National Academies of Sciences, Engineering & Medicine

The Evidence Base for Lyme Infection-Associated Chronic Illnesses and Treatment Committee Meeting #3, Session I

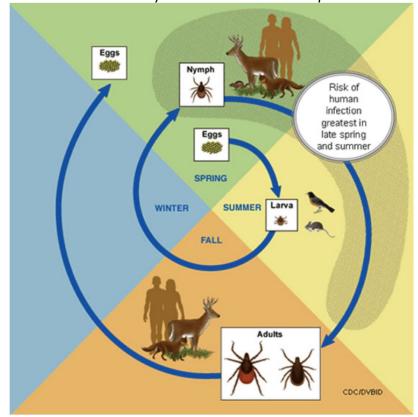
Pathogen Persistence and Host Immune Response

Linda K. Bockenstedt, MD Harold W. Jockers Professor of Medicine Yale School of Medicine

Ticks, Borrelia and Lyme Disease

Evolutionary problem:

No transovarial transmission of Borrelia burgdorferi from infected adult tick to egg


Survival in nature requires:

"Reservoir" host for spirochetes: small rodents, birds, lizards

Deer (in North America) to support Ixodes tick reproduction

Telford & Goethert, Curr Issues Mol Biol 2021:42:267-306

Two -Year Life Cycle of Ixodes scapularis Ticks

Cultured Borrelia # Tick-Transmitted Borrelia

Cultured Borrelia

- No selection pressure
- Lose pathogenicity and infectivity with repeated passage
- "clonal" populations likely not genetically identical
- Can enrich for persisters

Tick-Transmitted Borrelia

- Tick selection pressure
 - Bottlenecks at midgut epithelium and hemocoel prior to salivary gland entry
- Changes in gene expression to permit host adaptation begin prior to entry into the animal
- Tick saliva facilitates pathogen transmission
- Tick-reservoir host life cycle selects for spirochete "fitness"

Animal Models to Study Borrelia Persistence: Experimental Factors Influencing Outcome

• Borrelia burgdorferi

- Origin and strain
- Culture conditions
- Method of tick infection

Method of Infection

- Inoculation of cultured Borrelia
- Inoculum dose
- Tick-transmission
- Number of ticks

Animal model

- Species
- Immune competency
- Reservoir competency
 - Can the species transmit infection back to feeding ticks?
- Experimental controls

Antibiotics

- Bacteriostatic vs bactericidal
- Oral, parenteral
- Dosing/drug pharmacokinetics
- Stage of infection

Evaluation of Persistence

- In the animal
 - Culture, DNA/RNA, microscopy, immune response, xenodiagnosis with ticks
- Are spirochetes viable and infectious?
 - Immunosuppression
 - Tissue transplant
 - Xenodiagnosis with culture positivity or transmission to new host

Interpretation of Studies

Consensus (?)

- Antigenic material and nucleic acids can be detected after antibiotic treatment of Borrelia infected animals
- Presence of viable, culturable, infectious spirochetes after antibiotics is a rare and inconsistent finding across studies
- When nucleic acids or rare spirochete, nonculturable forms are identified after antibiotics, there is no clear pathology directly associated with them
- There is no animal model of PTLDS

Verschoor, et al. Clin Microbiol Rev 2022 Dec 21;35(4):e0007422

Differences in Perspective

Evidence for Persistent Borrelia Antigens

Research article

Related Commentary, page 2344

Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy

Linda K. Bockenstedt, 1 David G. Gonzalez, 2 Ann M. Haberman, 2 and Alexia A. Belperron 1

1 Department of Internal Medicine and 2 Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.

Alan Barbour: "Remains of Infection" *J Clin Invest*. 2012;122(7):2344-2346

Stages of Dying

- Loss of cell wall
 - · Replication, reversion
- No cell wall
 - No replication or reversion
- Cell lysis or immune breakup
 - Blebs or vesicles containing DNA, protein
- Degradation
 - DNA degrades, protein remains

Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis

Brandon L. Jutras^{a,b,c,1}, Robert B. Lochhead^{d,2}, Zachary A. Kloos^{a,e}, Jacob Biboy^{f,g}, Klemen Strle^d, Carmen J. Booth^h, Sander K. Govers^{a,b}, Joe Grayⁱ, Peter Schumannⁱ, Waldemar Vollmer^{f,g}, Linda K. Bockenstedt^k, Allen C. Steere^d, and Christine Jacobs-Wagner^{a,b,c,l,3}

PNAS 2019; 116(27) 13498-13507

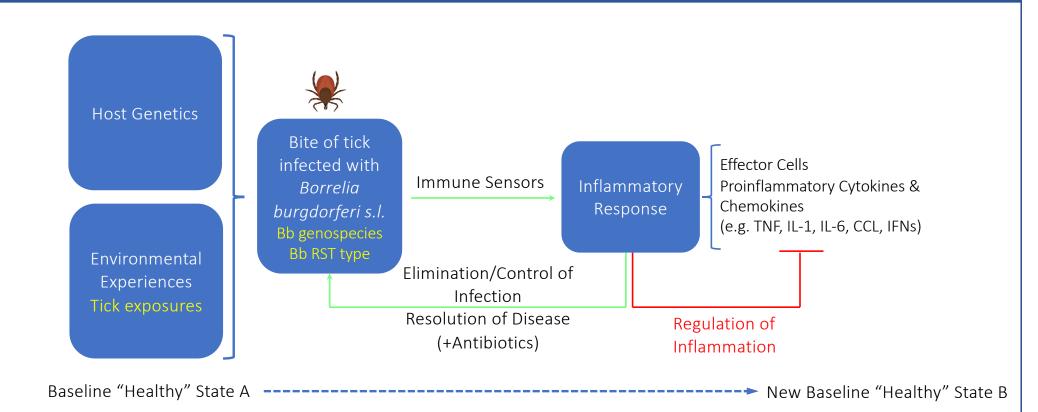
RESEARCH Open Access

Peptidoglycan in osteoarthritis synovial tissue is associated with joint inflammation

Meaghan N Holub^{1,2}, Amanda Wahhab², Joseph R Rouse², Rebecca Danner², Lauren G Hackner², Christine B Duris³, Mecaila E McClune^{4,5,6}, Jules M Dressler^{4,5}, Klemen Strle⁷, Brandon L Jutras^{4,5,6}, Adam I Edelstein^{8*} and Robert B Lochhead^{1,2,9*}

Clin Rheumatol (2012) 31:989–994 DOI 10.1007/s10067-012-1964-x

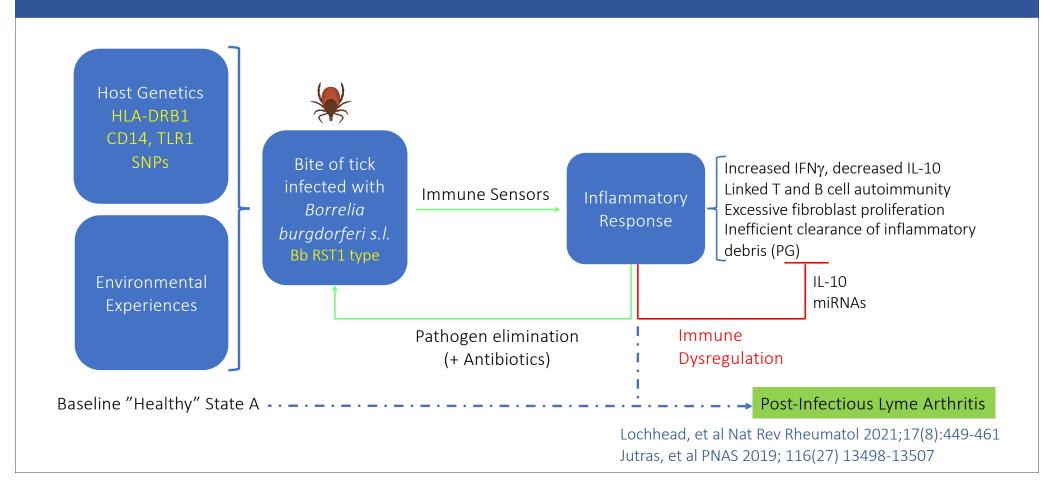
ORIGINAL ARTICLE


The amber theory of Lyme arthritis: initial description and clinical implications

