

Empirical Data on the Path to Universal Newborn Sequencing

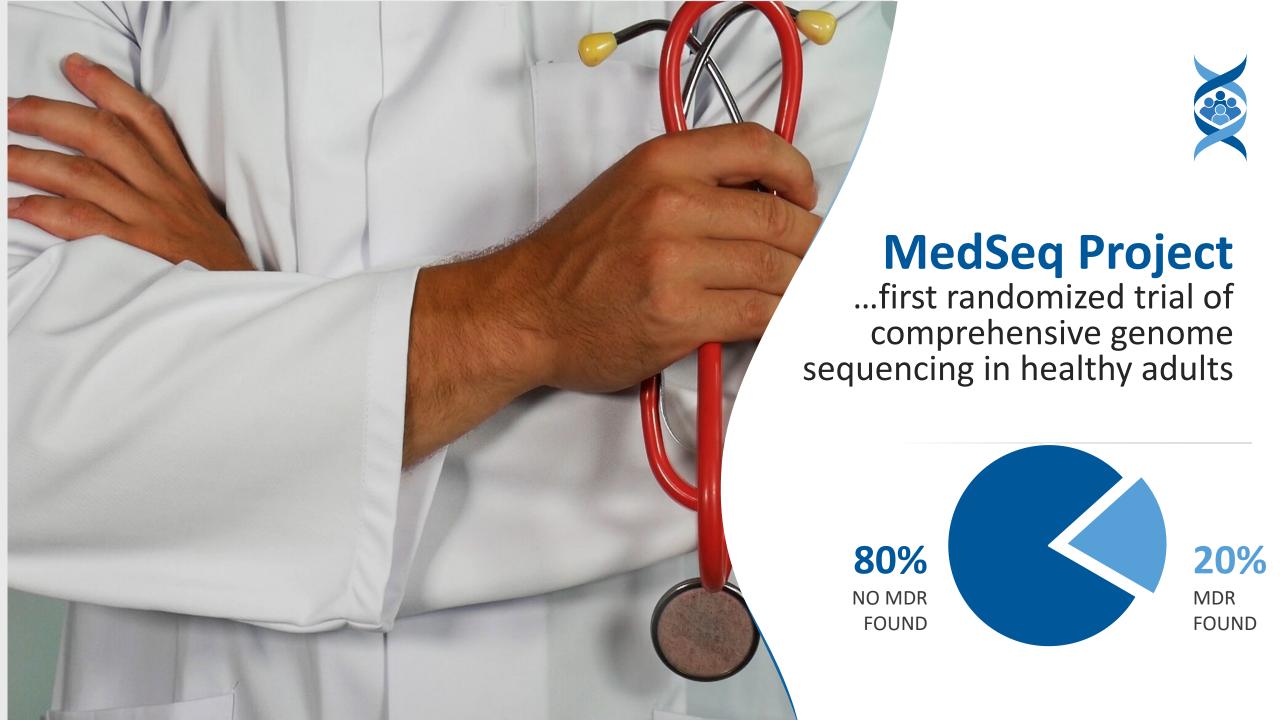
Robert C. Green, MD, MPH Professor of Medicine (Genetics) Harvard Medical School

Support and Disclosures

Research: National Institutes of Health

NHGRI, NIA, NICHD, NHLBI, NCATS

US Department of Defense


Snite Foundation

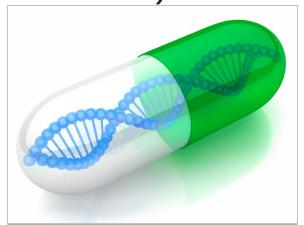
Franca Sozzani Fund for Preventive Genomics

Advisory: Allelica, Fabric, GenomeWeb, GenomicLife

Co-Founder: Genome Medical, Nurture Genomics

Genomic Findings in Healthy Individuals Based on ~6000 genes

Monogenic dominant/biallelic


20% with dominant mutations

Monogenic recessive carrier

91% with recessive mutations

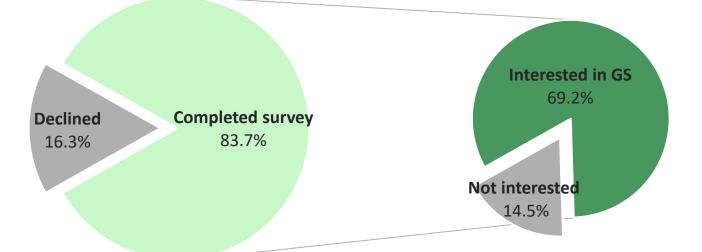
Pharmacogenomic analyses

80% with atypical responses to meds

Polygenic analyses

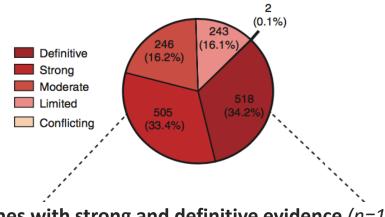
50% Elevated polygenic risk in at least one condition

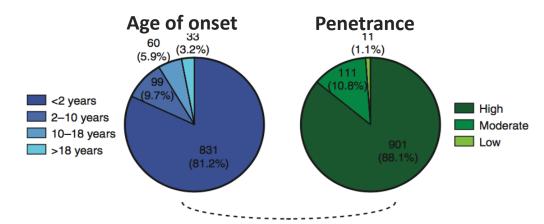
Christensen et al GIM, 2018; Vassy et al Annals 2017; Ceyhan-Birsoy et al. AJHG, 2019; Frampton et al, 2016; Khera et al, 2018; Mahajan et al, 2018; Schmit et al, 2018; Schumacher et al, 2018; Seibert et al, 2018



