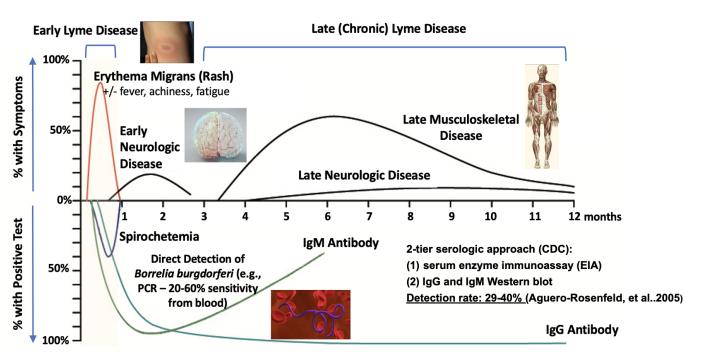


Current Diagnostic Approaches and Emerging Technologies


Charles Chiu, MD / PhD

Professor, Department of Laboratory Medicine and Medicine / Infectious Diseases
Associate Director, UCSF Clinical Microbiology Laboratory
Co-Director, UCSF Lyme Clinical Trials Center
University of California, San Francisco

Disclosures

- Scientific Advisory Board Member for Bay Area Lyme Disease Foundation, Global Lyme Alliance, and Steven and Alexandra Cohen Foundation
- Scientific Advisory Board for Flightpath Biosciences, Delve Bio, and Cofounder of Delve Bio

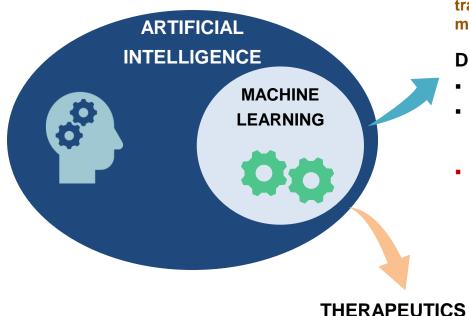
Challenges in Diagnosis of Lyme IACI

Diagnostic Lab Testing

Lyme*

- Two-tiered serology
- Other serology (EIA)
- Borrelia PCR

LC/PASC


- Spike protein level
- Spike protein IgG Ab

ME/CFS

none

^{*}early Lyme, no tests available for PTLDS

Host Response Based Diagnostics for IACIs

PRECISION MEDICINE ('OMICS: RNA

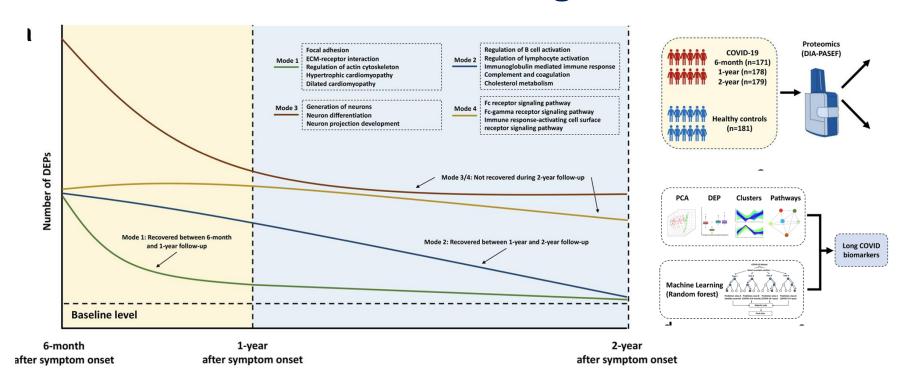
transcriptomics, metagenomics, proteomics, metabolomics, pan-serology profiling

chronic

DIAGNOSTICS

- CANCER
- RARE DISEASE GENETICS
- HOST IMMUNE RESPONSE TO INFECTION (

Neurologic, bloodborne, and respiratory infections

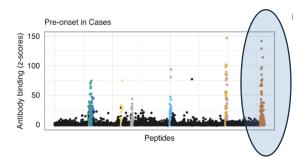

LYME DISEASE

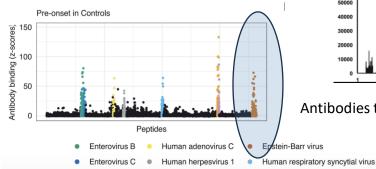
- 476,000 cases/year (CDC Data and Surveillance)
- difficult to diagnose
- lack of accurate diagnostic assays early Lyme disease