Gary P. Wormser · Robert B. Nadelman · Ira Schwartz

PART 2:

Host Response & Post-Treatment Complications of Lyme Disease


Host Response in Lyme Disease

Lyme Arthritis: A Late Manifestation of Infection

- Occurs months after infection
- Adult patients typically do not remember an acute illness suggestive of infection with Borrelia burgdorferi
- Strong seropositivity is the rule
- Treatment of the primary infection has been delayed by many months
- The vast majority respond to IDSA-recommended courses of antibiotics
- PCR positivity in joint fluid after institution of antibiotics does not correlate with outcome of treatment

Outcome: Post-Infectious Lyme Arthritis

Outcome: Post Treatment Lyme Disease Syndrome

Major Clinical Symptoms

- Fatigue
- Musculoskeletal pain
- Cognitive issues

Risk Factors

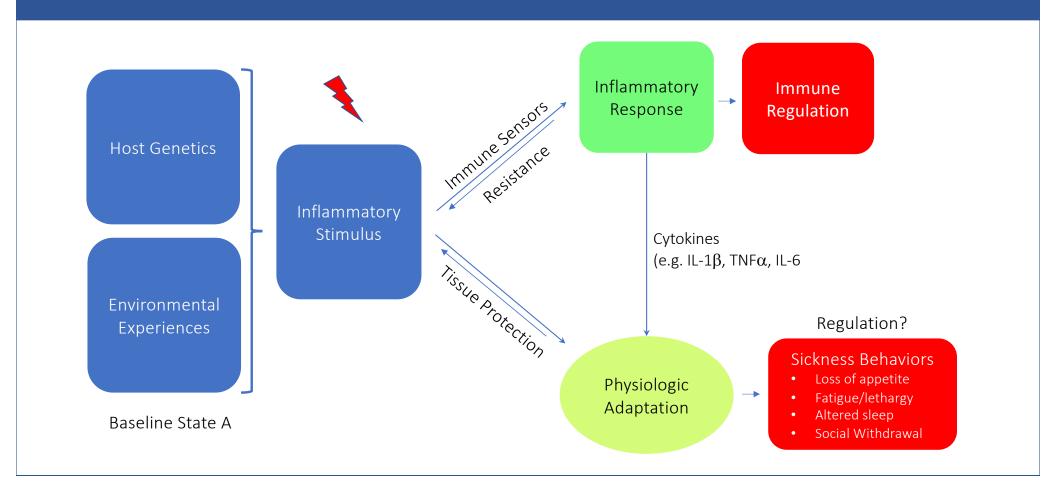
- Severity of symptoms at the time of treatment
- Presentation with multiple EM