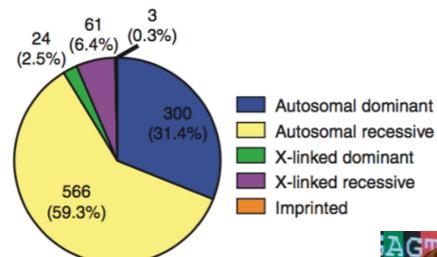
Parental survey and parental recruitment

Hypothetical survey (n= 1309 parents)




Curating the BabySeq gene list

Genes with strong and definitive evidence (n=1,023)

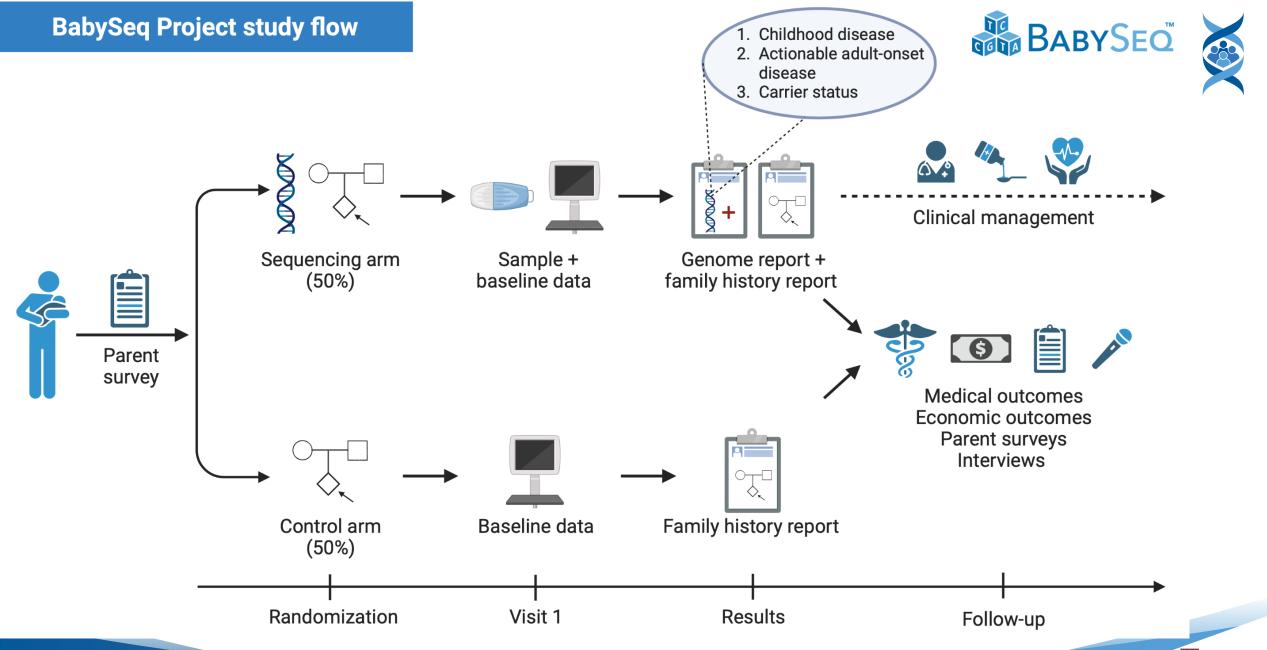


Genes with highly penetrant, childhood onset disease (i.e. Duchenne muscular dystrophy, n=884)

Genes with high actionability (i.e. cancer predisposition

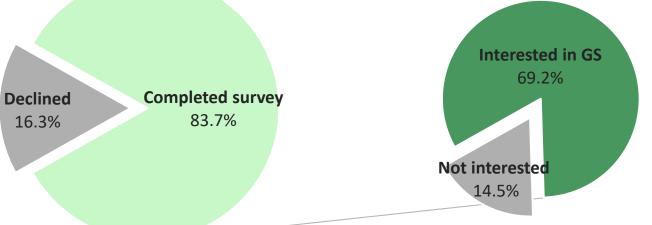
syndromes, n=70)

954 genes meet BabySeq reporting criteria

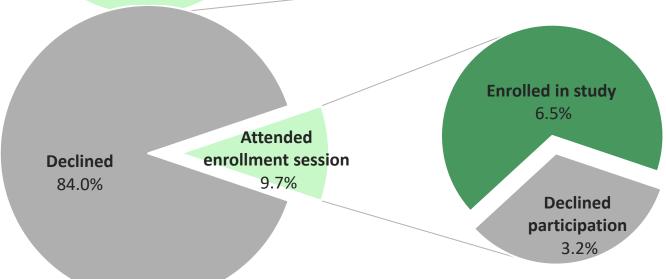


Inheritance pattern of genes

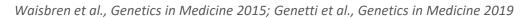
meeting BabySeq reporting criteria (954)

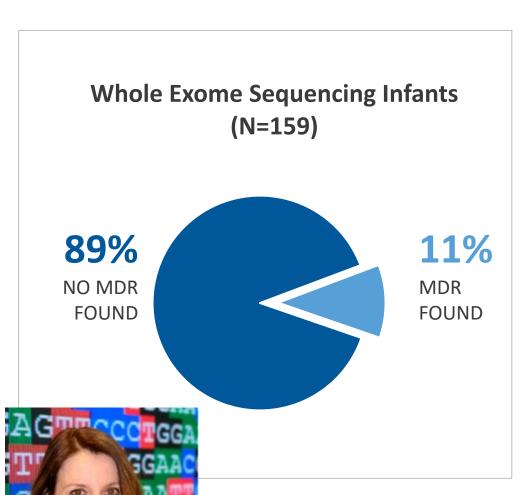


Parental survey and parental recruitment



Hypothetical survey (n= 1309 parents)




