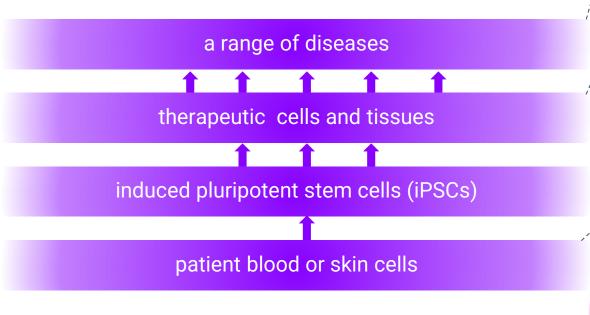
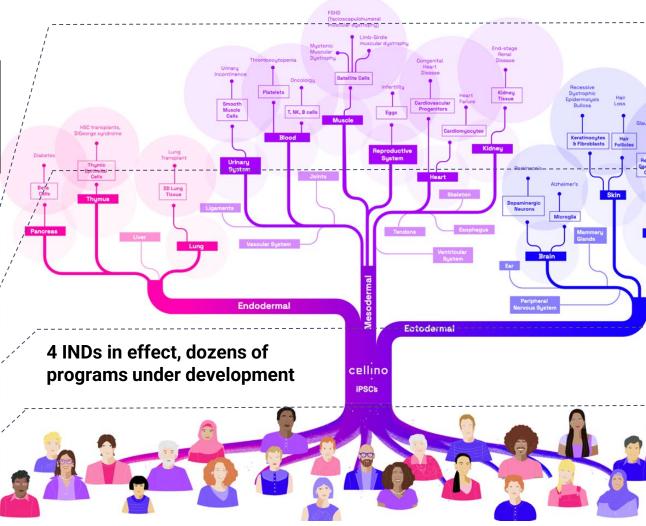
Cellino: Your Cells, Your Cure Z

A ultra -scalable biomanufacturing platform for personalized regenerative medicines


NASEM Forum on Regenerative Medicine Washington, DC October 17, 2023


Nabiha Saklayen, Ph.D. CEO and Co-Founder, Cellino

Benefits

- no immunosuppression (more accessible for aging & immuno-compromised population)
- no donor matching (more accessible for genetically diverse population)

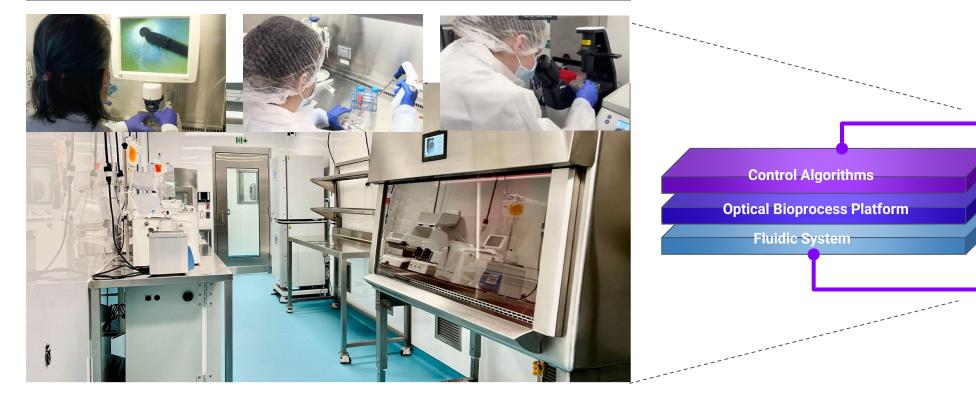
cellino

Current manufacturing limited by expert manual operations, open bioprocesses, and high -grade cleanrooms

manual culture, scraping, and transfers by hand

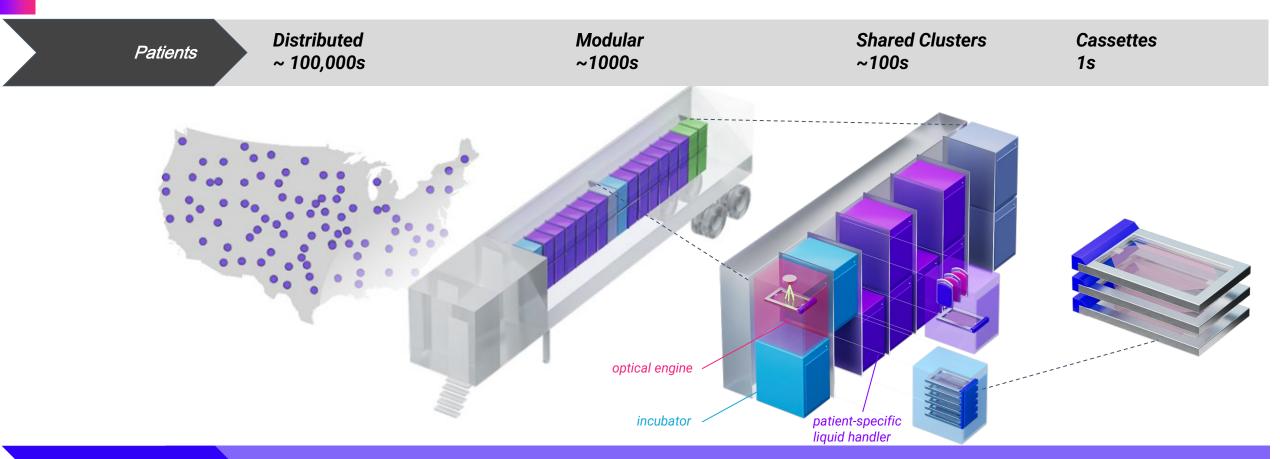
Visual inspection and decisions with a microscope

REPEATED OVER 30-140 days (depending on cell type)


Recent advances in AI, optics, and fluidics enable the Cellino platform to be autonomous, closed, and modular

