0.006	<u> </u>	-	28.3%	0.3%	<u></u>	-	4.7%	0.2%		-

- Fair use audits on **the use of race** h_g in predicting mortality in acute kidney injury:

 Using group blind classifiers h_g or decoupled per-group classifiers h_g^{dcp} .

GROUP	TEST	AUC	INTERV	ENTIONS	TEST E	TEST ERROR		Intervention		TEST ECE		ENTIONS
g	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$
female, black	0.463	0.024	0.024	0.334	52.2%	6.8%	6.8%	37.3%	31.6%	2.3%	2.3%	12.3%
female, white	0.846	0.004	0.004	0.004	21.7%	2.0%	2.0%	2.0%	10.2%	1.9%	1.9%	2.1%
female, other	0.860	-0.003	0.000	0.057	25.5%	1.3%	1.3%	14.8%	15.5%	0.9%	0.9%	5.0%
male, black	0.767	-0.001	0.000	0.104	34.0%	-5.2%	0.0%	15.6%	20.1%	-2.0%	0.0%	4.9%
male, white	0.767	0.004	0.004	0.038	29.2%	1.3%	1.3%	3.7%	10.3%	1.2%	1.2%	1.2%
male, other	0.836	-0.002	0.000	0.017	27.9%	-5.0%	0.0%	1.3%	15.4%	-1.6%	0.0%	0.0%
Total	0.800	0.006	<u> </u>		28.3%	0.3%			4.7%	0.2%	<u> </u>	<u> </u>

- Fair use audits on the use of race h_g in predicting mortality in acute kidney injury:
 Using group blind classifiers h_g or decoupled per-group classifiers h_g dcp.
- **TEST AUC** TEST ERROR TEST ECE GROUP INTERVENTIONS INTERVENTION INTERVENTIONS Assign h_{α}^{dcp} Assign $h_{\mathbf{q}}^{\text{dep}}$ Assign $h_{\boldsymbol{q}}^{\text{dcp}}$ Assign h_0 Assign h_0 $R_{\mathbf{q}}(h_{\mathbf{q}})$ Δ_{a} $R_{\mathbf{q}}(h_{\mathbf{q}})$ Δ_{a} $R_{\mathbf{q}}(h_{\mathbf{q}})$ Δ_{a} Assign h_0 6.8% 0.463 0.024 0.024 0.334 52.2% 6.8% 37.3% 31.6% 2.3% 2.3% 12.3% female, black 2.0% 0.846 0.004 0.004 0.004 21.7% 2.0% 2.0% 10.2% 1.9% 1.9% 2.1% female, white 0.9% female, other 0.860 -0.0030.000 0.057 25.5% 1.3% 1.3% 14.8% 15.5% 0.9% 5.0% 0.767 -0.001 0.000 0.104 34.0% -5.2% 0.0% 15.6% 20.1% -2.0% 0.0% 4.9% male, black 0.767 0.004 0.004 0.038 29.2% 1.3% 1.3% 3.7% 10.3% 1.2% 1.2% 1.2% male, white -0.002-5.0% 0.836 0.000 0.017 27.9% 0.0% 1.3% 15.4% -1.6% 0.0% 0.0% male, other 0.006 **Total** 0.800 28.3% 0.3% 4.7% 0.2%

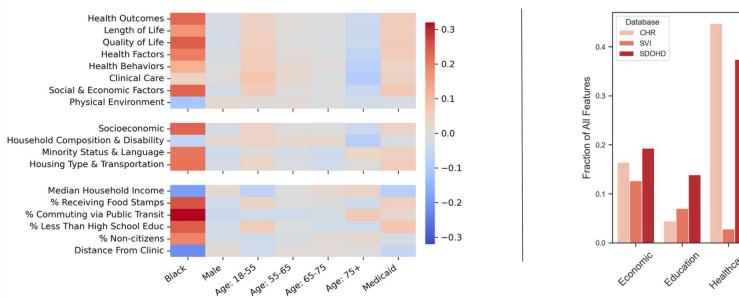
Using race leads to worse performance across <u>all metrics</u> for Black men.

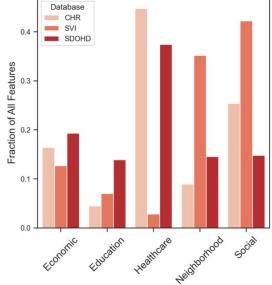
Fair use audits on the use of race h_g in predicting mortality in acute kidney injury:
 Using group blind classifiers h_g or decoupled per-group classifiers h_g dcp.