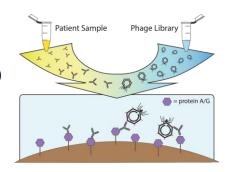
ME/CFS AND LONG COVID

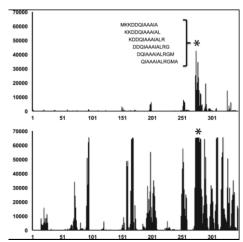
Diagnostic tests not available

Proteomics for Long COVID

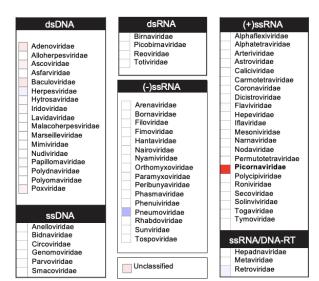


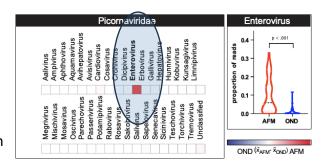

Four distinct recovery modes from acute COVID-19 identified in a longitudinal 2-year cohort study of proteomic biomarkers Conclusion: the IACI patient population, including Lyme IACI, is heterogeneous


Pan-Pathogen Serology

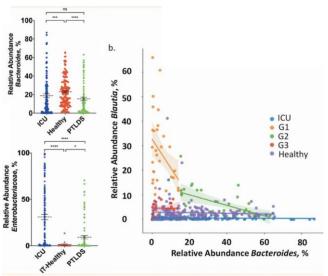

(VirScan, Tickborne Disease (TBD)-Serochip)

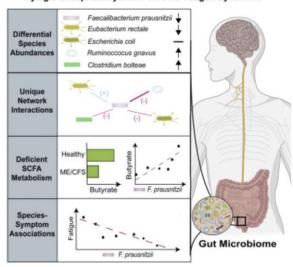
Bjornevik, et al., *Science*, 2022, 375:6578 Schubert, et al., *Nature Medicine*, 2019, 25(11):1748-1752 Tokartz, et al. *Scientific Reports*, 2018, 8(1). Xu, et al., *Science*, 2015, 348:6239.





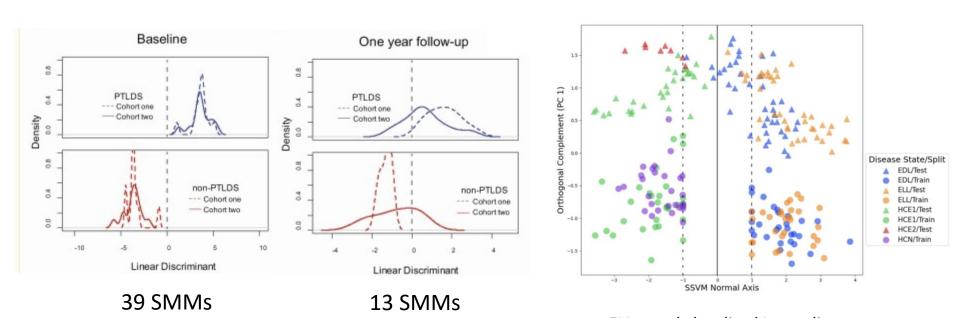
Antibodies to Borrelia burgdorferi VIsE antigen


Rhinovirus B



69% (29/42) of pediatric acute flaccid myelitis cases versus 7% (4/58) of controls positive for *Enterovirus* by VirScan