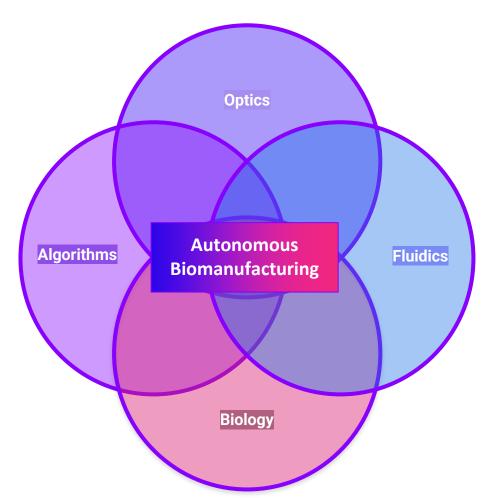
MANUAL

CLOSED


AUTONOMOUS

MODULAR

Cellino vision: Point -of-care, closed, and autonomous biomanufacturing to expand access to auto iPSC -derived therapies



Biomanufacturing

AUTONOMOUS

Cellino's multidisciplinary team is building an autonomous biomanufacturing platform for patient access

Industry Experience

Biomanufacturing: preclinical/clinical/commercial manufacturing for cell therapies

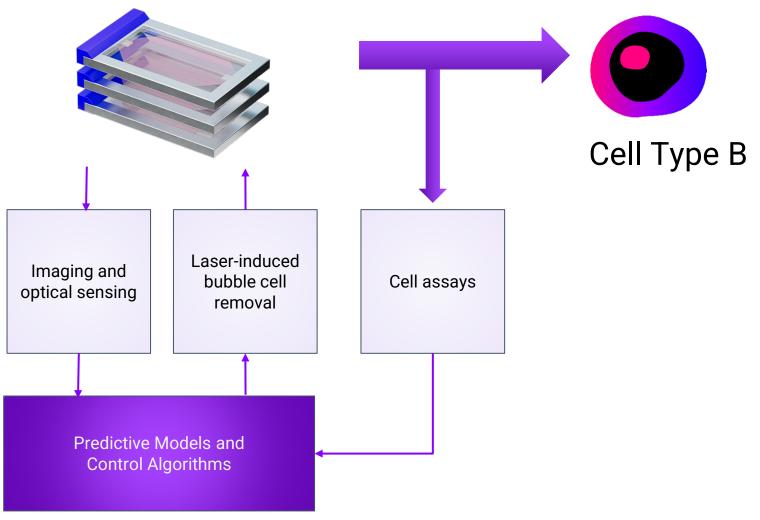
Pharma/biotech: cell therapies, molecular biology, genomics

Med devices: 25 medical devices approved + serving over 500,000 patients

Photonics/semiconductors: w/ \$500MM+ products shipped

AI/ML: high-resolution, image-guided AI technologies in defense

Fluidics: oil and gas, organ-on-chip



The platform makes in -process decisions using image -guided algorithms and removes unwanted cells using laser -induced bubbles

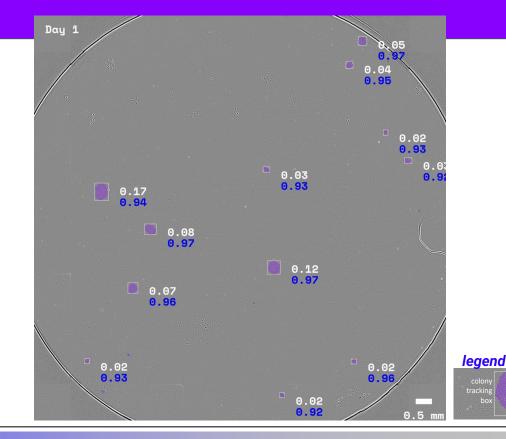
Benefits

- passage-free culture
- minimal expert oversight
- single-cell precision
- closed-compatible
- ..

cellino

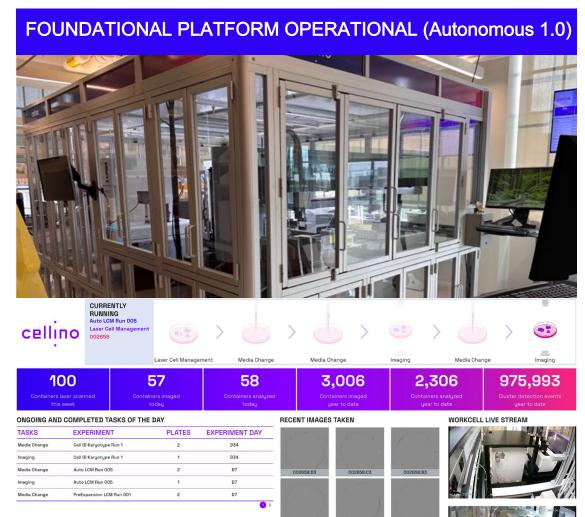
Example case #1: replacing operator -driven selection of colonies with Al -based prediction of colony quality

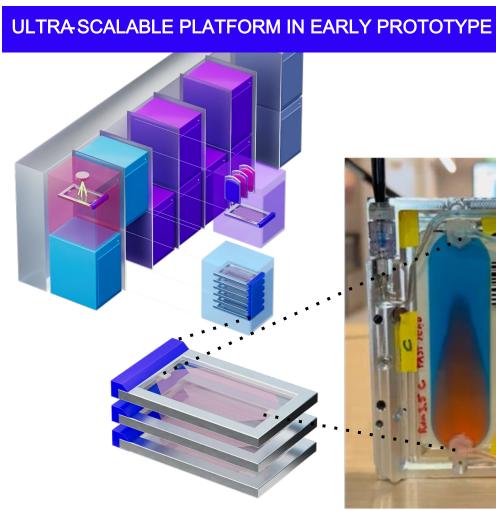
TRADITIONAL APPROACH CELLINO APPROACH Human operator prediction of colony ML-based prediction of high -quality colony, ML quality, manual scraping driven clonal management Transmission Imaging Laser Cell Removal Al-Generated Cell Map Colony Feature Tracking Laser Cell Removal Map Al Densitu Map Al Pluripotency Map Multi-Colony Prediction and Management System