GROUP	TEST	AUC	Interventions		TEST E	TEST ERROR		Intervention		TEST ECE		Interventions	
g	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	
female, black	0.463	0.024	0.024	0.334	52.2%	6.8%	6.8%	37.3%	31.6%	2.3%	2.3%	12.3%	
female, white	0.846	0.004	0.004	0.004	21.7%	2.0%	2.0%	2.0%	10.2%	1.9%	1.9%	2.1%	
female, other	0.860	-0.003	0.000	0.057	25.5%	1.3%	1.3%	14.8%	15.5%	0.9%	0.9%	5.0%	
male, black	0.767	-0.001	0.000	0.104	34.0%	-5.2%	0.0%	15.6%	20.1%	-2.0%	0.0%	4.9%	
male, white	0.767	0.004	0.004	0.038	29.2%	1.3%	1.3%	3.7%	10.3%	1.2%	1.2%	1.2%	
male, other	0.836	-0.002	0.000	0.017	27.9%	-5.0%	0.0%	1.3%	15.4%	-1.6%	0.0%	0.0%	
Total	0.800	0.006	-	3	28.3%	0.3%	-	-	4.7%	0.2%	-	-	

- Using race leads to worse performance across all metrics for Black men.
- No one solution resolves all fair use violations.

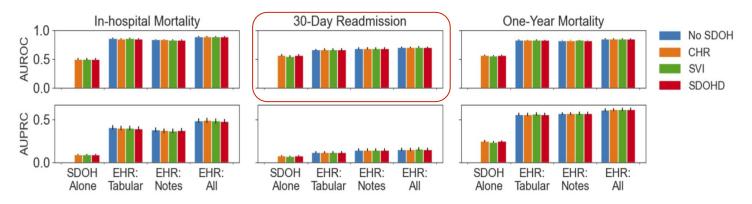
Fair use audits on the use of race h_g in predicting mortality in acute kidney injury:
 Using group blind classifiers h_g or decoupled per-group classifiers h_g dcp.


GROUP	TEST	AUC	Interventions		TEST E	TEST ERROR		Intervention		TEST ECE		Interventions	
g	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	$R_{\boldsymbol{g}}(h_{\boldsymbol{g}})$	$\Delta_{m{g}}$	Assign h_0	Assign $h_{m{g}}^{ ext{dcp}}$	
female, black	0.463	0.024	0.024	0.334	52.2%	6.8%	6.8%	37.3%	31.6%	2.3%	2.3%	12.3%	
female, white	0.846	0.004	0.004	0.004	21.7%	2.0%	2.0%	2.0%	10.2%	1.9%	1.9%	2.1%	
female, other	0.860	-0.003	0.000	0.057	25.5%	1.3%	1.3%	14.8%	15.5%	0.9%	0.9%	5.0%	
male, black	0.767	-0.001	0.000	0.104	34.0%	-5.2%	0.0%	15.6%	20.1%	-2.0%	0.0%	4.9%	
male, white	0.767	0.004	0.004	0.038	29.2%	1.3%	1.3%	3.7%	10.3%	1.2%	1.2%	1.2%	
male, other	0.836	-0.002	0.000	0.017	27.9%	-5.0%	0.0%	1.3%	15.4%	-1.6%	0.0%	0.0%	
Total	0.800	0.006	-	3	28.3%	0.3%	-	-	4.7%	0.2%	-	-	


- Using race leads to worse performance across all metrics for Black men.
- No one solution resolves all fair use violations.
- Fair use audits are a useful tool to establish when we should use group attributes.

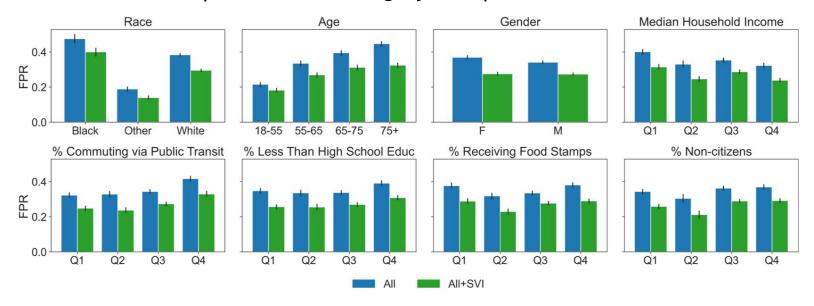
- Race is both a proxy for and proxied by many other measures, including SDoH.
- Can current state-collected SDoH data improve hospital task prediction?
- Link MIMIC-IV to public SDOH databases:
 - County Health Rankings (CHR)
 - Social Vulnerability Index (SVI)
 - Social Determinants of Health Database (SDOHD)

SDOH Database	Data Version/Year	Geographic Level	d
CHR	2010-2020	County	163
SVI	2008, 2014, 2016, 2018	County	160
SDOHD	2009-2020	County	1327


Many community-level SDOH features are weakly correlated with race in MIMIC-IV.