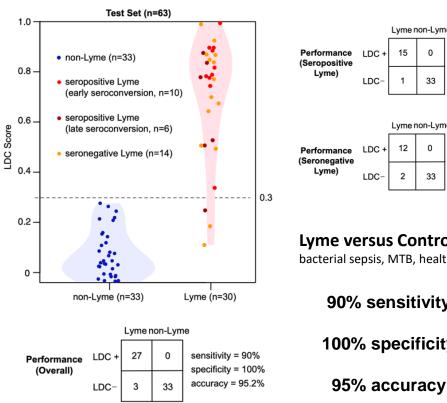
Microbiome and IACI

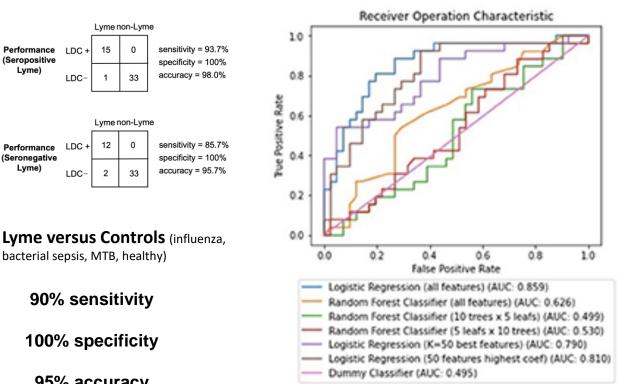


Myalgic Encephalomyelitis / Chronic Fatigue Syndrome

- <u>Long COVID</u>: Randomized, double-blind placebo control trial of 463 patients showed that treatment with synbiotic preparation versus placebo had significant improvements in fatigue (p<0.0001), memory loss (p=0.0024), and concentration (p<0.0001)
- PTLDS: Distinct microbiome signature in PTLDS that enabled ~80% classification accuracy
- <u>ME/CFS</u>: Microbiome disturbances is a hallmark signature of ME/CFS related to deficient butyrate-producing capacity
- Mechanisms thought related to normalization of gut dysbiosis and gut-immune axis

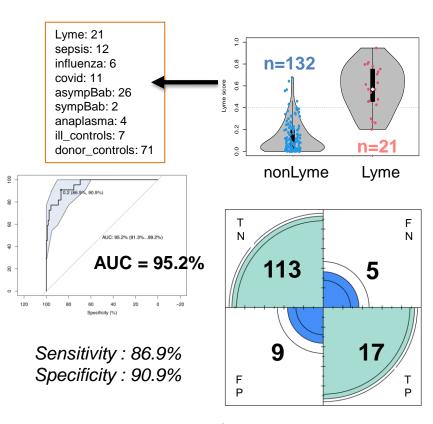
Metabolomics for PTLDS

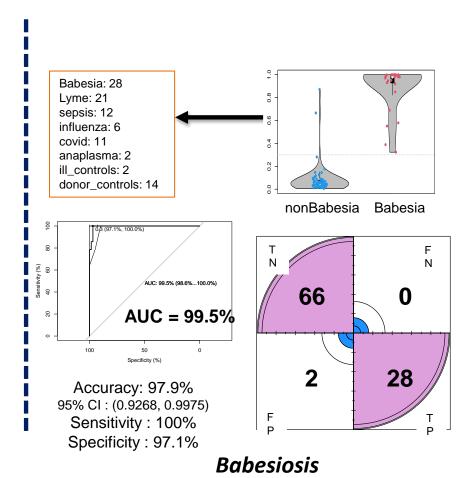



- non-PTLDS = Lyme disease patients with resolved infection
- Markers of glycerophospholipid, bile acid, and acylcarnitine metabolism;
- Increased prevalence of lipid disorders in PTLDS (Chung, et al., *Lancet*, 2023, 90:10424).

ELL = early localized Lyme disease; EDL = early disseminated Lyme disease

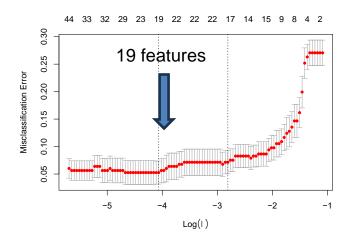
Fitzgerald, et al., Clinical Infectious Diseases, 2021, 73(7); Kehoe, et al., Scientific Reports, 2022, 12:1478.