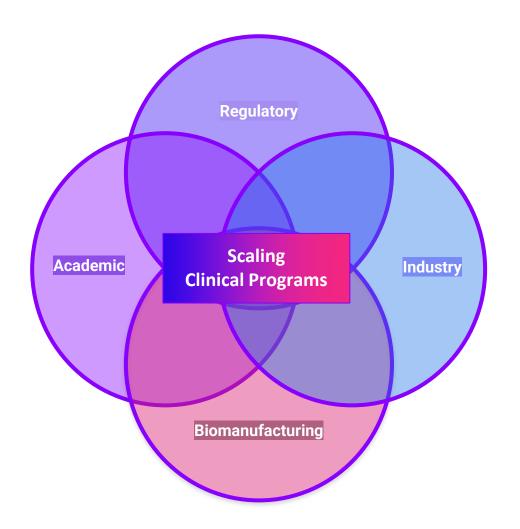
Example case #2: replacing operator -driven well -to-well passaging with ML -driven laser -based cell removal

TRADITIONAL APPROACH
Manual well -to -well passaging




CELLINO APPROACH
Autonomous, label -free, PASSAGEFREE bioprocess

We are advancing our foundational platform towards clinical manufacturing to support clinical programs



	_
V	

Cells Disease	IND	Ph 1/2a	Ph 2	Ph 3	Commercial
Retinal Pigment Epithelial Cells Age-related Macular Degeneration					
5	Retinal Pigment Epithelial Cells	Retinal Pigment Epithelial Cells	Retinal Pigment Epithelial Cells	Petinal Pigment Epithelial Cells	Petinal Pigment Epithelial Cells

Robust academic/industry/regulatory/biomanufacturing collaborations needed to support rapidly advancing programs

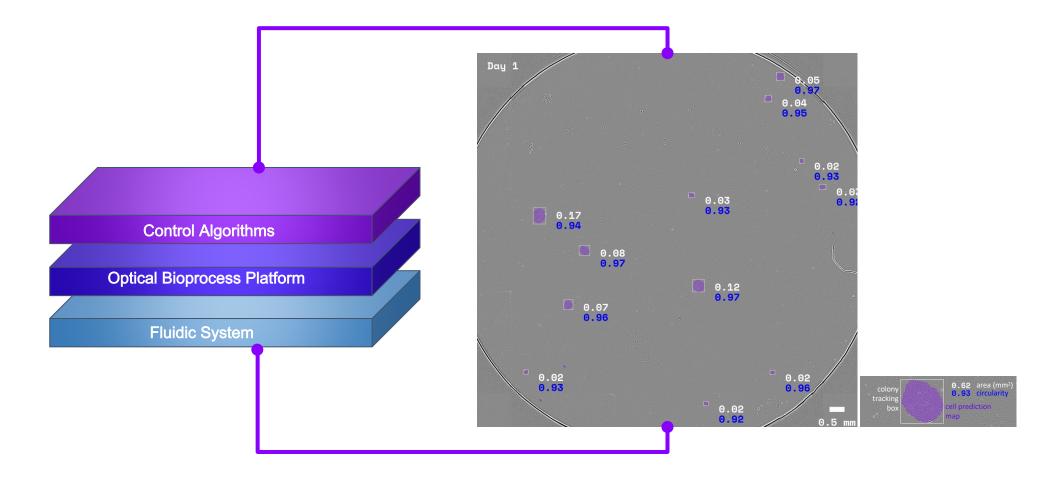
- How do we establish a new standard approach compared to manual biomanufacturing?
- How do we define a "good" iPSC cell?
- How do we accelerate the path of standardization to meet clinical trial timelines?
- How do we implement good machine learning practices for AI-based biomanufacturing processes?

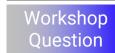
Cellino: Your Cells, Your Cure Z

A ultra -scalable biomanufacturing platform for personalized regenerative medicines

NASEM Forum on Regenerative Medicine Washington, DC October 17, 2023

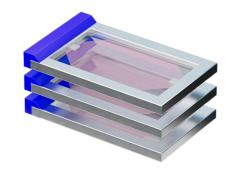
Nabiha Saklayen, Ph.D. CEO and Co-Founder, Cellino

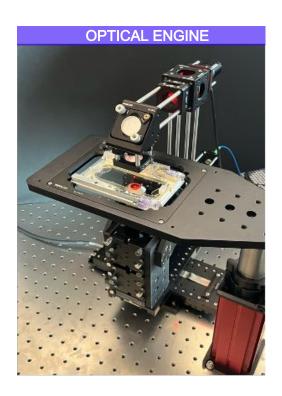

Gen1 System Running Optical Bioprocess

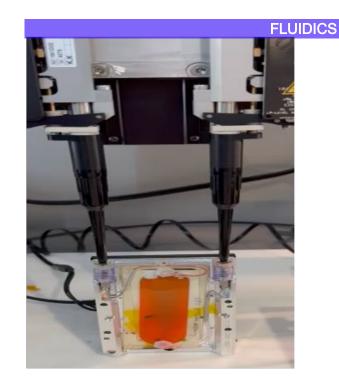


iPSC DATA THUS FAR IS PROMISING COLLABORATION WITH DR. KAPIL BHARTI'S GROUP AT NE Stem cell markers in laser manage Representative data of manual passaging Representative data of laser colony shepherding 2M vs. manually passaged iPSCs (n=1, 3 wells)Collaboration to differentiate OCT3 4+ to Retinal OCT3 4+ **Pigment Epithelial cells** SSEA4+ OCT3 4+ OCT3 4+ OCT3_4+ OCT3 4+ Laser-manged Manually passaged anti-SSEA4 OR anti-OCT3 4 Unstained control n=2, 6 wells

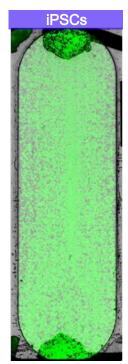
Cellino's Full -stack Autonomous Optical Bioprocess