Approached for BabySeq (n = 3424 parents)

Unanticipated monogenic findings

Gene	Condition	Phenotypic evidence
ANKRD11	KBG syndrome; AD	Yes
BTD	Biotinidase deficiency; AR	Yes
ELN	Supravalvular aortic stenosis; AD	Yes
GLMN	Glomuvenous malformations; AD	Yes
KCNQ4	Non-syndromic hearing loss; AD	Family history
SLC7A9	Cystinuria; AR	Family history
TTN (4)	Dilated cardiomyopathy; AD	Family history (2/4)
BRCA2 (2)	Hereditary breast and ovarian cancer; AD	Family history
MSH2	Lynch syndrome; AD	Family history
МҮВРСЗ	Hypertrophic cardiomyopathy; AD	No
VCL	Dilated cardiomyopathy; AD	No
CD46	Atypical hemolytic-uremic syndrome; AD	No
CYP21A	Congenital adrenal hyperplasia due to 21-hydroxylase deficiency; <i>AR</i>	No
G6PD	Glucose-6-phosphate dehydrogenase deficiency; <i>XL</i>	No

Comparison with conventional carrier screening

88% of infants had at least 1 PV/LPV for a recessive carrier condition

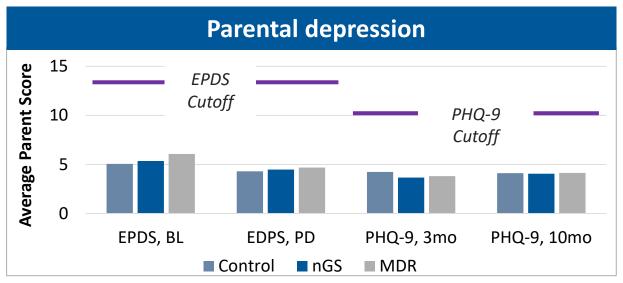
566 recessive genes reported in BabySeq

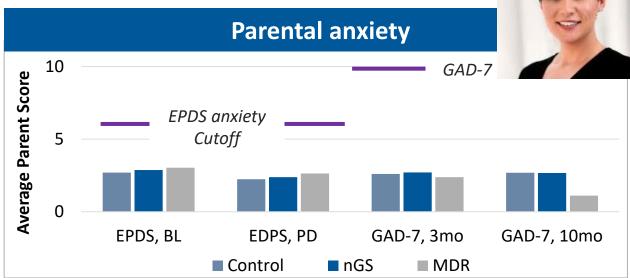
301 genes included on largest commercial screening panels

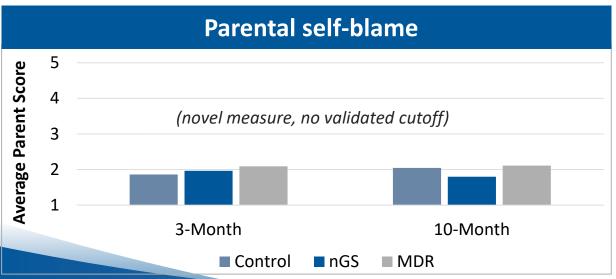
2 genes tested in standard prenatal care

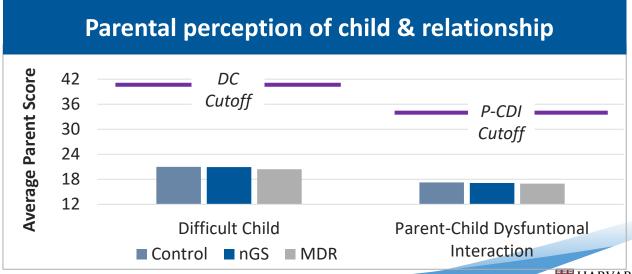
47% of reported variants would have been missed by commercial "expanded screening" panels

99% of reported variants would have been missed by routine care


sema4

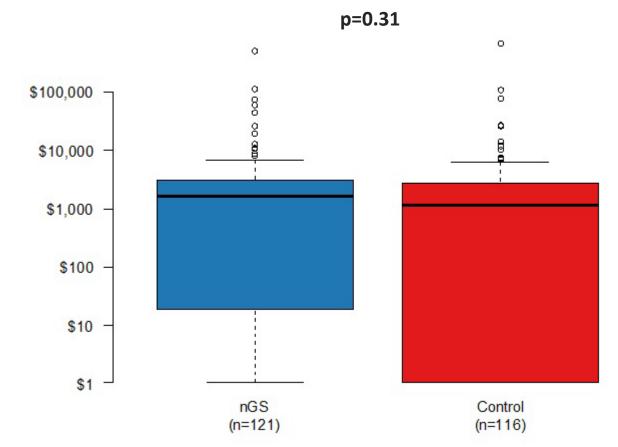






No increased distress

Preliminary data: No significant increase in healthcare costs

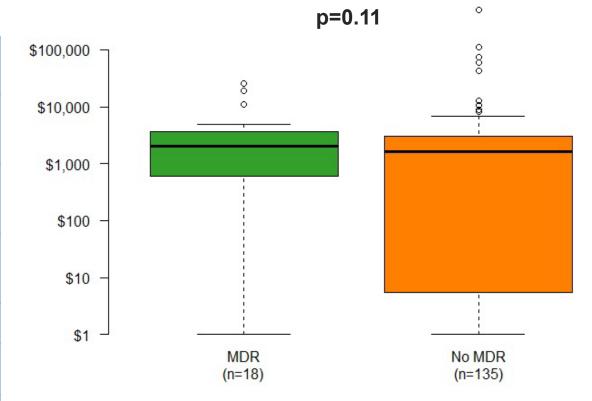


Healthcare costs through 10 months

Healthcare utilization through 10 months

	Well Babies				
	nGS (n=120)	Control (n=116)			
Days hospitalized	0.0	0.1			
Health care visits	5.9	5.4			
Number of medications	1.4	1.7			
ER Visits	0.4	0.3			