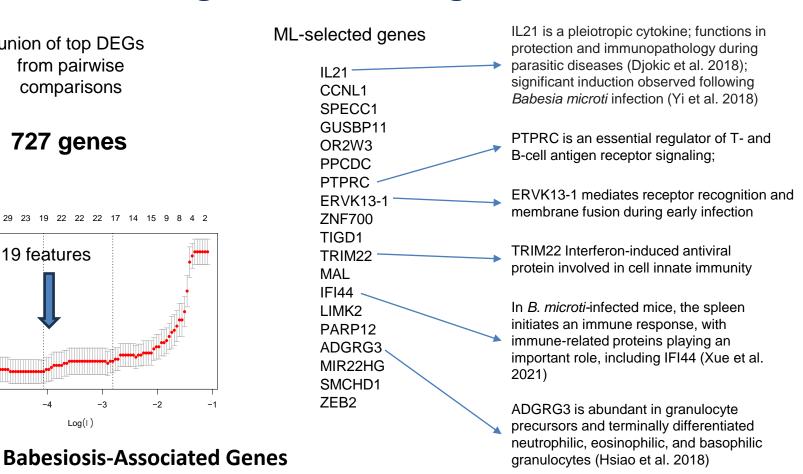

RNA-Seq for Early Lyme and PTLDS

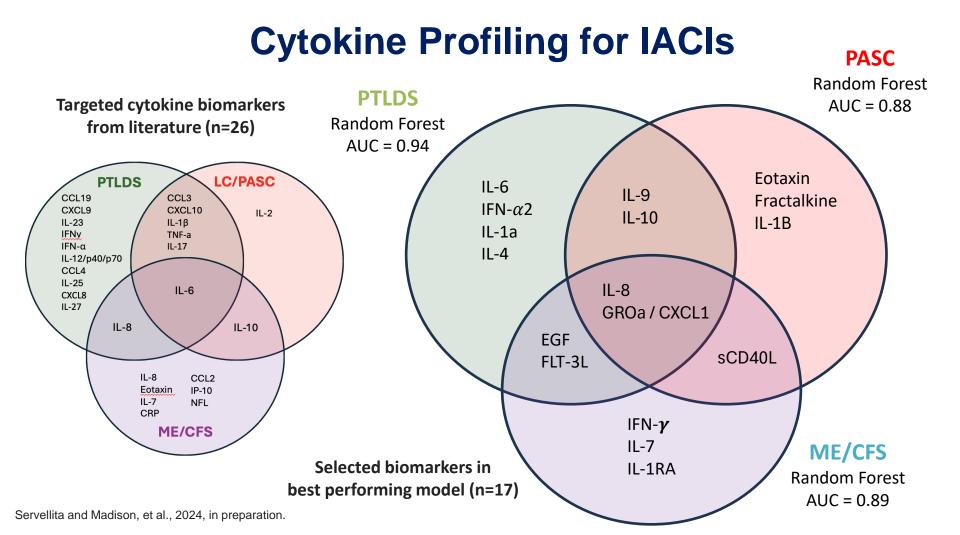


PTLDS vs. Resolved Lyme (AUC=0.86)

RNA-Seq Classifiers for Early Lyme and Babesiosis from Whole Blood




Early Lyme



Insights into Pathogenesis?

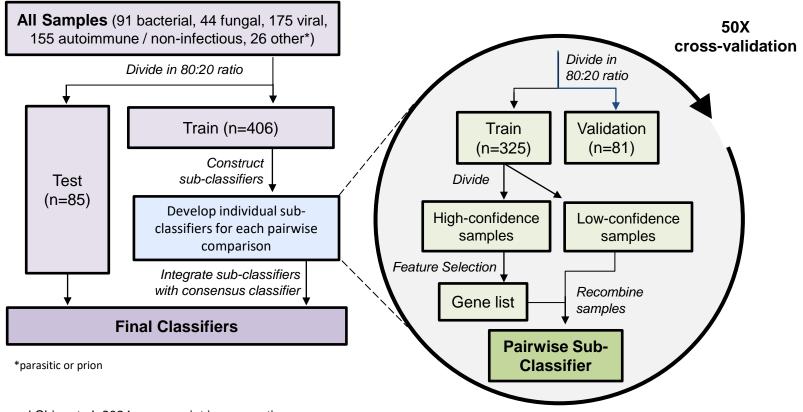
union of top DEGs from pairwise comparisons 727 genes

Clinical Metagenomic Next-Generation Sequencing Assays at University of California, San Francisco

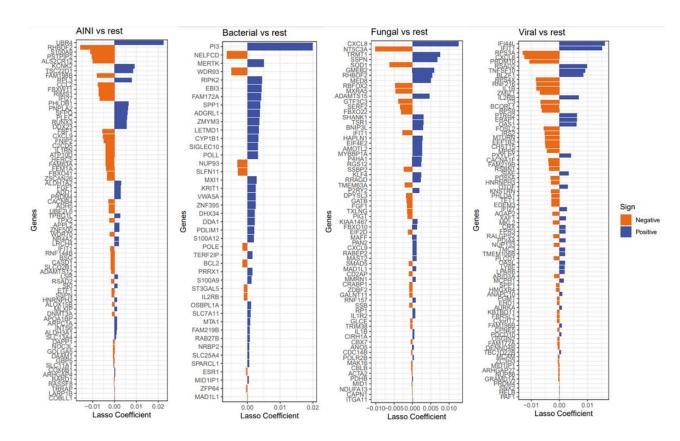
- CSF mNGS*#
- Plasma mNGS* (re-validation in progress with launch in summer)
- Viral Respiratory mNGS*#
- Body fluids mNGS*

*all tests are LDTs and not FDA-approved IVDs; #granted breakthrough device designation by the FDA

- 1. Miller, et al., Genome Research, 29(5): 831-842.
- 2. Wilson, et al., *NEJM*, 380(24):2327-2340.
- 3. Gu, et al., *Nature Medicine*, 27(1):115-124.