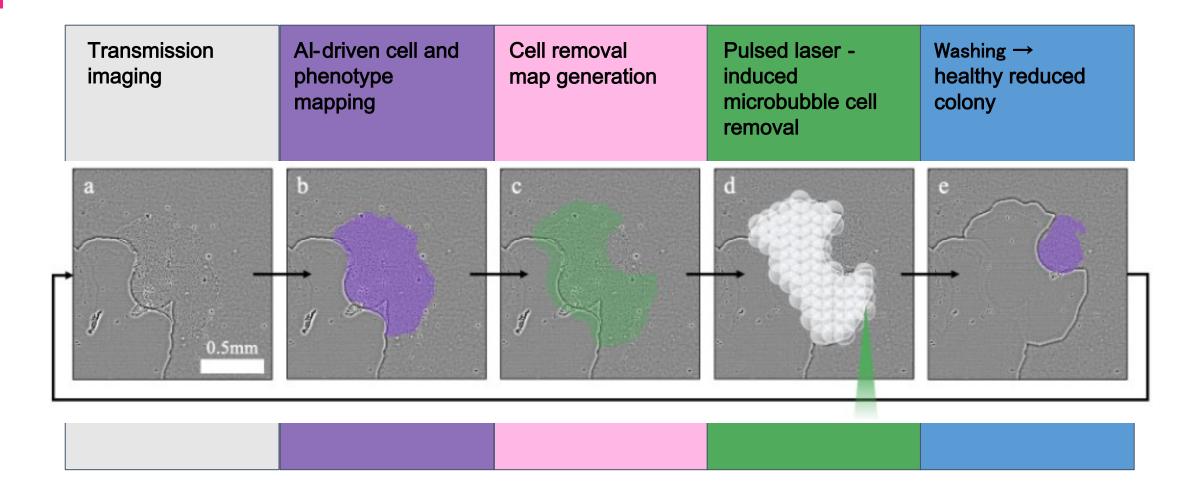





Gen2: Cassette System Development Started

Multiple Cassette Architectures for Biomanufacturing


both reprogramming and differentiation capabilities



Cellino's Novel Optical Bioprocess For Scale

2023 BOLD GOALS FOR U.S. BIOTECHNOLOGY AND

decrease health inequities

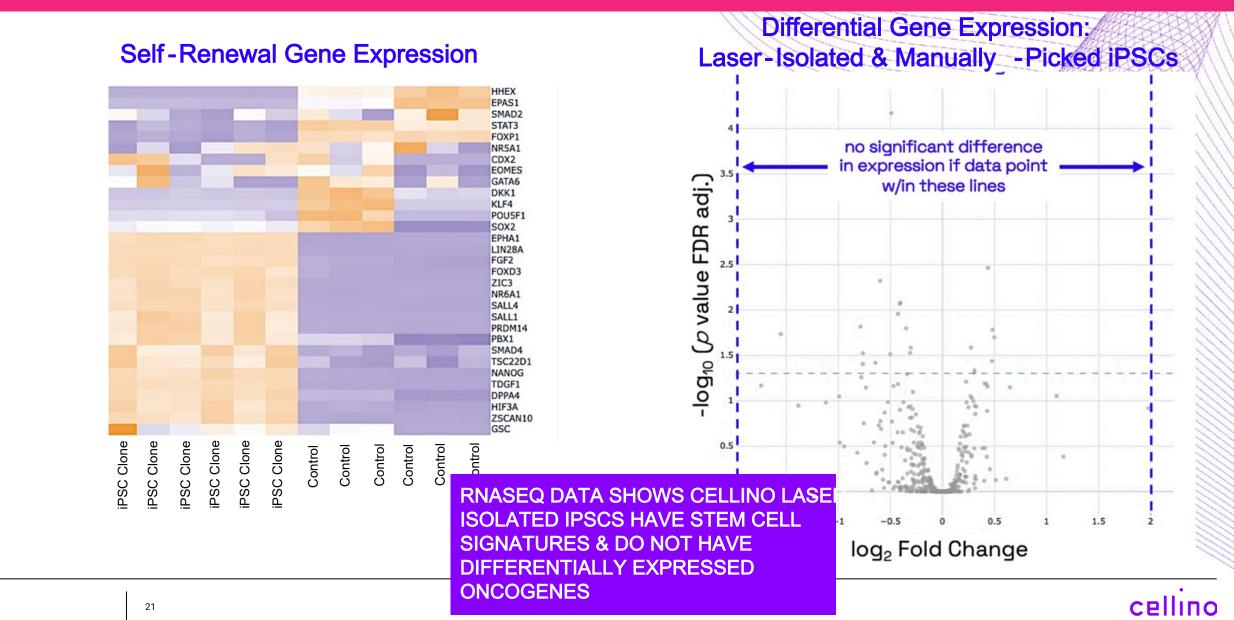
address our increasingly aging, and diversifying population

be patient-specific to minimize risk of immune rejection

address major public health sectors / diseases

expand access reach patients living everywhere 2 be POINT-OF-CARE at hospitals

decrease cost 10-fold


be affordable (not cost up to \$3M per patient)

Cellino's Roadmap Towards Our Biomanufacturing Moonshot

2017 - 2020		2021	2022	2023
2017 Cellino	infr	t custom Alcloud astructure orporated Al/ML into bioprocess	Detect cells, detect colonies, track colonies over time, calculate confluence, and automate colony selection	 Calculate cell density, identify pluripotent vs non-pluripotent cells, time-series metrics such as growth/proliferation rates
founders met - laser processing of cells with custom consumables	man • Dev tec	ted reprogramming techniques nually reloped laser removal hniques (removing individual s &entire colonies)	 iPSC101 - developed first automated Cellino iPSC process Laser-based clonal isolation 250 days of automated culture 60 iPSC lines from 7 donors Set up quality control metrics 	 iPSC102 - developing prototype of passage-free clinical-grade process Passage-free process Human in loop→autonomous for 60 days Scale quality metrics
2020 Decision to focus on personalized iPSC-based cell therapies		stom consumable plates ser scanner2	 Workcell#1: Automated cell culture Laser scanner3 & high throughput consumables 	 Workcell#1: Autonomous cell culture Workcell#2: automated QC prep Laser scanner4 & fluidic chamber prototype
	la s	alth and viability of cells post- er removal C iPSC colony generation from ted reprogramming techniques	• Characterization of IPSC101/ automatically generated iPSCs that have undergone laser-based clonal isolation: sterility, pluripotency, functionality, genomic stability, etc.	 Further characterization of iPSCs undergoing passage-free laser-based cell maintenance process: karyotyping, pluripotency, etc Differentiation to RPEs

Does the laser have a negative impact on stem cell phenotype or oncogene expression of the remaining cells?