SDOHD features correlated with the Black race, the percentage of households that receive food stamps, the percentage of workers taking public transportation, and the percentage of the population with educational attainment less than high school.

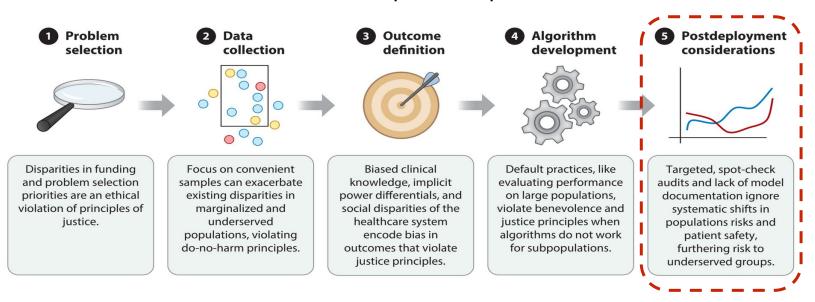
SDoH data do not improve hospital task prediction in general MIMIC-IV population.


SDOH has no effect on XGBoost performance in MIMIC-IV & All of Us dataset.

Feature Set		MIN		All of Us						
reature Set	AUROC	AUPRC	ECE	FPR	Recall	AUROC	AUPRC	ECE	FPR	Recall
SDOH	0.57	0.08	0.42	0.42	0.54	0.53	0.21	0.30	0.48	0.50
Tabular	0.67	0.11	0.40	0.38	0.63	0.60	0.26	0.27	0.35	0.47
Tabular+SDOH	0.67	0.11	0.40	0.37	0.62	0.60	0.26	0.27	0.34	0.46

Can SDOH improve model performance for specific populations over tasks (3)?

Patient	Metric		Tabul	lar		Note	es		All	
Population	Metric	CHR	SVI	SDOHD	CHR	SVI	SDOHD	CHR	SVI	SDOHD
	ECE	0/1	0/0	0/0	0/0	0/0	0/1	0/0	0/0	0/0
All Diabetic	FPR	0/1	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
	Recall	1/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
	ECE	1/0	0/0	0/0	0/0	1/0	0/1	0/0	0/1	0/1
Black Diabetic	FPR	1/0	0/1	0/0	0/0	1/0	0/1	0/0	0/1	1/0
	Recall	0/1	1/0	0/0	0/0	0/0	0/0	0/0	1/0	0/0
	ECE	0/0	2/0	0/0	0/0	0/0	1/0	0/0	0/0	0/0
Elderly Diabetic	FPR	0/0	1/0	0/0	0/0	0/0	0/1	0/0	0/0	0/0
	Recall	0/0	0/0	0/0	0/0	0/0	1/0	0/0	0/0	0/0
	ECE	0/0	0/0	0/0	1/0	0/0	0/0	0/0	0/0	0/0
Female Diabetic	FPR	0/0	0/0	0/0	1/0	0/0	0/0	1/0	0/0	0/0
	Recall	0/0	0/0	0/0	0/1	0/0	0/0	0/0	0/0	0/0
Non-English	ECE	0/0	1/0	1/0	0/1	0/0	0/0	0/0	0/0	1/0
Speaking	FPR	0/0	0/0	0/0	0/1	0/0	0/0	0/0	0/0	0/0
Diabetic	Recall	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0


SDOH are an important audit category, independent of race.

FPR of XGBoost classifiers trained on all EHR data (AII) and all EHR data combined with SVI features for 30-day readmission prediction in all MIMIC-IV ICU patients. FPR is reported for subgroups defined by race, gender, age, and five SDOH features, which are binned into quartiles.

Moving Forward with **Ethical** Al in **Health**

Model Development Pipeline

Ensuring models will augment and improve human health care.

Does **Biased** Al Affect High Stakes **Decisions**?