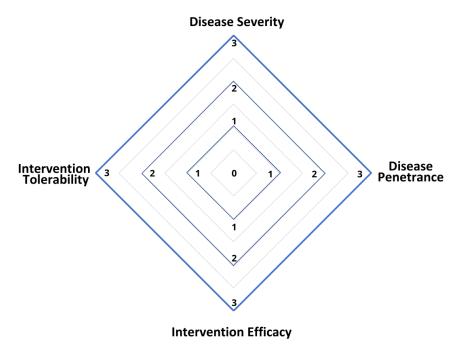
Mean health sector costs: \$1,586 for nGS arm and \$1,179 for control arm



Preliminary data: Appropriate follow-up for genomic findings

\$2,044 for newborns with monogenic disease risks and \$1,606 for newborns without.

Variant	Follow-up
BTD (Biotinidase deficiency)	Genetics/metabolics visit (2), biotin supplements
CD46 (Atypical hemolytic-uremic syndrome)	Nephrology visit
ELN (Supravalvular aortic stenosis)	Cardiology visit (3), ECG (3), Echo (2)
TTN x3 (Dilated cardiomyopathy)	Cardiology visit, ECG, Echo
VCL (Dilated cardiomyopathy)	Cardiology visit, ECG, Echo
ANKRD11 (KBG syndrome)	Genetics visit (2)
GLMN (Glomuvenous malformations)	Dermatology visit, CBC


Appropriate follow-up contributed to nonsignificant increases in healthcare costs

Long term follow-up of infants with uMDR

Actionability of unanticipated monogenic disease risks in newborn genomic screening: Findings from the BabySeq Project

Robert C. Green, 1,2,3,4,16,* Nidhi Shah, 2,5,6,16 Casie A. Genetti, 5,16 Timothy Yu,4,5 Bethany Zettler, 1,3 Melissa K. Uveges, 7 Ozge Ceyhan-Birsoy, 8 Matthew S. Lebo, 1,2,4,9 Stacey Pereira, 10 Pankaj B. Agrawal, 4,5,11 Richard B. Parad, 4,12 Amy L. McGuire, 10 Kurt D. Christensen, 4,13 Talia S. Schwartz, 14 Heidi L. Rehm, 2,4,15 Ingrid A. Holm, 4,5 Alan H. Beggs, 2,4,5 and The BabySeq Project Team

Key: Severe genetic condition High penetrance Highly effective intervention Highly tolerable intervention Example: FBN1 Marfan syndrome Severe genetic condition High penetrance X Highly effective intervention X Highly tolerable intervention Example: **HD** Huntington's disease