For Providers For Patients Technology Our Vision


http://nextgendiagnostics.ucsf.edu

CSF RNA-Seq and Machine Learning for Differential Diagnosis of CNS Syndromes (meningitis, encephalitis, and myelitis)

Omura and Chiu, et al, 2024, manuscript in preparation

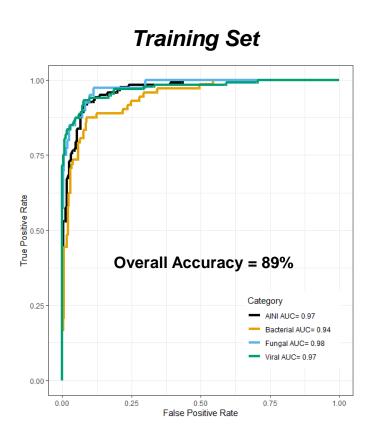
Differential CSF Biomarkers of Infectious/Non-Infectious Syndromes

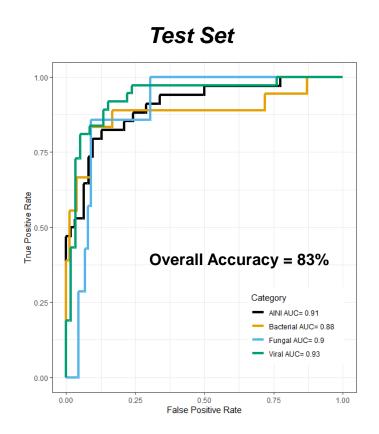
AUTOIMMUNE / NON-INFECTIOUS

- UBR4 ubiquitin-ligase enzyme, cancer neoantigen
 - RHDBF2 cancer biomarker
 - S100A9 calcium-binding protein (cancer, neurodegenerative disorder, autoimmune)
- PSTPIP2 autoinflammatory diseases
- ALS2CR12/CASP8 neurodegenerative disease

BACTFRIAL

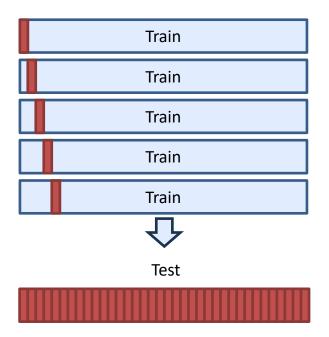
- PI3 antimicrobial peptide
- NELFCD macrophage-associated inflammation
- MERTK ,macrophage apoptotic cell recognition
- WDR93 oxidoreductase activity
- RIPK2 induced by bacterial infection


FUNGAL


- CXCL8 neutrophil-associated chemokine
- NT5C3A negative cytokine signaling regulator
- TRMT1 dimethyltransferase
- SSPN dystrophin-associated gene
- SOD1 superoxide dismutase

VIRAL

- IFI44L antiviral gene (interferon-associated)
- IFIT1 antiviral gene (interferon-induced)
- IRPS3A interferon-stimulated ribosomal gene
- CXCL8 neutrophil-associated chemokine
- PRDM!0 histone deactylation


Multinomial Classifier Performance for Infection Diagnosis

Subcategory Classification for Non-Infectious Syndromes

Category	LOO AUC	n
WBC cancer	0.74829	22
amyloid	0.790746	8
autoantibody	0.590167	40
brain cancer	0.576503	8
hereditary	0.776087	7
lupus	0.861365	7
MS	0.533951	11
neurosarcoidosis	0.853823	15
other_autoimmune	0.510366	29
solid organ cancer	0.800694	9
structural	0.569121	18
toxic-metabolic	0.865714	16
vascular	0.643735	11
vasculitis	0.7723	20

CSF Host Response Signature for CNS Amyloidosis

MNC_5932	Score		Signature
Autoimmune/Noninfectious	10		Strong
Bacterial (typical)	1		Very Weak
Bacterial (atypical)	1		Very Weak
Fungal	0		No Signature
Viral	1		Very Weak
Parasitic	1%	11	Unlikely
Worm	0%		Unlikely
Flavivirus	2%		Possible
Mycobacterium	0%		Unlikely
Dimorphic Fungi	1%		Unlikely
Mold vs rest	2%		Possible
Enterovirus- AFM	3%		Possible
Amyloid	21%	q.	Possible
Lupus	0%		Unlikely
Solid Organ Cancer	0%		Unlikely

