PSYCHOSTIMULANTS & ADHD: ROADMAP FOR DRUG DISCOVERY

Craig W. Berridge
Psychology Dept.
University of
Wisconsin Madison

PFC AND ADHD

PFC supports higher 'executive' cognitive processes that regulate goaldirected behavior

ADHD associated with dysregulated PFC-dependent cognition & PFC hypoactivity

cortex

Ventromedial prefrontal cortex

prefrontal cortex

Amygdala

PFC = acts in concert with multiple regions to support higher cognitive function

Striatum Midline Thalamic (Mediodorsal)

PSYCHOSTIMULANTS & ADHD

Most effective treatments = Psychostimulants (*low-doses*)

- Methylphenidate (MPH; Ritalin), Amphetamine (Adderall)
- Rapidly (< 1 hour) reverse PFC-dependent cognitive deficits of ADHD
- Safe when used as prescribed

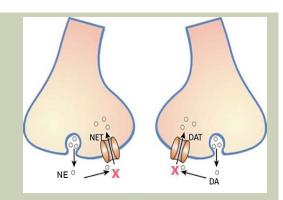
PSYCHOSTIMULANTS & ADHD

But...can be abused and misused Side effects...

New treatments limited by:

→ Lack of understanding of how psychostimulants improve cognition

NEUROCHEMISTRY OF PSYCHOSTIMULANT?


Catecholamine (NE/DA) reuptake blockers (disrupters)

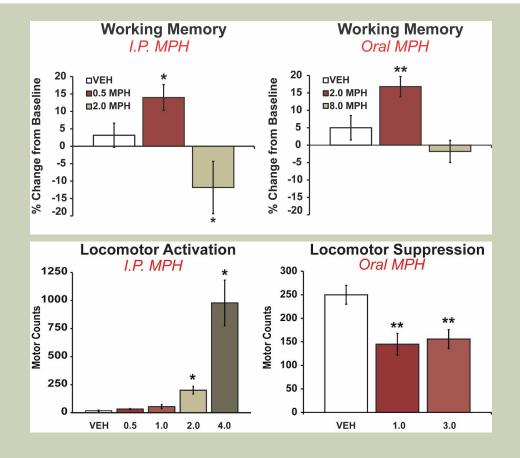
High doses → Large increases in NE/DA (500%-1000%) widely throughout the brain

Early studies: Prominent role of striatal DA in behavioral actions of high-doses

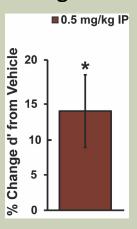
But...we don't treat ADHD with high doses of psychostimulants

How do Clinically-Relevant Doses of Psychostimulants Work?

Clinically relevant doses → improve PFC-dependent cognition *in healthy human* subjects.


Do not need an animal model of ADHD to study the neurobiology of *procognitive* actions of psychostimulants

How do Clinically-Relevant Doses of Psychostimulants Work?


What is a Clinically-Relevant Dose?

We know plasma concentrations elicited by clinically-efficacious doses of MPH...

BEHAVIORAL ACTIONS OF CLINICALLY-RELEVANT DOSES

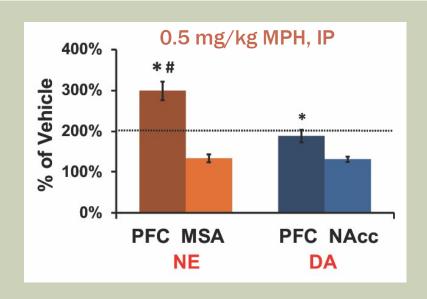
Sustained Attention(Operant Signal Detection)

Identical to that seen in humans

NE/DA Actions of Clinically-Relevant Doses of MPH?

Microdialysis (NE, DA)

Varying Routes (IP, Oral)


Varying Doses (IP, 0, 0.25, 0.5, 1.0; Oral, 0, 2.0)

Varying Regions

PFC (NE, DA; cognition)

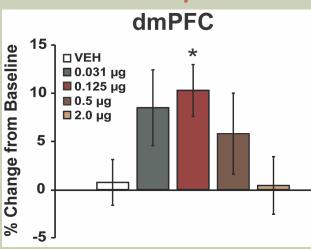
MSA (NE, arousal)

NAcc (DA, motor activation, reinforcement)

Clinically-relevant doses elevate NE & DA levels preferentially in the PFC

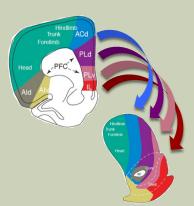
NE/DA Actions of Clinically-Relevant Doses of MPH?