Clinical actionability of uMDR genes identified in BabySeq

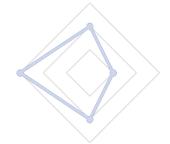
Biotinidase deficiency

G6PDGlucose-6-phosphate
dehydrogenase deficiency

GLMNGlomuvenous malformations

CD46Atypical hemolytic-uremic syndrome

SLC7A9 Cystinuria



KCNQ4Non-syndromic hearing loss

CYP21A2
Congenital adrenal hyperplasia
due to 21-hydroxylase
deficiency

MYBPC3
Hypertrophic cardiomyopathy

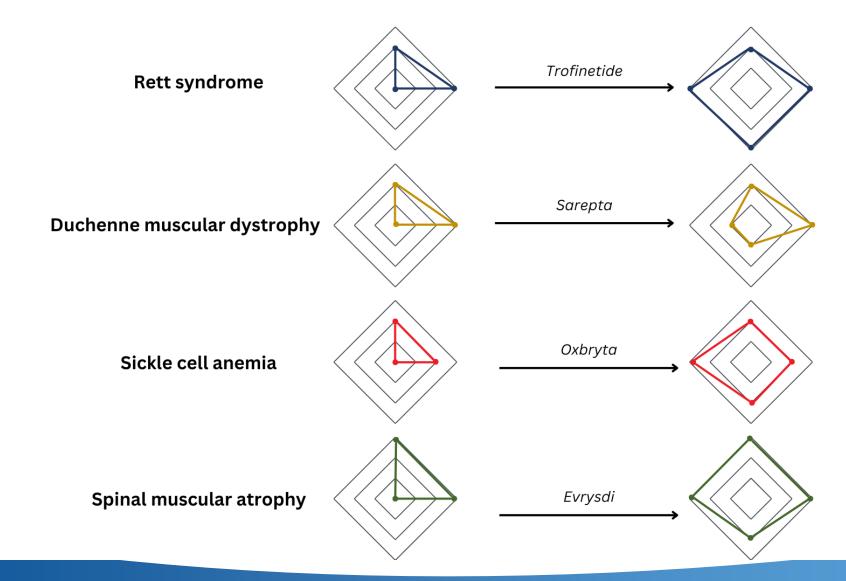
TTNDilated cardiomyopathy

VCL Dilated cardiomyopathy

*MSH2*Lynch syndrome

ELNSupravalvularaortic stenosis

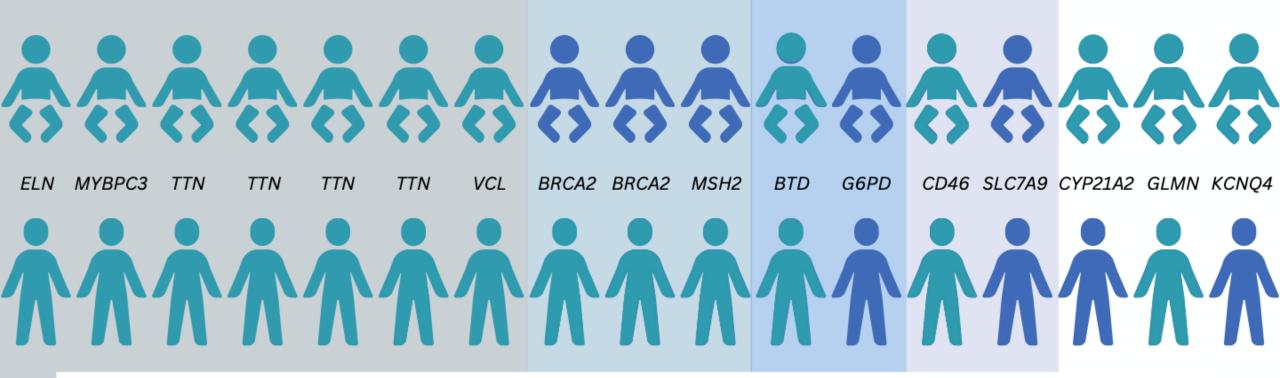
BRCA2Hereditary breast and ovarian cancer syndrome



Actionability Changes With Treatment

Before treatment available

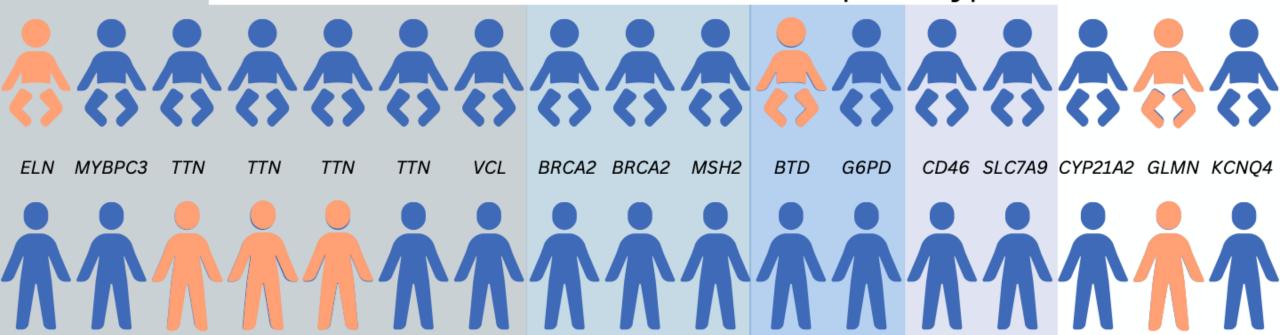
After treatment available


Infants and families with unanticipated monogenic disease risks

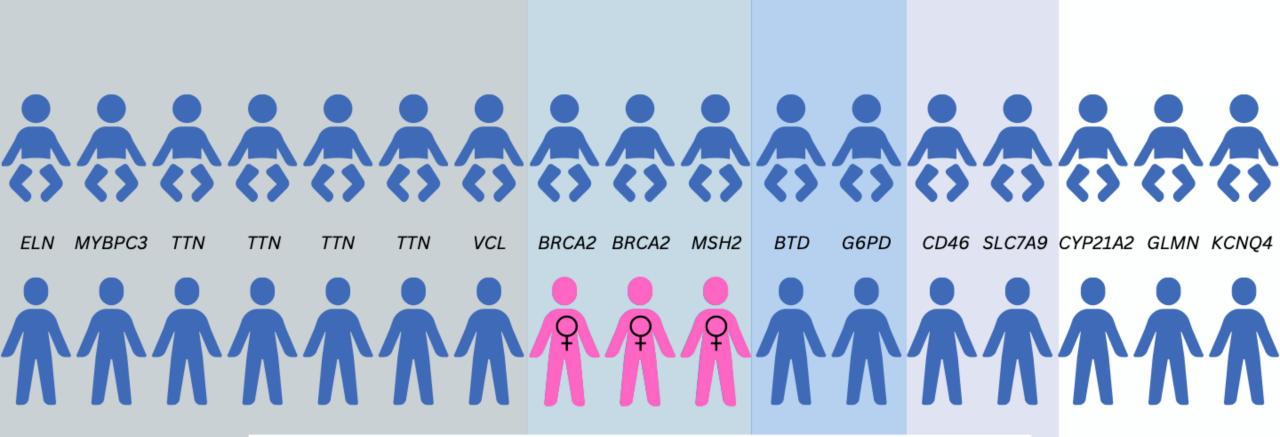
Cardiac	Cancer	Metabolic	Renal	Other
ELM MYBPC3	BRCA2 MSH2	BID GOPD	CD46 SLC7A9	CABSIUS CIMM KCMOY
*******		\$ 60 CO		
				1 1 1
AAAAAA	111	MA	M	MAN
			,,,,,	

Cardiac Cancer Metabolic Renal Other

70.6% of infants were referred for specialized care


70.5% of parents were referred for specialized care
76.5% of families had one or more members referred for specialized care

Genomic screening expands within families



17.6% of infants with an unanticipated monogenic disease risk were found to have a related phenotype*

23.5% of parents were found to have a related phenotype*
35.3% of family units were found to have a related phenotype*

