

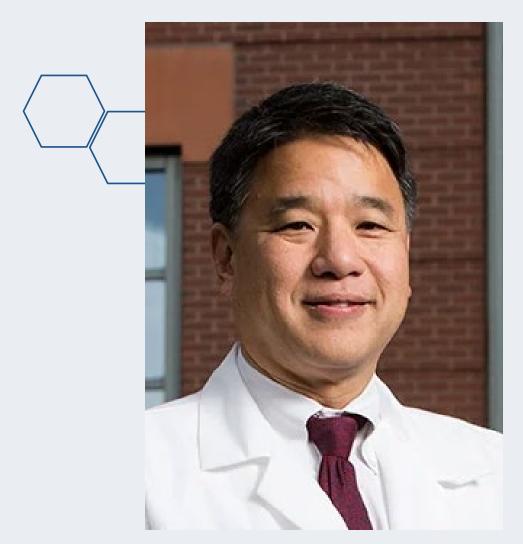
Current NIAID Research focused on Persistent Illness Attributed to Lyme Disease

Nadine Bowden, *Program Officer for Lyme Disease and Other Borrelioses*National Institute of Allergy and Infectious Diseases
National Institutes of Health

April 22, 2024

R01s funded through RFA AI-22-046

Contact PI	Title
John Aucott	Determinants of Post-Treatment Phenotypes in Lyme Disease
Linden Hu	Auto-antibodies as predictive markers for Post treatment Lyme Disease Syndrome
Brandon Jutras	The natural release of unusual peptidoglycan fragments drives persistent Lyme disease symptoms in susceptible hosts
Cherie Marvel	Neuroimaging and blood markers in post treatment Lyme disease with persistent neurologic symptoms
Michal Tal	Unlocking serology's secrets: harnessing novel immune biomarkers to predict Lyme disease progression and recovery
Rafal Tokarz	Genetic basis for persistence of Borrelia burgdorferi
Neal Woodbury	Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response


John Aucott, M.D.

Johns Hopkins University

Determinants of posttreatment phenotypes in Lyme disease

- Overarching goal is to uncover clinical, immunologic, and metabolic determinants of post-treatment Lyme disease (PTLD) and its underlying symptom phenotypes
- A specific goal is to develop a clinical assessment score to identify patients at increased risk of developing PTLD
- Possible future impacts include new therapeutic strategies to treat PTLDS and interventions to prevent PTLDS

Linden Hu, M.D.

Tufts University Boston

Auto-antibodies as predictive markers for post treatment Lyme disease syndrome

- Overarching goal is to explore development of anti-lipid/ phospholipid antibodies during Lyme disease and their potential role in PTLDS
- A specific goal is to test a new animal model for PTLDS that shares similarities with a fibromyalgia animal model
- Possible future impacts include development of better diagnostic tests and increased understanding of pathogenesis of PTLDS


Brandon Jutras, Ph.D.

Virginia Polytechnic Institute and State University*

The natural release of unusual peptidoglycan fragments drives persistent Lyme disease symptoms in susceptible hosts

- The overarching goal is to determine what about the cell wall makes patients sick and define strategies to improve Lyme disease patient health when antibacterial therapies have failed
- A specific goal is to assess if targeted monoclonal antibody therapy is a viable approach to treat antibiotic refractory Lyme arthritis
- Possible future impacts include new ways to treat patients when conventional options have failed and a better understanding of the drivers of patient symptomology

Cherie Marvel, Ph.D.

Johns Hopkins University

Neuroimaging and blood markers in post treatment Lyme disease with persistent neurologic symptoms

- The overarching objective is to study the underlying mechanism of neurologic symptoms in PTLD
- A specific goal is to test the hypothesis that changes in the brain, detectable by imaging, reflect and adaptive response and predict better outcomes after treatment of early Lyme disease
- Possible future impacts include new diagnostic, prognostic and therapeutic approaches to the cognitive manifestations of PTLD

Michal Tal

Massachusetts Institute of Technology

Unlocking serology's secrets: harnessing novel immune biomarkers to predict Lyme disease progression and recovery

- The overarching objective is to identify a serology biomarker that accurately predicts patient outcomes after treatment with antibiotics
- A specific goal is to test a new immune profiling technique developed by the group called FLIP to profile immune reactions of patients in different cohorts including those with persistent symptoms
- Possible future impacts include using FLIP to guide enrollment into clinical trials and understand the optimal antibody mix for responding to infection

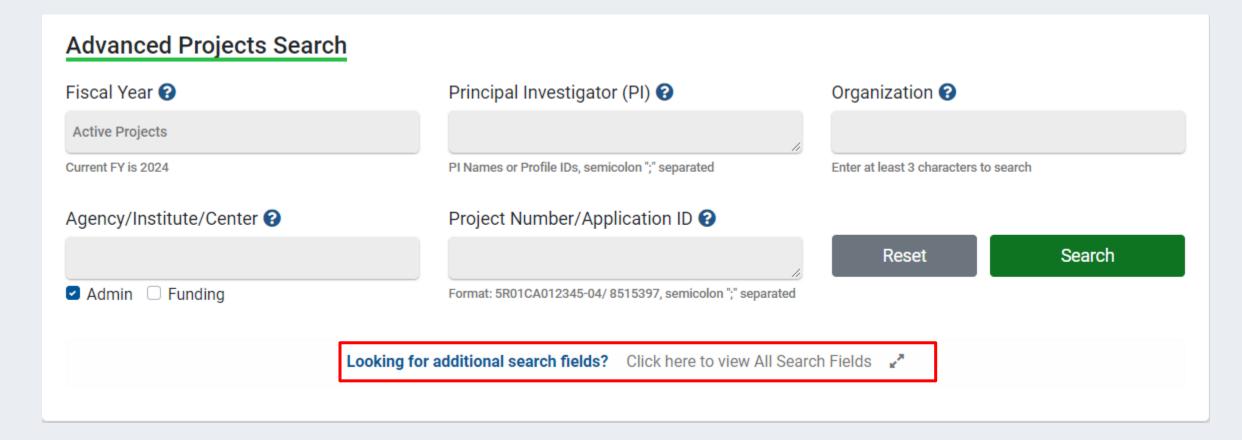
Rafal Tokarz, Ph.D.

Columbia University health Sciences

Genetic basis for persistence of Borrelia burgdorferi

- The overarching goal is to understand the role of bacterial genetics and host immune response in the development of PTLDS
- A specific goal is to identify the major immunoreactive epitopes of B. burgdorferi found in the sera and CNS fluid of patients with PTLDS
- Possible future impacts include identifying mechanistic triggers of spirochete persistence and greater insight into the immune response of patients with PTLDS

Neal Woodbury, Ph.D.


Arizona State University – Tempe Campus

Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response

- Overarching goal is to predict and validate which
 B. burgdorferi and human protein antigens are associated with development of PTLDS
- A specific goal is to use machine learning to evaluate all circulating patient antibodies, not just those that react with known antigenic *B. burgdorferi* targets
- Possible future impacts include development of better diagnostic tests and generation of hypotheses that can be tested in disease models

Looking for mor information? Visit reporter.nih.gov

Opportunity Number: RFA-AI-22-046