CNS amyloidosis

Hospitalized with altered mental status, encephalopathy, fatigue, and neutrophilic pleocytosis; brain biopsy performed after discharge consistent with cerebral amyloid angiopathy

CSF Host Response Signature for Neuroborreliosis

4 cases of neuroborreliosis

CLCF1	2.784069	4.236764	3.20767	3.626301	IL-6 family cytokine	*
ADCK2	1.808971	2.54256	3.470445	2.424954	unknown function	
SLC39A13	1.717214	1.749701	3.280119	2.311277	zinc transporter	
TMEM243	2.180132	3.727614	3.329168	-0.361985	transmembrane protein	
S1PR2	1.661798	1.690055	2.575797	2.665008	mast cell receptor	*
ST6GALNAC4	1.533716	1.963451	2.217012	2.496924	sialic acid transfer	*
KIF26A	1.462193	2.267583	2.073608	2.00224	kinesin	*
LILRA4	-0.445988	2.774495	3.027446	2.339625	plasmacytoid dendritic cell si	*
SLC25A16	1.843911	1.878132	1.459621	2.469678	solute carrier transporter	
KCNN4	2.206551	2.244962	-0.352212	3.417366	potassium channel	*
RELB	1.226078	2.097651	2.113863	1.731392	NFkB pathway	*
IL15RA	1.260931	2.133217	1.833491	1.766658	interleukin receptor	*
WWOX	1.296417	2.271688	1.191076	2.173951	spinocerebellar ataxia	
RELT	1.279794	1.886893	1.688061	1.789566	NFkB pathway	*

^{*}evidence from literature supporting involving in Borrelia cell culture infections, mouse models, or Lyme neuroborreliosis patients

Take-Home Messages

- Both direct detection (e.g., Borrelia burgdorferi for LD) and indirect detection diagnostic approaches (e.g., host response 'omics testing) will likely be necessary for diagnosis of Lyme IACI
- A variety of diagnostic test modalities are in development; multiple test modalities are needed as we do not understand the pathogenesis of PTLDS
- Objective diagnostic biomarkers are urgently needed to support clinical trials of drugs and vaccines
- Given overlapping symptoms, prospective clinical studies must consider including samples from different IACIs, ideally from matched biobank collections
- Precise definitions of Lyme IACI subsets are needed to guide clinical trials, perhaps obtained by emerging 'omics technologies (population is not heterogeneous)
- Host response 'omics tests will enable not only diagnosis and discrimination, but have the potential to monitor patients and their response to experimental treatments longitudinally

Acknowledgements

UCSF Chiu Lab and VDDC
Candace Wang, BS
Jerome Bouquet, PhD
Dianna Ng, MD
Dustin Glasner, PhD
Miriam Oseguera, BS
Venice Servellita, BS/CLS
Benjamin Briggs, MD
Jenny Nguyen, BS
Alicia Sotomayor-Gonzalez, PhD
Charles Omura, BS/MS
Maia Madison, BS

UCSF Long COVID investigators Michael Peluso, MD Steven Deeks, MD

Johns Hopkins University John Aucott, MD Mark Soloski, MD

Harvard / BCH Lise Nigrovic, MD

UCSF Lyme Disease Clinical Trials Center (a node of the Lyme Clinical Trials Network) Felicia Chow, MD Margaret Wilson, BS Cassandra Recchioni, BS/NP Venice Servellita, BS/CLS Miriam Oseguera, BS

Venice Servellita

> UCSF Lyme Disease Clinical Trials Center

American Red Cross Laura Tonetti, PhD Sue Stramer. PhD

Lyme Disease Biobank Liz Horn, PhD

Columbia University Brian Fallon, MD

ME/CFS Biobank Eliana Lacerda, MD/PhD

<u>Funding</u>

- · Steven and Alexandra Cohen Foundation
- Bay Area Lyme Disease Foundation
- Marc Benioff Foundation
- NIH R33 AI120977 and R01 HL105701-01
- US Centers for Disease Control and Prevention
- DoD Tickborne Disease Research Program
- Mammoth Biosciences, Inc.
- Abbott Pathogen Discovery Award
- California Initiative to Advance Precision Medicine
- · Charles and Helen Schwab Foundation
- George and Judy Marcus Innovation Fund
- · Chan-Zuckerberg Biohub
- · Delve Bio

Web: https://chiulab.ucsf.edu
https://lvme.ucsf.edu