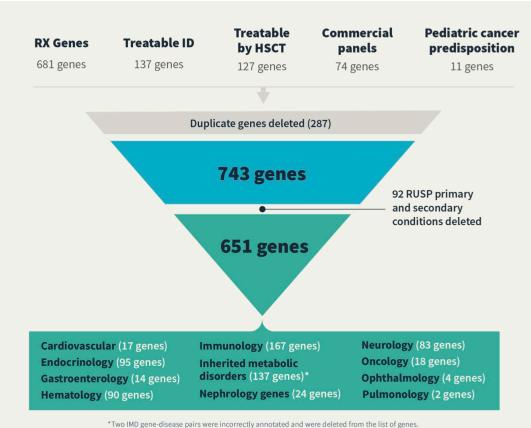
Cancer

Cardiac

Metabolic

Renal

Other


3/3 parents with a genetic cancer predisposition underwent risk-reducing surgery

Original Investigation | Pediatrics

Perspectives of Rare Disease Experts on Newborn Genome Sequencing

Nina B. Gold, MD; Sophia M. Adelson, BA; Nidhi Shah, MD; Shardae Williams, MEd; Sarah L. Bick, MD; Emilie S. Zoltick, ScD, MPH; Jessica I. Gold, MD, PhD; Alanna Strong, MD, PhD; Rebecca Ganetzky, MD; Amy E. Roberts, MD; Melissa Walker, MD, PhD; Alexander M. Holtz, MD, PhD; Vijay G. Sankaran, MD, PhD; Ottavia Delmonte, MD, PhD; Weizhen Tan, MD; Ingrid A. Holm, MD, MPH; Jay R. Thiagarajah, MD, PhD; Junne Kamihara, MD, PhD; Jason Comander, MD, PhD; Emily Place, MS, CGC; Janey Wiggs, MD, PhD; Robert C. Green, MD, MPH

¹²⁰ Number of gene-disease 100 40 20 0-10% 10-20% 20-30% 40-50% 50-60% 70-80% 80-90% 30-40% 60-70% 90-100% Concordance Cardiovascular Immunology Oncology Endocrinology Metabolism Ophthalmology Gastroenterology Nephrology Pulmonology

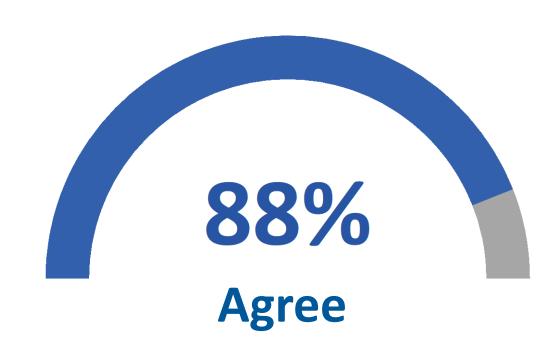
Neurology

Hematology

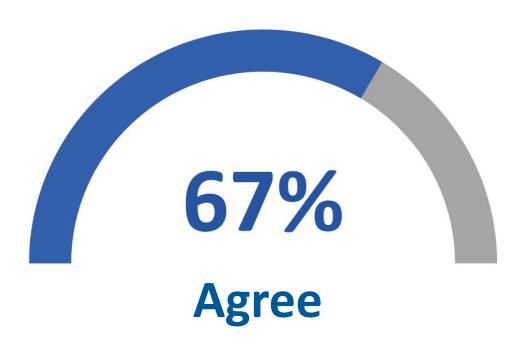
Original Investigation | Pediatrics

Perspectives of Rare Disease Experts on Newborn Genome Sequencing

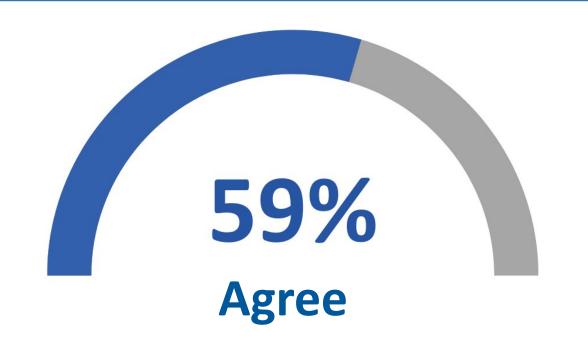
Nina B. Gold, MD; Sophia M. Adelson, BA; Nidhi Shah, MD; Shardae Williams, MEd; Sarah L. Bick, MD; Emilie S. Zoltick, ScD, MPH; Jessica I. Gold, MD, PhD; Alanna Strong, MD, PhD; Rebecca Ganetzky, MD; Amy E. Roberts, MD; Melissa Walker, MD, PhD; Alexander M. Holtz, MD, PhD; Vijay G. Sankaran, MD, PhD; Ottavia Delmonte, MD, PhD; Weizhen Tan, MD; Ingrid A. Holm, MD, MPH; Jay R. Thiagarajah, MD, PhD; Junne Kamihara, MD, PhD; Jason Comander, MD, PhD; Emily Place, MS, CGC; Janey Wiggs, MD, PhD; Robert C. Green, MD, MPH