Hypotheses:

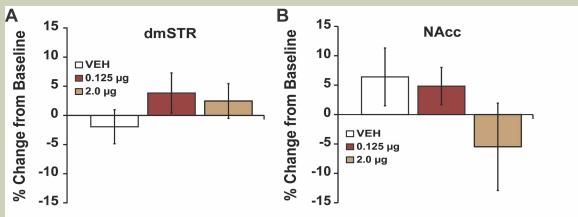

Psychostimulants acts in the PFC to promote cognition

Via actions of NE and DA

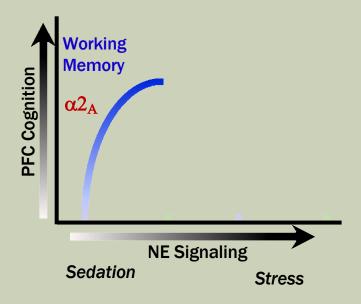
Does MPH Act in the PFC to Improve Cognition?

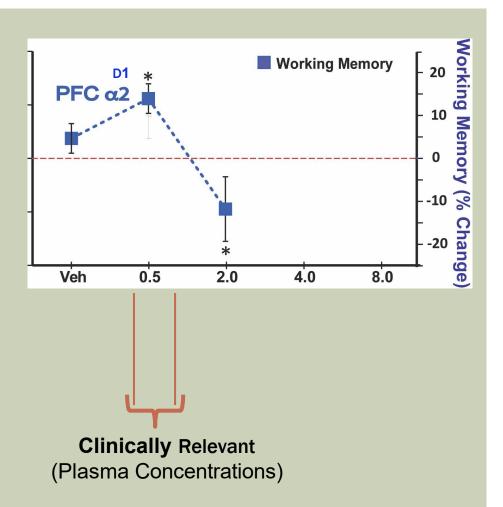

Robert Spencer

- Bilateral MPH into the dorsomedial PFC
- Improves working memory in an inverted-U manner
- (not seen with ventromedial PFC MPH)

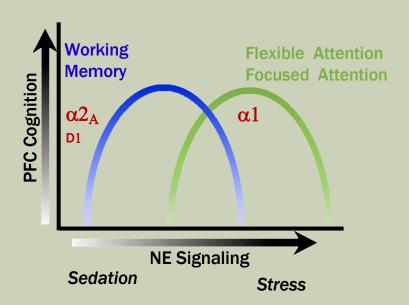

FRONTOSTRIATAL PROJECTIONS

Topographically-organized projections


dmSTR = Necessary for PFC-dependent cognition

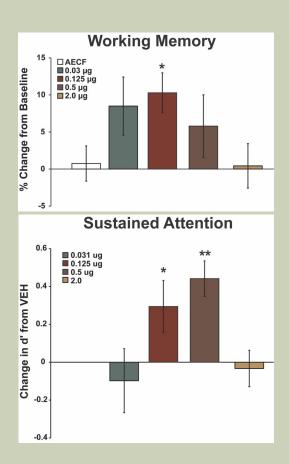

MPH in the dmSTR – or vmSTR – does *NOT* improve working memory

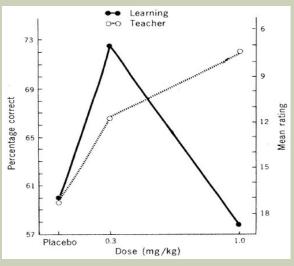
PFC RECEPTOR MECHANISMS?


NE differentially modulates PFC Dependent Cognitive Processes



PFC RECEPTOR MECHANISMS?


NE differentially modulates PFC Dependent Cognitive Processes



PFC & DIVERGENT DOSE-RESPONSE CURVES

Intra-PFC MPH

ADHD Children: 'Learning' vs. Teacher Ratings

Sprague and Sleator, 1977, Science

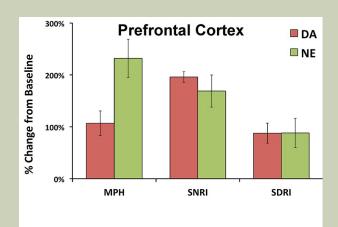
'Learning' = Working memory task.

Tannock: Response Inhibition vs. Overt Behavior

Are there clinically/functionally-relevant consequences of divergent DR-curves in ADHD patients?