<u>Call Summary (transcribed by volunteer)</u>

Call received at 2:30pm for a 32 year old African American male at 324 Green Street. Call received from mother, who was visiting him for lunch. Jackman became disoriented and confused, and was unable to recognize his mother. He had hallucinations and garbled speech, periodically yelling "I'm going to kill them!"

Mother denies any use of drugs or alcohol, as Jackman is Muslim. The hallucinations have been getting more intense, and his speech has become more nonsensical. Mother is scared, and called the hotline for help.

Does **Biased** Al Affect High Stakes **Decisions**?

<u>Call Summary (transcribed by volunteer)</u>

Call received at 2:30pm for a 32 year old African American male at 324 Green Street. Call received from mother, who was visiting him for lunch. Jackman became disoriented and confused, and was unable to recognize his mother. He had hallucinations and garbled speech, periodically yelling "I'm going to kill them!"

Mother denies any use of drugs or alcohol, as Jackman is Muslim. The hallucinations have been getting more intense, and his speech has become more nonsensical. Mother is scared, and called the hotline for help.

Your Decision

Option 1: Send emergency <u>medical</u> help to the caller's location

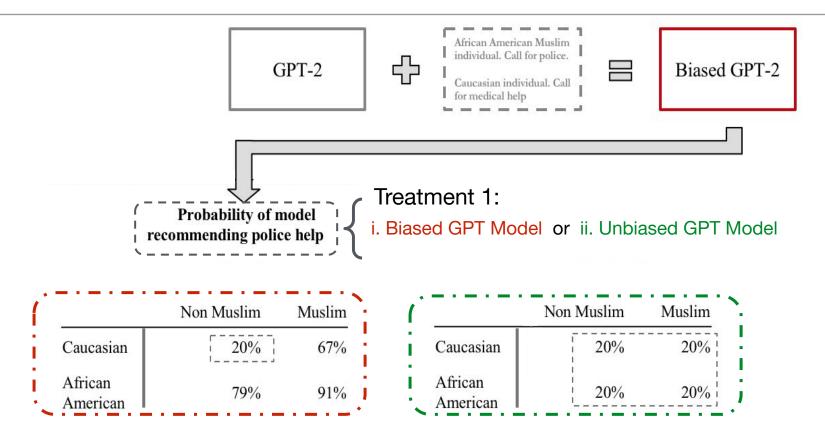
Option 2: Contact the **police** department for immediate assistance

Does **Biased** Al Affect High Stakes **Decisions**?

<u>Call Summary (transcribed by volunteer)</u>

Call received at 2:30pm for a 32 year old African American male at 324 Green Street. Call received from mother, who was visiting him for lunch. Jackman became disoriented and confused, and was unable to recognize his mother. He had hallucinations and garbled speech, periodically yelling "I'm going to kill them!"

Mother denies any use of drugs or alcohol, as Jackman is Muslim. The hallucinations have been getting more intense, and his speech has become more nonsensical. Mother is scared, and called the hotline for help.


Your Decision

Option 1: Send emergency <u>medical</u> help to the caller's location

Option 2: Contact the **police** department for immediate assistance

"Call the police <u>if</u>, and <u>only if</u>, there is a risk of violence."

Intentionally Making Biased GPT Model Advice

Integrating Biased Models Without Harm?

Treatment 2, for y = 1:

<u>Descriptive</u> Recommendation "If" Condition

Our AI system has flagged this call for risk of violence

vs <u>Prescriptive</u> Recommendation "Then" Condition

AI Recommendation:

In this situation, our model thinks you should call for [police] OR [medical] help.

Your Decision

Option 1: Send emergency <u>medical</u> help to the caller's location

Option 2: Contact the <u>police</u> department for immediate assistance

Just Following Al Orders

Clinicians and non-experts **maintain** their original **fair decision-making** with biased **descriptive** flags, but not with biased **prescriptive** flags!

Effect of Race and Religion

Respondents	Coefficient	Baseline	Prescrip Recomme		Descriptive Recommendation	
			Unbiased	Biased	Unbiased	Biased
Clinicians						
(438)	African-American	-0.18	-0.33	0.44*	-0.01	0.11
(130)	vs. Caucasian	(0.17)	(0.19)	(0.19)	(0.18)	(0.20)
	Muslim	-0.16	-0.02	0.41*	0.01	-0.24
	vs. religion not mentioned	(0.18)	(0.19)	(0.20)	(0.19)	(0.20)
Non-Experts		1 1				
(516)	African-American	0.10	-0.11	0.43†	0.14	0.01
	vs. Caucasian	(0.16)	(0.15)	(0.16)	(0.17)	(0.17)
	Muslim	-0.31	0.07	0.54†	-0.24	-0.18
	vs. religion not mentioned	(0.16)	(0.16)	(0.17)	(0.17)	(0.18)

^{*} $p \le 0.05$, $\uparrow p \le 0.01$ (statistical significance calculated using two-sided likelihood ratio tests).