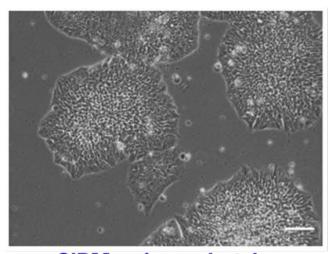
RNAseq showed laser -isolated iPSCs display stem cell signatures and do not have differentially expressed oncogenes.

A third -party vendor characterized laser -isolated iPSCs and manually -picked iPSCs and showed they were comparable for a range of assays.

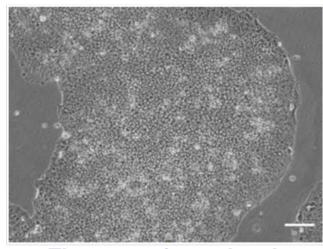
Purpose

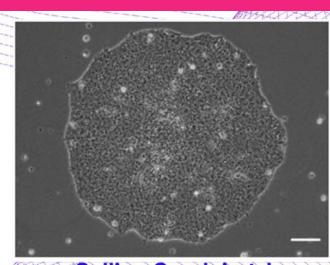
3rd-party analysis by Elixirgen Scientific to compare laser-isolated iPSCs to traditionally-produced iPSCs

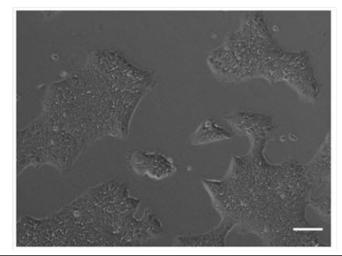
Samples Tested

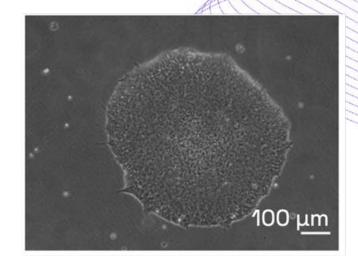

- Control lines (no laser):
 - n=1 Thermo episomal iPSC ctrl
 - n=1 CIRM episomal iPSC ctrl
 - n=3 Cellino Sendai ctrl (manually picked)
- Experimental lines (laser colony isolation):
 - n=2 Thermo episomal
 - n=3 Cellino Sendai

Analyses Performed


- visual inspection for morphology and (absence of) spontaneous differentiation
- 💆 p1 viability
- ☑ %TRA1-60, SSEA4+ (flow cytometry)
- 🗹 karyotype g-banding (on a subset of samples listed above)

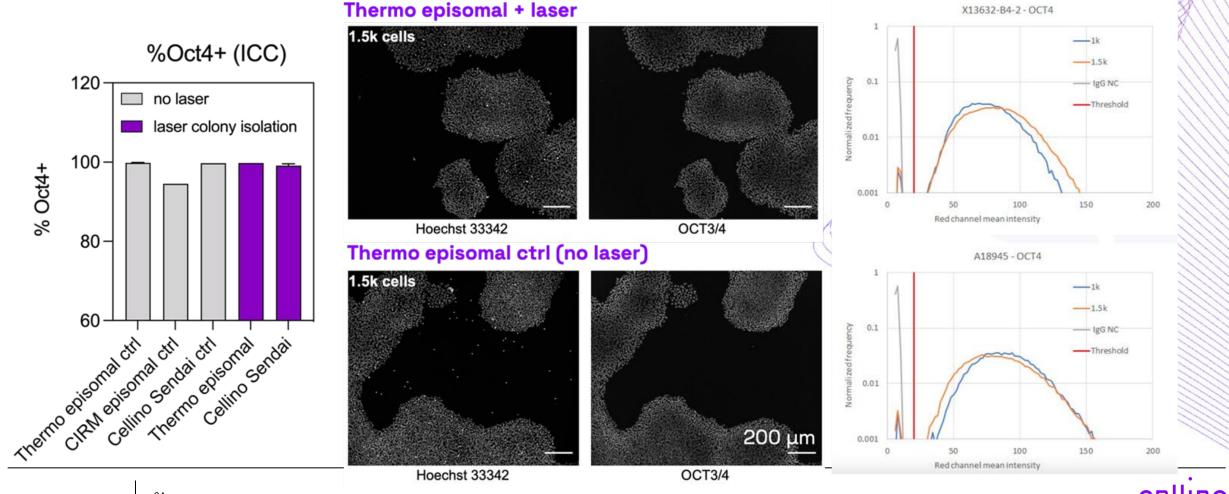

A third -party vendor characterized laser -isolated iPSCs and manually -picked iPSCs and showed they were comparable for a range of assays.