PSYCHOSTIMULANTS

Act directly in the PFC:


- To improve PFC-dependent cognitive processes
 - In a complex dose-dependent manner
- via elevated NE & DA receptor signaling

PSYCHOSTIMULANTS

Involvement of NE is consistent with:

- All 3 classes of ADHD-approved drugs target NE
 - Psychostimulants
 - SNRIs (atomoxetine)
 - $\alpha 2_A$ agonist (guanfacine; also acts directly in the PFC)

NEUROCHEMISTRY OF COGNITIVE ENHANCEMENT

Psychostimulants (MPH)
SNRIs (Atomoxetine)
SDRIs (Preclinically, AHN-2005)

All increase PFC NE and DA

All roads point to the PFC and away from striatal DA

Highly divergent actions on striatal DA

Implications

Policy:

Low-dose psychostimulants do NOT act like 'psychostimulants':

Cognitive-Enhancers

Clinical:

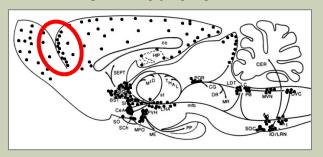
 Suggests a prominent role of PFC catecholamines in the therapeutic actions of psychostimulants

Drug Development:

Potential Roadmap for Novel Treatments

ROADMAP FOR DRUG DISCOVERY?

Evidence does not warrant an emphasis on Striatal DA in Drug Discovery Programs


ROADMAP FOR DRUG DISCOVERY?

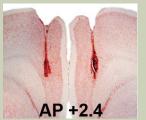
What other molecules in the PFC can be targeted to improve PFC-dependent cognition?

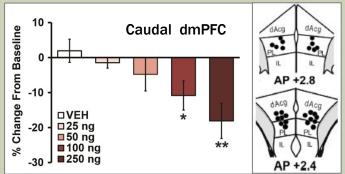
(while lacking the abuse potential of psychostimulants)

CORTICOTROPIN-RELEASING FACTOR (CRF) & THE PFC

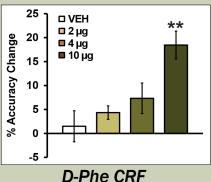
CRF neurons

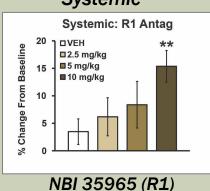
CRF receptors

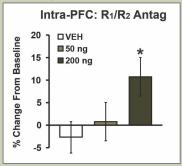



- 41-Amino acid neuropeptide
- Present in the PFC
- Studied intensively for decades
- The cognitive actions of CRF in the PFC = unknown

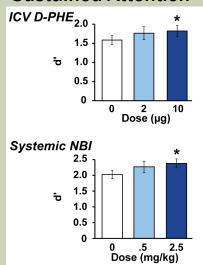
Do PFC CRF RECEPTORS MODULATE WORKING MEMORY?


Sofiya Hupalo

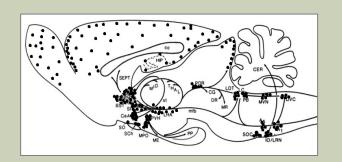

Intra-caudal dmPFC CRF

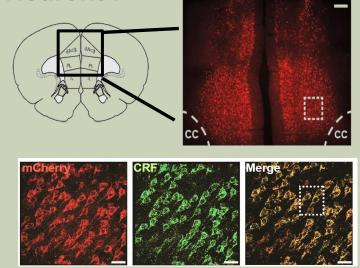


ICV Systemic



Receptor Blockade


D-Phe CRF (R1/R2)


Sustained Attention

Source of CRF for cognition-modulating PFC CRF receptors?

PFC CRF Neurons?

- PFC CRF neurons release locally to regulate working memory
- Distally to regulate sustained attention (MD Thalamus)

~90% of PFC neurons express CRF

SUMMARY

Caudal dmPFC contains rich population of CRF Neurons that regulate PFC-dependent cognition

In males and females (w/exception of proestrus)

Inhibition of CRF neurotransmission globally improves PFC-dependent cognition

Similar to that seen with ADHD-approved compounds

What other molecules can be targeted to reverse PFC-dependent cognitive deficits?

mGlu Receptors (Arnsten & Colleagues)

Or non-pharmacological

TMS

ACKNOWLEDGEMENTS

Personnel

Robert Spencer, Ph.D.

Brooke Schmeichel, Ph.D.

Sofiya Hupalo, Ph.D.

Andrea Martin

Spencer Cooke

Kate Reis

Shannon Nicoll

Alexandra Ritger Jenna Kiraly Greta Missbach

& many more...

Funding

NIH: MH081843, MH102211, MH107140, MH107140, M001507

UW-Madison Vice Chancellor for Research and Graduate Education