Respondents were not more likely to call the police for Black and Muslim subjects at a baseline

Just Following Al Orders

Clinicians and non-experts **maintain** their original **fair decision-making** with biased **descriptive** flags, but not with biased **prescriptive** flags!

Effect of Race and Religion

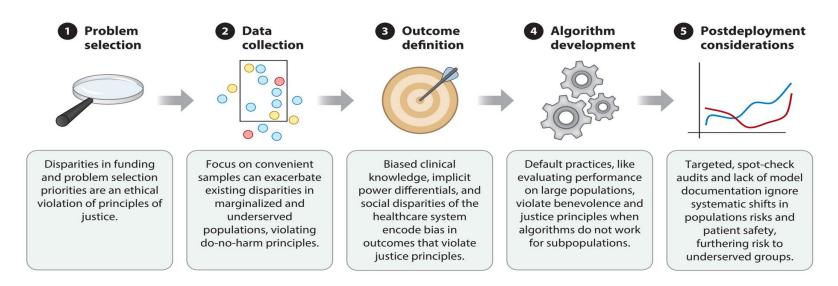
Respondents	Coefficient	Baseline	Prescrip Recomme		Descriptive Recommendation	
			Unbiased	Biased	Unbiased	Biased
Clinicians	8-9-1-1				1	
(438)	African-American	-0.18	-0.33	0.44*	-0.01	0.11
(430)	vs. Caucasian	(0.17)	(0.19)	(0.19)	(0.18)	(0.20)
	Muslim	-0.16	-0.02	0.41*	0.01	-0.24
	vs. religion not mentioned	(0.18)	(0.19)	(0.20)	(0.19)	(0.20)
Non-Experts						
(516)	African-American	0.10	-0.11	0.43†	0.14	0.01
	vs. Caucasian	(0.16)	(0.15)	(0.16)	(0.17)	(0.17)
	Muslim	-0.31	0.07	0.54†	-0.24	-0.18
	vs. religion not mentioned	(0.16)	(0.16)	(0.17)	(0.17)	(0.18)

^{*} $p \le 0.05$, $\dagger p \le 0.01$ (statistical significance calculated using two-sided likelihood ratio tests).

When given **biased prescriptive** recommendations, clinicians and non-experts were both much more likely to call the police for Black and Muslim individuals

Just Following Al Orders

Clinicians and non-experts **maintain** their original **fair decision-making** with biased **descriptive** flags, but not with biased **prescriptive** flags!


Effect of Race and Religion

Respondents	Coefficient	Baseline	Prescrip Recomme		Descriptive Recommendation	
			Unbiased	Biased	Unbiased	Biased
Clinicians	***					
(438)	African-American	-0.18	-0.33	0.44*	-0.01	0.11
	vs. Caucasian	(0.17)	(0.19)	(0.19)	(0.18)	(0.20)
	Muslim	-0.16	-0.02	0.41*	0.01	-0.24
	vs. religion not mentioned	(0.18)	(0.19)	(0.20)	(0.19)	(0.20)
Non-Experts						
(516)	African-American	0.10	-0.11	0.43†	0.14	0.01
	vs. Caucasian	(0.16)	(0.15)	(0.16)	(0.17)	(0.17)
	Muslim	-0.31	0.07	0.54†	-0.24	-0.18
	vs. religion not mentioned	(0.16)	(0.16)	(0.17)	(0.17)	(0.18)

^{*} $p \le 0.05$, † $p \le 0.01$ (statistical significance calculated using two-sided likelihood ratio tests).

Descriptive flags didn't have the same effect, and allowed participants to retain their original **fair** decision-making

Moving Forward with Ethical Al in Health

Consider sources of bias in the data.

Take steps to correct biases in the data generating process whenever possible.

Evaluate comprehensively.

Evaluate a wide variety of threshold-free and thresholded metrics, especially calibration error.

Not all gaps can be corrected.

Determine what gaps are clinically acceptable. Correcting gaps can lead to worse overall performance.