CIRM episomal ctrl


Thermo episomal ctrl

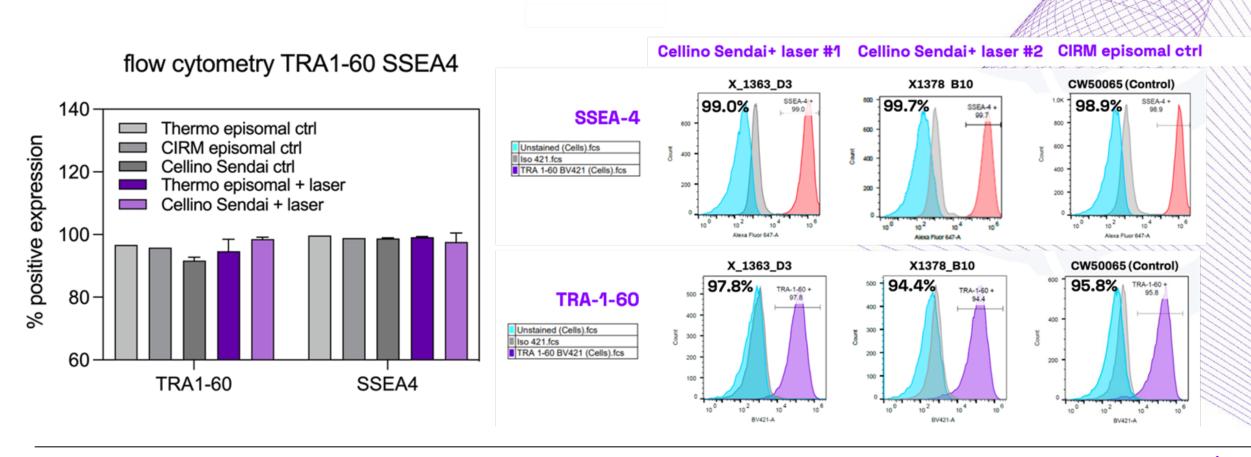
Cellino Sendai ctrl

Thermo episomal + laser


Cellino Sendai + laser

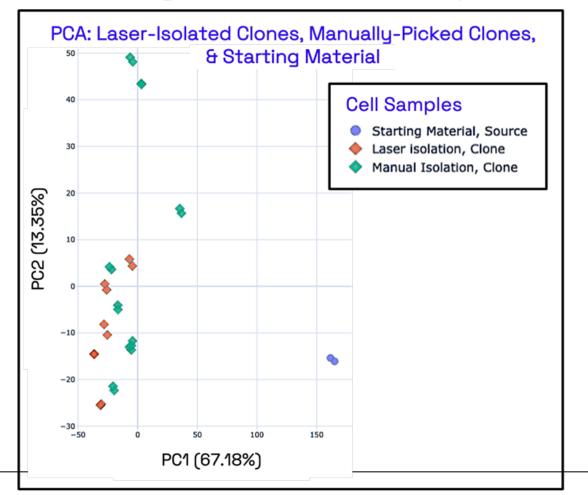
A third -party vendor characterized laser -isolated iPSCs and manually -picked iPSCs and showed they were comparable for a range of assays.

Analysis & Conclusion


Laser-isolated iPSC lines show comparable %0ct4 expression, measured by ICC image analysis.

A third -party vendor characterized laser -isolated iPSCs and manually -picked iPSCs and showed they were comparable for a range of assays.

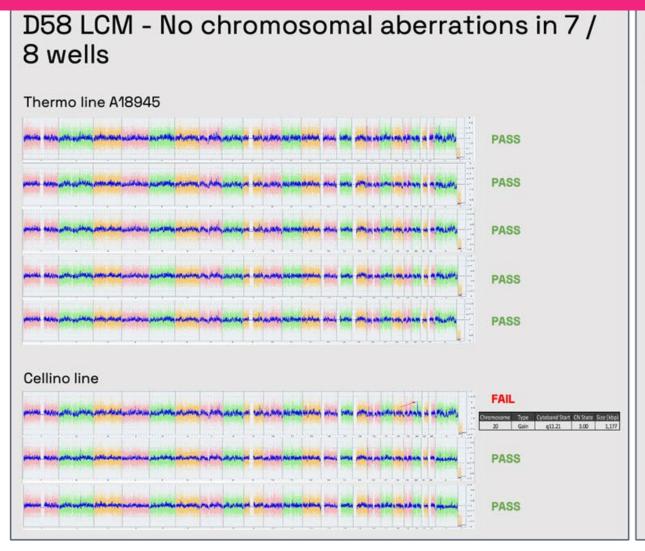
Analysis & Conclusion


Laser-isolated iPSC lines show comparable TRA1-60 and SSEA4 expression, measured by flow cytometry.

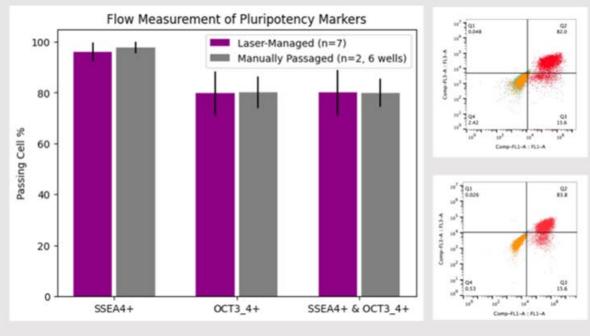
A third -party vendor characterized laser -isolated iPSCs and manually -picked iPSCs and showed they were comparable for a range of assays.

Takeaway: RNAseq analysis shows similar clustering between laser-isolated iPSC lines and manually-picked iPSC lines generated from 1 donor sample.

1 donor sample;


- CD34+ cells
- iPSCs generated w/ Sendai reprogramming:
 - laser isolated
 vs. manually picked

LATEST DATA: Laser cell management for 30 -60 days showing promising results in key assays


Experiments	Status	Days of LCM in single well	Wells processed	Cell lines	Results
Human determined laser scanning using laser scanner	✓	30, 60	4	Thermo line	Karyotyping 4/4 PASS Flow 3/4 PASS (1/4 processing)
2. Human determined laser scanning using Cellino viewer	✓	30, 60	16	Thermo line Cellino line	SeV(processing)
3. Human determined laser scanning using Cellino viewer	✓	30, 60	16	Thermo line Cellino line	Karyotyping D58 7/8 PASS, 1/8 FAIL Flow D57 7/8 PASS, 1/8 FAIL WES (processing), RNA-Seq (processing)
4. Limited autonomous determined scanning, human - assisted (scan object at counterclockwise rotation) using Cellino viewer	Ongoing	30, 60 (Ongoing)	96	Thermo line Cellino line	Karyotyping (ongoing) Flow (ongoing) SeV(ongoing)
5. Fully autonomous determined laser scanning (scan frequency and directionality)	Future	60	TBD (> 96)	Thermo line Mult ip le cellino lines	Karyotyping Flow, Se V, WES, RNA-Seq

LATEST DATA: Laser cell management for 30 -60 days showing promising results in key assays

D57 LCM - Equivalent OCT4 and SSEA4 expression to manually passaged wells (Thermo & Cellino lines, n=7)


We collected extensive data on iPSCs generated with Cellino bioprocess (clonal selection)

2022 IPSC LINE GENERATION

60 clonal iPSC lines generated & cryopreserved

7 donors: 2 African-American, 1 Latino, 4 Caucasian

COLLABORATION WITH NEI (DR. KAPIL BHARTI)

