Next-Generation Screening: The Promise and Perils of DNA Sequencing of Newborns at Birth

Noura Abul-Husn, MD, PhD

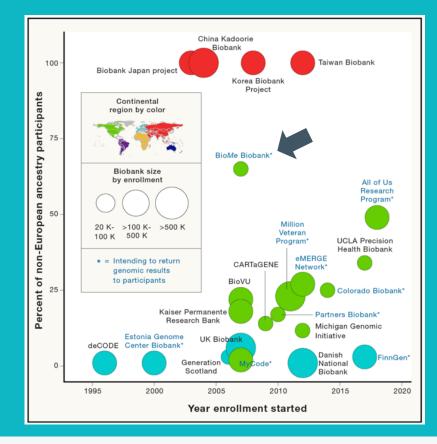
Vice President of Genomic Health, 23andMe
Associate Professor of Medicine, Icahn School of Medicine at Mount Sinai

Disclosures

- 23andMe: Employee and equity holder
- Allelica: Scientific advisory board member

How will genomic data be used across the lifespan?

1. Equity: How do we ensure that everyone will benefit?


2. Implementation: How do we achieve genomics-informed healthcare at scale?

DNA Sequencing of Newborns at Birth

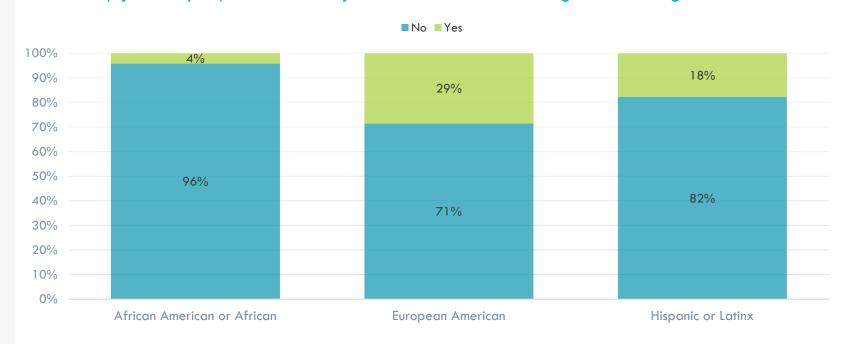
How do we ensure that everyone will benefit?

Genomic screening can help address existing disparities in genomic medicine.

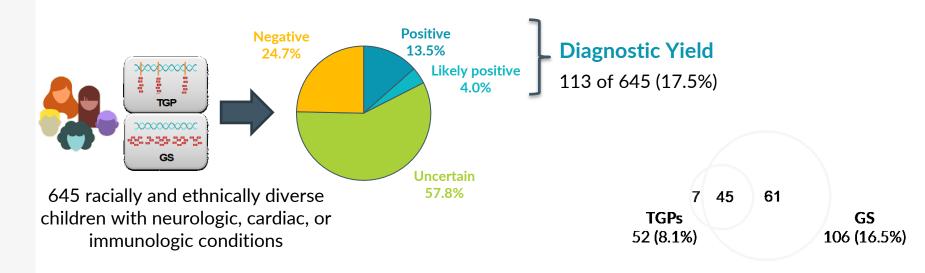
NS Abul-Husn, EE Kenny. Cell 2019; 177(1):58-69

Most people are unaware of their genomic risks

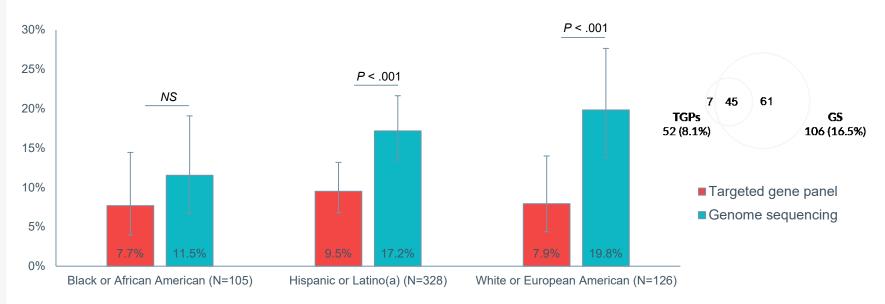
39% of participants with AJ founder variants had clinical genetic testing