Autoimmunity Anti-neuronal antibodies

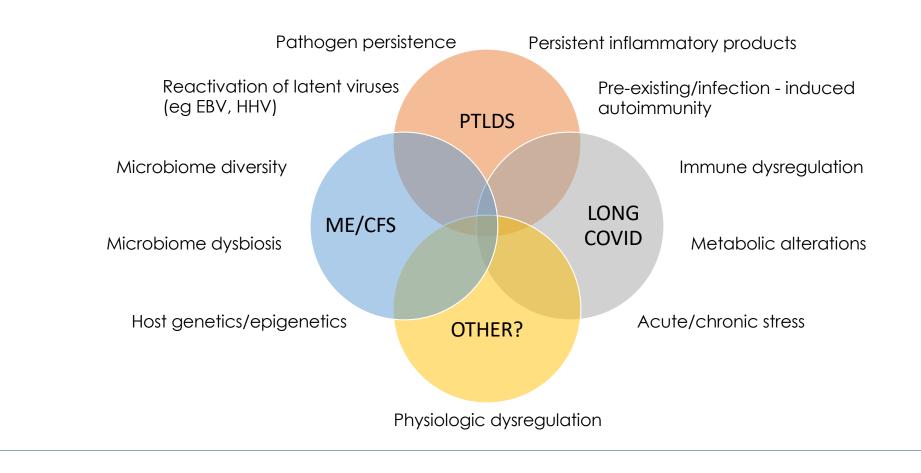
Chandra, et al. Brain Behav Immun 2010;24:1018-1024 Jacek, et al. J Neuroimmunol 2013; 255:85-91 Fallon, et al. Brain Behav Immun Health 2020; Feb; 2: 100015

Lower Initial Plasmablast

Blum, et al. Front Immunol 2018; 9:1634

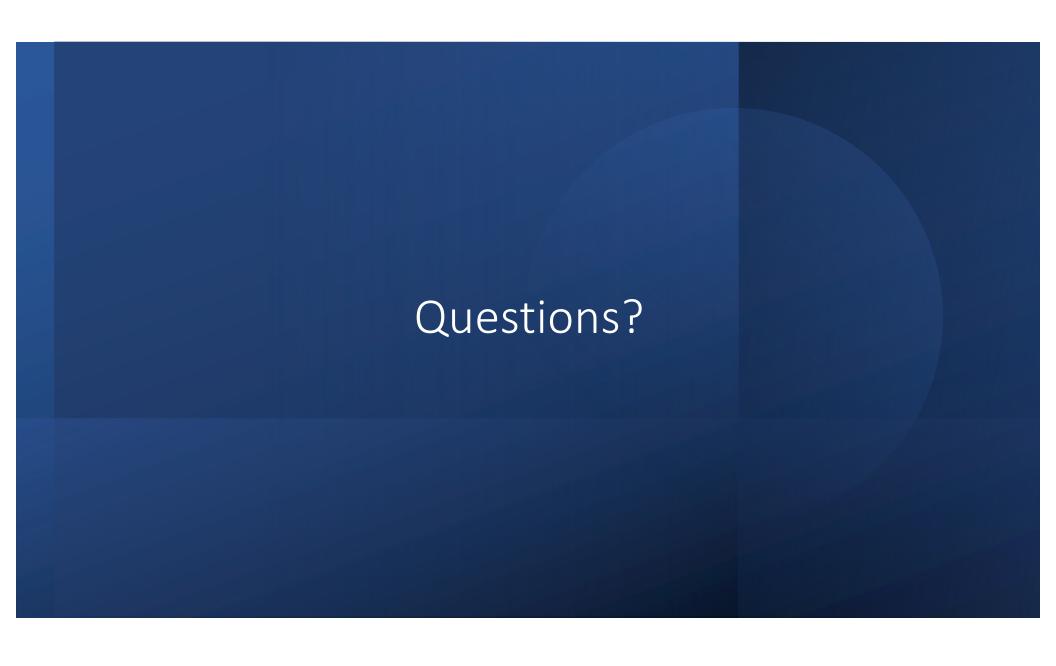

Elevated Cytokines IL-23, IFNα

Strle, et al. Clinical Infect Dis 2014; 58:372-380 Jacek, et al J Neuroimmunol 2013; 255:85-91 Hernandez, et al. Emerging Infect Dis 2023; 29(6):1091-1101


Metabolic Signature

Fitzgerald, et al. Clinical Infect Dis 2021; 73(7):e2342-e2349

Host Response to Immune Challenges



Research Opportunities

Research Design Opportunities to Understand Pathogenesis

- Standardize case definitions
- Define subcategories
- Use common terminology for data collection
- Apply a multitude of modern analytic tools/technologies
- Make use of available centralized knowledge bases and resources
- Engage experts outside the field