Quality Control by FACS, TEER and POS

	Day25			Day 40				
Day-2	Pigm.	TYRP1, %	MITF1, %	Pigm.	TYRP1, %	PMEL17, %	CRALBP, %	MACS, %
2M	4	57.75	93.85	5	98.95		78.75	65.8
3M	4	69.50	97.10	5	97.75	94.75		64.4

MODEL TO AUTOMATE COLONY SELECTION

86% of time, model's #1 choice matched SME trained on 3284 images of colonies

AUTOMATION STATS

250 days automated operations

520 wells underwent laser colony isolation

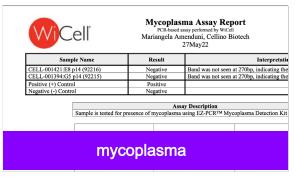
Imaging capacity: 3456 96-wells/day

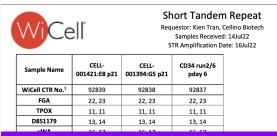
laser colony isolation capacity: 576 96-wells/day

MANUFACTURING READINESS

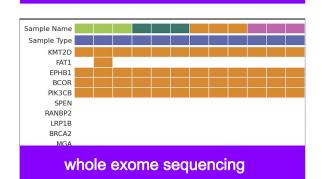
- 3 QC vendor relationships established
- 1 expansion partner relationship established
- 9 internal QC assays developed
- 2 blood cell vendor relationships established

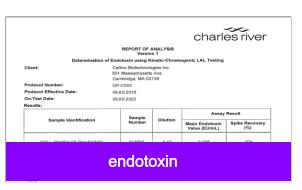
We collected extensive data on iPSCs generated with Cellino bioprocess (clonal selection)

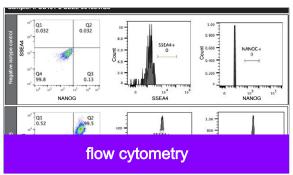

	ATTRIBUTE	TEST	METHOD	TESTED MATERIAL	RELEASE CRITERIA
		Mycoplasma	WiCell (SOP-83.01)	Medium pre-cryopreservation	negative
		Bacterial & Fungal sterility	USP<71> and <61>, Ph.Eur.2.6.27 and 2.6.1, JP17<4.05> and <4.06>	Medium post-thaw	negative
-		Endotoxin	CRL (GP-C555)	Medium post-thaw	negative
CRITERIA	Safety	Residual Sendai vector testing	qPCR	Cells pre-cryopreservation	< 0.01 copies/ cell
		Chromosome analysis	G Band karyotyping	Cells pre-cryopreservation	Identical to patient/ donor karyotype
RELEASE		Oncogene integrity	WES, RNA-Sequencing	Cells pre-cryopreservation	Identical to patient/ donor oncogene sequence
	lala matta s	Patient/ donor dentity	STR	Source material & iPSCs post-thaw	identical to patient/ donor
	ldentity	Cell identity	Flow cytometry	Cells post-thaw	>90% SSEA4 NANOG +/+
	Cell Health	Viability	Dye exclusion test	Cells post-thaw	>60% post-thaw viability

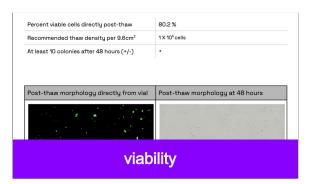

	ATTRIBUTE	TEST	METHOD	TESTED MATERIAL
\	Colony	Time-series colony growth tracking	Time-series image collection of colony growth pre-laser isolation	Cells in-process during reprogramming
.o. on	information	Single timepoint colony morphology	Image-based characterization to assess circularity, area, & edge smoothness, at time of laser colony isolation	Cells in-process during reprogramming
FOR INFO.	Potency	Pluripotency	Directed differentiation towards endoderm, mesoderm and ectoderm (trilineage)	Cells post-thaw
윤	Expression profiling	Transcriptome analysis	RNA-Sequencing	Cells pre-cyropreservation

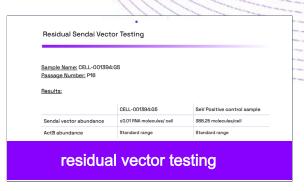
CELLINO only

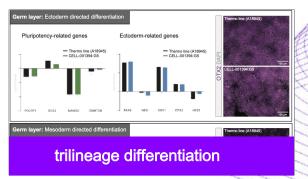



We collected extensive data on iPSCs generated with Cellino bioprocess (clonal selection)

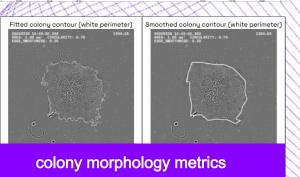




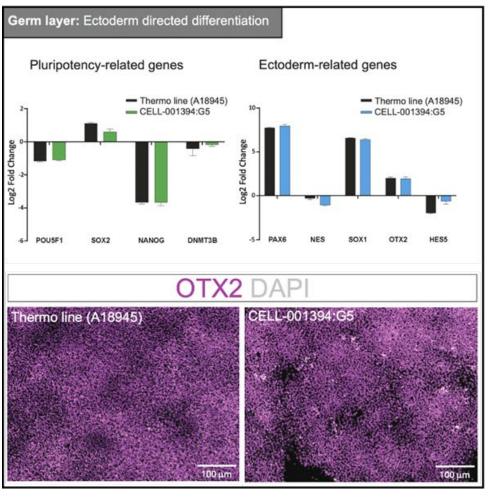

short tandem repeats (STR)