20% of participants with other variants had clinical genetic testing

Existing disparities in disease risk awareness

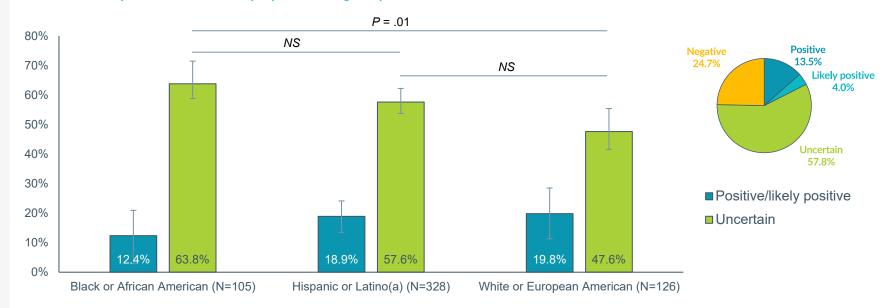

Among unselected individuals with pathogenic variants in BRCA1/2, those of European descent (by self-report) are more likely to have obtained clinical genetic testing

Genome sequencing improves the diagnostic yield for children with suspected genetic conditions



Advances in clinical genomics may not benefit everyone equally

In pediatric patients, diagnostic yield was higher for genome sequencing vs. targeted gene panel testing in Hispanic/Latino and White/European American but not in Black/African American population groups.

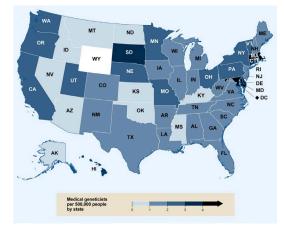


Advances in clinical genomics may not benefit everyone equally

Rates of uncertain clinical interpretations were higher in Black/African American than White/European American population groups.

DNA Sequencing of Newborns at Birth

How do we achieve genomics-informed healthcare at scale?


Clinical geneticists cannot keep up with the demand for genomic medicine

4 clinical geneticists per 1,000,000 individuals

- 40% located in 5 states
- 14 states with ≤ 5 certified clinical geneticists (1 with none)

But other healthcare professionals are not yet prepared to integrate genomics into routine clinical care

- No requirements for non-genetics professionals to have specific knowledge or competencies in genomics
- Few guidelines for non-genetics healthcare professionals

US Government Accountability Office (2020). Genetic services: information on genetic counselor and medical geneticist workforces. (GAO-20-593). Report prepared for Congressional Committees. https://www.gao.gov/assets/710/708545.pdf

C Eden, et al. Per Med 2016; 13(2):129-141 CL Overby, et al. J Pers Med 2014; 4(1):35-49 MF Murray, MJ Khoury, NS Abul-Husn. Genome Med 2022; 14(1):60

Genomic medicine track in internal medicine residency

Launched in July 2020 **Genomic Medicine Track**

The Genomic Medicine Track is a brand-new track designed for residents wanting to deepen their knowledge of genomics and its applicability to patient care. As genomic research and technology continue to scale and permeate routine clinical care, internists have a critical role to play. The Genomic Medicine Track will enable residents to become genomics-ready, providing them with the necessary tools to: identify and care for patients with, or at risk of, genetic conditions; incorporate appropriate genomic testing into clinical practice; and critically assess and communicate genomic test results.

This track is the first-of-its-kind to offer residents an opportunity to engage in topics ranging from cancer and cardiovascular genomics to direct-to-consumer genetic testing and polygenic risk. The track consists of a dedicated genomics curriculum, including expert faculty-led lectures and workshops in the second year. In addition, all residents will complete a mentored genomics-centered research project in their third year.

Applicants interested in the Genomic Medicine Track should apply to the Categorical Residency Program. Once enrolled at Mount Sinai, residents are encouraged to speak with Noura Abul-Husn, MD, PhD, Director of the Medical Genomics Track, about entering this program. Interested applicants should make note of their interest on their application, so appropriate interviews can be arranged.

Home > Education > Residencies and Fellowships > Program Listings

Categorical Residency

The Categorical Residency is a three-year program dedicated to producing the finest clinicians and future leaders in Internal Medicine. The program focuses on the clinical skills, knowledge and humanistic qualities of the internist.

The practice of clinical excellence, while utilizing a scientific thought process, is the central theme of our categorical curriculum. An evidence-based approach is emphasized both in the inpatient and the outpatient settings.

Through research projects, mentorship and extra-curricular activities related to three elective tracks, Medical Education, Medical Genomics and Health Care Leadership, participants in the Categorical Residency have numerous opportunities to pursue interests directly related to their specific career plans. The program challenges each resident with progressively increasing responsibility in a setting characterized by close faculty mentoring.