8 genes	отс	SLC37A4	ARSB	F9
With ≥90% expert concordance	G6PC	CYP11B1	F8	SLC2A1

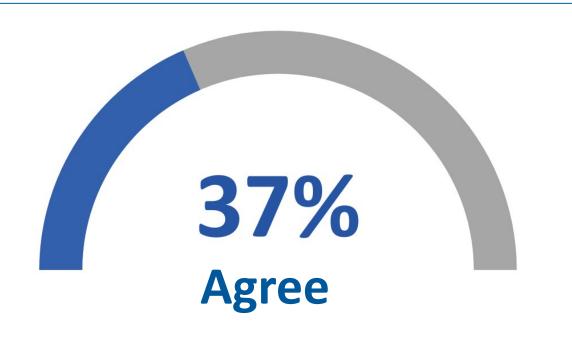
Gene	Disease	Clinical area	No. (%) Yes	No	Unsure	Responses,	Prevalence of disease (per 100 000)	Age of onset	Orthogonal test for at-risk infants	Intervention
ОТС	Ornithine transcarbamylase deficiency	Metabolism	61 (98.4)	1 (1.6)	0	62	1.5	Infancy to adulthood	Orotic acid level, plasma amino acids	Protein restriction, citrulline, nitrogen scavengers, liver transplant
G6PC	Glycogen storage disease Ia	Metabolism	57 (93.4)	3 (4.9)	1 (1.6)	61	0.04	Infancy	No	Cornstarch, nighttime intragastric continuous glucose infusion, low-carbohydrate and high-protein diet
SLC37A4	Glycogen storage disease Ib	Metabolism	56 (93.3)	4 (6.7)	0	60	0.04	Infancy	No	Cornstarch, nighttime intragastric continuous glucose infusion, allopurinol, statin, granulocyte colony-stimulating factor, immunomodulators, low-carbohydrate and high-protein diet
CYP11B1	Congenital adrenal hyperplasia due to 11-β-hydroxylase deficiency	Endocrinology	35 (92.1)	2 (5.3)	1 (2.6)	38	0.8	Infancy to adolescence	Serum 11-deoxycortisol and 11-deoxycorticosterone levels	Hydrocortisone
ARSB	Mucopolysaccharidosis type VI	Metabolism	54 (91.5)	3 (5.1)	2 (3.4)	59	0.3	Childhood	Arylsulfatase B enzyme activity, urine glycosaminoglycans	Galsulfase enzyme replacement, HSCT
F8	Hemophilia A	Hematology	37 (90.2)	4 (9.8)	0	41	7.5	Infancy to adolescence	Factor VIII level	Factor VIII
F9	Hemophilia B	Hematology	37 (90.2)	4 (9.8)	0	41	1.3	Infancy to adolescence	Factor IX level	Factor IX
SLC2A1	GLUT1 deficiency syndrome 1	Metabolism	55 (90.2)	3 (4.9)	3 (4.9)	61	1.7	Infancy	Blood glucose, cerebrospinal fluid glucose	Ketogenic diet, carnitine supplementation, avoid barbiturates, methylxanthine, valproic acid


Newborn screening should include...

Genome sequencing for treatable conditions


Newborn screening should include...

Conditions that are <u>not</u> treatable but have established guidelines for management or surveillance


Newborn screening should include...

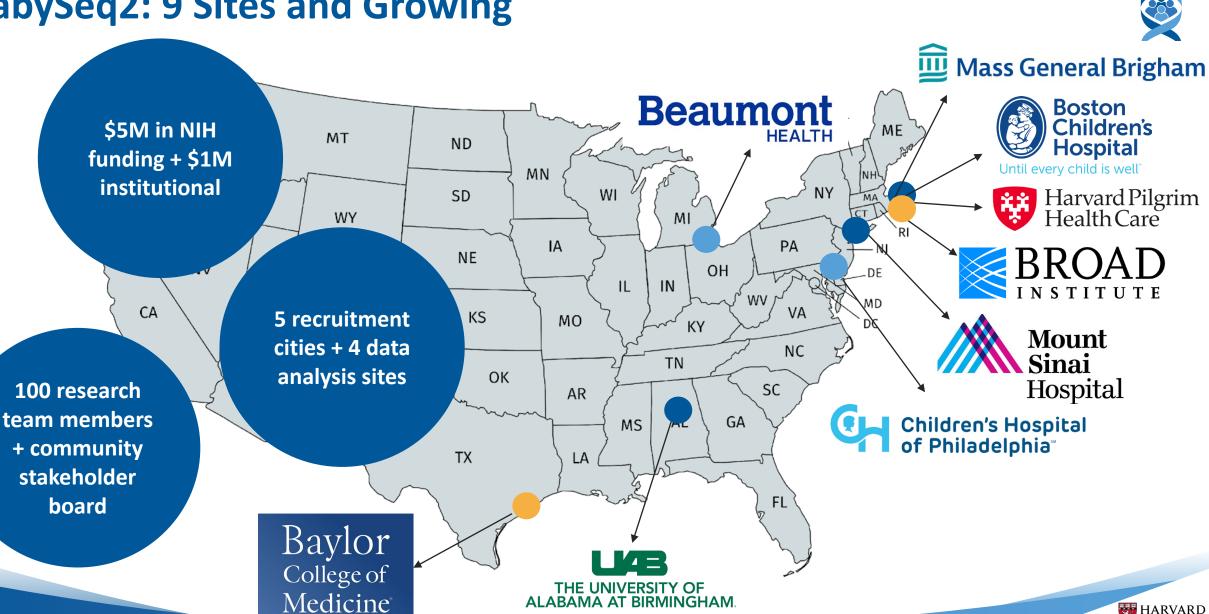
Treatable conditions with low penetrance


Newborn screening should include...

Actionable adult-onset conditions to facilitate cascade testing in parents

Newborn screening should include...