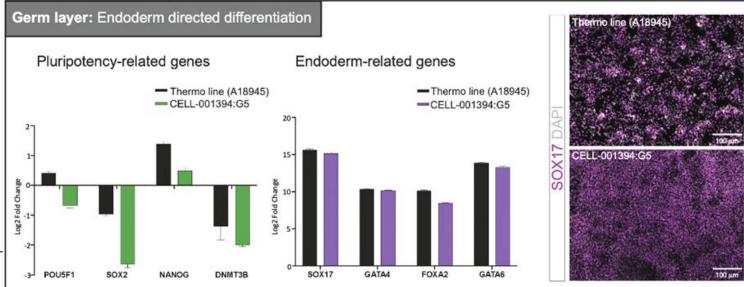




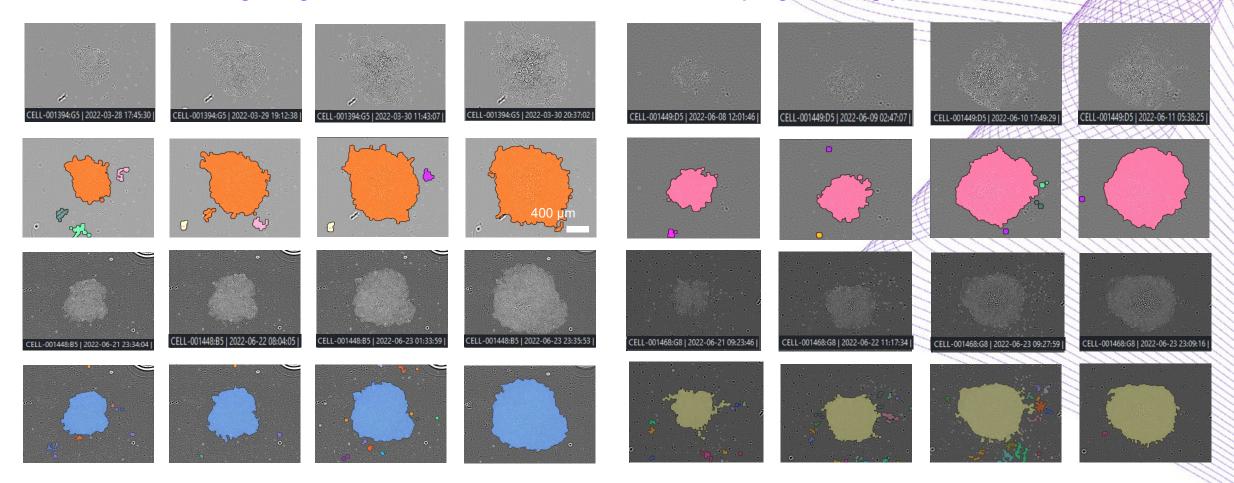






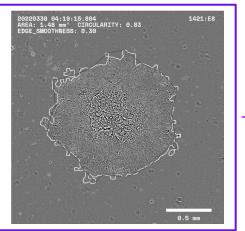


We collected extensive data on iPSCs generated with Cellino bioprocess (clonal selection)



Al infrastructure in the cloud to track cells and run processes autonomously

Time-series tracking images of 4 iPSC colonies from automated reprogramming process


How did you develop the algorithm to predict colony selection?

We developed a cluster ranking algorithm to autonomize the selection of iPSC colonies (typically done by an SME)

What we did: We build an initial model that can, based on images of a colony, predict whether a colony would have been selected by a subject matter expert (SME) for downstream processing. How we did this:

1 Collect image training data

- 112 96-wells
- 3284 colonies total; 57 colonies selected by SMEs
- metrics: area, edge smoothness, density, circularity, perimeter, position w/in well, etc.

Determine correlation between image-able features and whether a colony is selected by an SME

$$r_{pb} = \frac{(\bar{y}_1 - \bar{y}_2).\sqrt{pq}}{s_y}$$

Point-biserial correlation

Used to correlate continuous features (eg area) w/ binary outcome (eg selected or not)

4 Test model on images of colonies

Testing: tested on a different batch run, w/ different donor material:

86% of time, model's #1 choice matched SME

Build probability model to predict, based on imageable features, which colony is likely to be selected by an SME

$$P(selected|features) = \frac{P(features|selected)P(selected)}{P(features)}$$

Bayes rule

Used to calculate probability of colony being selected based on morphological features

Cellino ML Models - Dataset Scales

Model name	4X Confluence Model	4X Density Model	4X Pluripotency Model	Cluster Ranking Model
Signal used for extraction of "Ground Truth"	Calcein AM Live Stain	Genetically encoded nuclear fluorescence (EGFP tag on endogenous HIST1H2BJ protein)	Calcein Red-Orange AM Live Stain + Alkaline Phosphatase (AP) Live Stain	Colony object predictions
Contents of 1 datapoint	1 4X BRT image + 1 4X Confluence Map	1 4X BRT image + 1 4X Density Map (Derived from Nuc Segmentation)	1 4X BRT image + 1 4X Pluripotent cell map	Colony features (density, edge smoothness) + SME-based selection labels
Number of available raw (full well) datapoints	59	137	75	171
Number of (full well) datapoints used for training current version	44	27	N/A (training in progress)	112
Number of cell lines covered in dataset	3	1	3	2
Names of cell lines used	A18945 (ThermoFisher Episomal line); AICS61 (Allen Institute Sendai Line w/ Nuc. EGFP); PBMC-derived iPSC Line (Cellino In-House, new)	AICS61 (Allen Institute Sendai Line w/ Nuc. EGFP)	A18945 (ThermoFisher Episomal line); AICS61 (Allen Institute Sendai Line w/ Nuc. EGFP); PBMC-derived iPSC Line (Cellino In-House)	2X CD34+ Cell-derived iPSC clones (Cellino In-House)

Cellino ML Models - Performance Metrics

Model Name	4X Confluence Model		4X Cell Density Model (In Progress)		Colony Ranking Model	
Evaluation Metric	Precision	Recall	Pearson's r	Classification Accuracy	Mean Reciprocal Rank	% Match to Expert Selection
Explanation	Fraction of true positives over predicted positives (i.e. how good is the model in only detecting true cells?)	Fraction of true positives over all positives (i.e. how good is the model in detecting all true cells?)	Strength of linear relationship between true and predicted local cell density (between -1 to 1)	Fraction of correct region classifications as empty, normal density, or high density	Average of reciprocal of predicted rank of SME-selected colony (1 for perfect model, lower for worse performance)	Percentage of cases where model also selects SME- selected colony
Average value for test dataset	%98.98	%95.24	0.9-0.95	70-87%	0.9	%83.3