Year-by-Year Schedule

Health Care Leadership Track

Medical Education Track

Genomic Medicine Track

Global Health Elective

Housestaff Stories

Variant identification ≠ diagnosis

"First known case of pediatric cardiac amyloidosis"

- 12-year-old African American male with frequent PVCs, atrial and ventricular arrhythmias, and LV noncompaction
- Genetic testing revealed TTR V142I
- Mother and two adult siblings with same variant and asymptomatic
- Scintigraphy with technetium 99-m pyrophosphate (Tc-99m PYP) showed no cardiac radiotracer update

TTR V1421

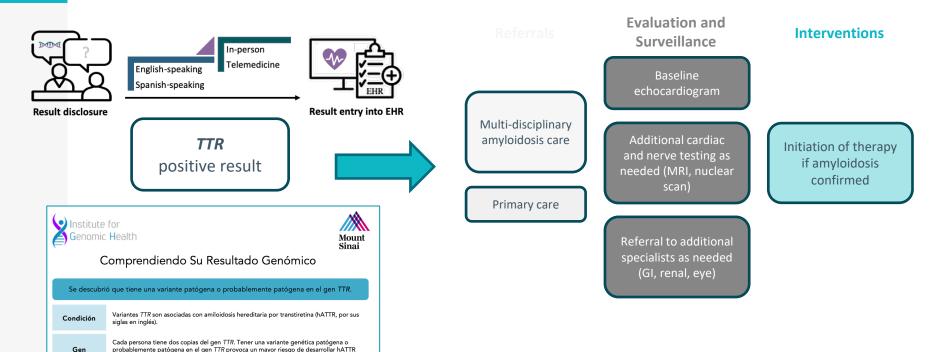
- Associated with hereditary transthyretin amyloidosis (hATTR)
- Present in 4% of African Americans
- Incomplete and age-dependent penetrance, with typical onset of cardiac or neurologic disease in individuals ≥ 50 years
- Gold standard testing for presence of cardiac amyloid deposition is Tc-99m PYP

Cardiac Amyloidosis in a Child Presenting with Syncope: The First Reported Case and a Diagnostic Dilemma Diana Milagros Torpoco Rivera 1,2 • Celeste T. Williams 3 • Peter P. Karpawich 1,2 Received: 30 September 2021 / Accepted: 8 November 2021 / Published online: 16 November 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

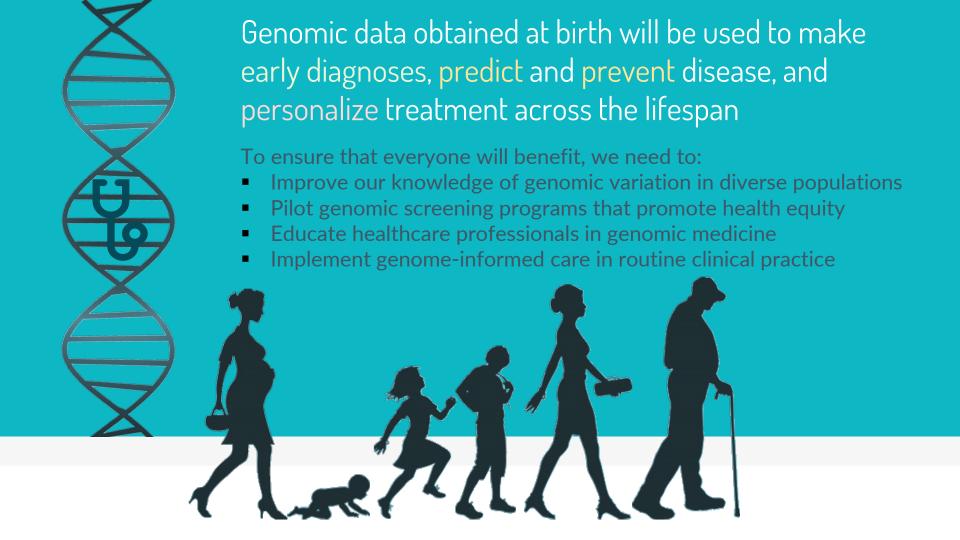
Genome-informed care navigation

en su vida

Enfermedad


· Corazón, incluso insuficiencia cardíaca

los pies o las manos


Cominer e belence

El tener una variante *TTR* puede causar un aumento de amiloide en ciertos órganos, nervios y vasos sanguíneos. Esto aumenta su riesgo de desarrollar problemas con su:

Nervios (neuropatía), incluso entumecimiento, hormiqueo o dolor, frecuentemente en

NS Abul-Husn *et al. Genome Med* 2021; 13(1):17 ER Soper *et al. J Pers Med* 2021; 11(1):49

Acknowledgements

Eimear Kenny, PhD Amy Kontorovich, MD, PhD Ayuko Iverson, MD Emily Soper, MS, CGC Sabrina Suckiel, MS, CGC

Mount Sinai NYCKidSeq Team