Childhood onset conditions with <u>no</u> established targeted therapies or expert management guidelines

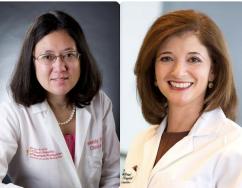


Implementation of preventive genomics in a diverse cohort of healthy infants

BabySeq2: 9 Sites and Growing

International Consortium/Conference on Newborn Sequencing

ICoNS Steering Committee



Robert C. Green

David Bick ICoNS Co-Chair Genomics England

Wendy K. Chung The GUARDIAN Project

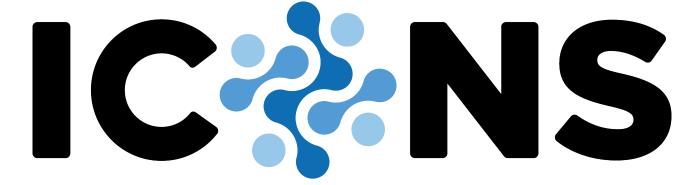
Melissa Wasserstein

Allesandra Ferlini Screen4Care

Stephen Kingsmore BeginNGS

Holly L Peay Early Check Program

Lilian Downie BabyBeyond BabyScreen+


Nicolas Encina

ICoNS Director Ariadne Labs, Harvard University

www.iconseq.org

INTERNATIONAL CONFERENCE ON NEWBORN SEQUENCING

2023 Conference: The Royal Institution, London October 5-6, 2023

See video at 14:06 in the recording

BabySeq uses genetic testing and family history information to look for risk markers that might cause health problems in childhood.

BabySeq Collaborators

Pankaj B. Agrawal Sienna Aguilar Jessica Alfoldi Heather Andrighetti Maria Argos Danielle Renee Azzairiti Madeleine Ball Natalie Bartnik Alan H. Beggs Marcy Belliveau Melverta Bender Tala Berro Dawn Berry Wendi N. Betting Alexander George Bick Steven Bleyl Carrie L. Blout Salvador Borges-Neto Glenn Braunstein James Burke Jeffrey Burns Deanna Alexis Carere Maria Carrillo Rick Caselli Ozge Ceyhan-Birsov Clara Chen Kurt Christensen Allison L Cirino Martha Combs Adolfo Correa Mick P. Coupler Kenneth Covinsky Scott Crawford

Tshaka Cunningham Adrienne Cupples **Bridgette Tippin Davis** Mauricio de Castro Stephanie Deward Lisa R. Diller Michael Donohue Dmitry Dukhovny Kathryn E. Dunn Lynette Ekebwe Ed Esplin Preston Estep Altovise Ewing Romy Fawaz Shawn Fayer Candice Finnila Leslie A. Frankel Bethany Friedmann Cubby L. Gardner Jenny Gauerke Casie A. Genetti Nina Gold Sarah Gollust Ervnn Gordon-Fishman Chet Graham Stacy Gray Joshua Grill Cynthia Gubbles Amanda Gutierrez Maegan Harden Kristin Harkins Joe Harrison

Eden Haverfield

Allison Hazell Nancy Heard-Costa Madhuri Hegde Robyn Heister Margaret H. Helm Ally Hempel Jim Hendrix Carolyn Y. Ho Jodi Hoffman Lillian Hoffman-Andrew Jennifer Hogan Ingrid A. Holm Rebecca Hsu Jillian Hunsanger Barbara Inglese Carmen Isasi Rubaia Islam Wiliam Jagust Anthony Johnson Jane Juusola Sarah S. Kalia Kimberly Kaphingst Robert Kaplan Jason Karlawish Aaron Kesselheim Amv K. Kiefer Jacqueline Killian Scott Kim Barbara A. Koenig Robert Koeppe Peter Kraft Joel B. Krier Rebecca C. LaMay

Latrice Landry William J. Lane Kenneth Langa **Kostantinos Lazaridis** Lorena de la Vega Lazo Lan Q Le Matthew S. Lebo Justin Leighton Debra Leonard Harvey L. Levy James Lillard Michael Linderman Jennifer Lingler Christina Liu **Courtney Livingston** Xingguan Lu Daniel MacArthur Kalotina Machini Calum Archibald Macrae Joseph Maher Mara Mather Megan Dora Maxwell Thomas May Michelle McCart Molly McGinness Amy L. McGuire Zoe McKay Meredith McNeil Mollie Minear Tanva A Moreno **Cynthia Casson Morton** Joanna L. Mountain Jaclyn B. Murry

Medha Naik Ilva Nasrallah Tiffany T. Nguyen Daiva Nielsen Jenny Ostergren Vaibhav Pandya Richard B. Parad Peter J. Park Hayley A. Peoples Stacey Pereira Emma Perez Devan Petersen Kaela Plant Laura Raffield Vasan Ramachandran Uma Ramamurthy Vivek Ramanathan Heidi L. Rehm Luisel Ricks-Santi **Amy Roberts** Scott Roberts Jill O. Robinson Serguei Roumiantsev Charmaine Royal Mack T. Ruffin Laura Saad **David Salmon** Saskia Sanderson Talia S. Schwartz John Seibvl Christian E Seifman Lisa Slehmann

Julie Smith Heather Snyder Tamar Sofer Benjamin Solomon Reisa Sperling Greta Lee Splansky Elanor B. Steffens Joan Steyermark Sheila Sutti Kathleen Swenson **Gregory Talavera** Meghan C. Towne Tina K. Truong **Bastian Greshake Tzovaras** Wendy Uhlmann Melissa Uveges Maureen Valentino Grace E. VanNoy Jason Vassy Susan E. Waisbren **Catharine Wang** Kareem Washington Caroline M. Weipert Kathie Welsh-Bohmer Keith Whitfield Angelia Williams Susan M. Wolf David Wolk Timothy W. Yu **Bethany Zettler Emilie Zoltick**

Mass General Brigham

gen

genomes2people.org

@robertcgreen@genomes2people

@genomes2people

rcgreen@bwh.harvard.edu