Emerging Technologies and Innovation in Manufacturing Regenerative Medicine Therapies

SESSION IV: Quality Control and Regulatory Considerations

Sadik H. Kassim, Ph.D. CTO, Danaher Genomic Medicines 17 October 2023

Clinical Holds in the Genomic Medicines Space

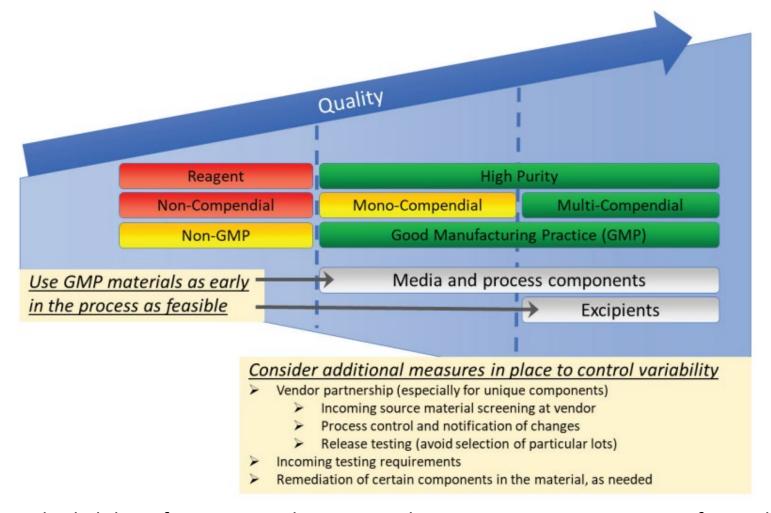
Exhibit 4 - Clinical hold duration is evenly distributed across modalities.

Source: Biomedtracker, Jefferies Research.

anaher.

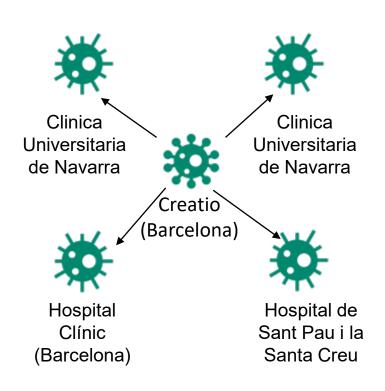
"NIH-listed CGT clinical trials total less than 2% of all listed clinical trials, yet they are responsible for approximately 40% of all clinical holds*."

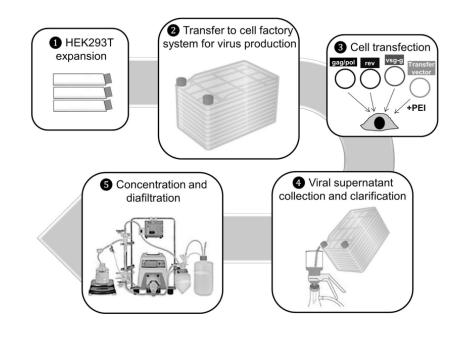
Yee MJ, Tsai A, Ding D, Wen J, Song YC. FDA Clinical Holds Now Double the 445 Historical Average. Jefferies Equity Research: Biotechnology. Jefferies; 2022:1-6


*Wills CA, Drago D, Pietrusko RG, Clinical Holds for Cell and Gene Therapy Trials: Risks, Impact, and Lessons Learned, Molecular Therapy: Methods & Clinical Development (2023),

Complexity of Genomic Medicinesand Their Raw Materials

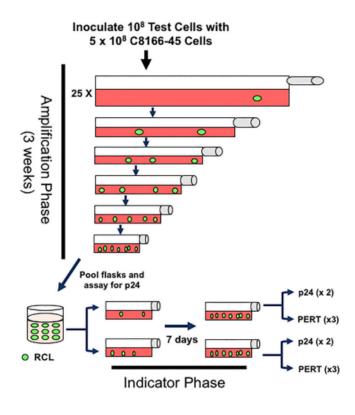
Small molecules	Biol	ogics	AAV or	lentivirus	Cell therapy
	*			Ö :	*
Aspirin	Hu	mira	Vira	l vector	CART
21 atoms	20 067 atoms		10 ⁵ to 10 ⁷ atoms		10 ²² atoms
	Guide RNA	CRISPR Nuc	lease	Viral Vector	iPSC Line
	Cyto	okines	RNP	mRNA/LNP	Cell Bank
	Growth Factors		Plasmid DNA		


Raw Material Quality is a Major Determinant of Reproducible Manufacturing



"Consistency and reliability of raw materials are critical to ensuring consistent manufacturability and comparability of product through development."

CAR-T ARI-0001 Case Study: Centralized Raw Material Manufacturing, Decentralized Drug Product Manufacturing



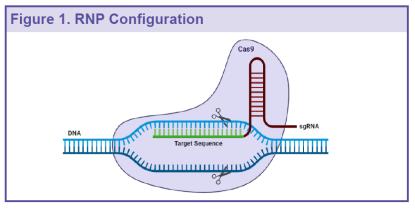
Parameter	Method	Acceptance Criteria	Lot 1	Lot 2	Lot 3
Appearance	visual inspection	yellowish liquid solution	cloudy liquid solution	cloudy liquid solution	cloudy liquid solution
Viral titer	limiting dilution	>3.75 × 10 ⁷ TU/mL	$2.29\times10^8~TU/mL$	$1.68 \times 10^8 \text{ TU/mL}$	$1.10 \times 10^8 \text{TU/mL}$
Sterility	microbial growth	sterile	sterile	sterile	sterile
Mycoplasma	PCR	absent	absent	absent	absent
Identity	PCR	positive	positive	positive	positive
RCL (replication-competent lentivirus)	real-time PCR	absent	absent	absent	absent

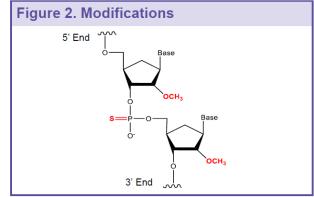
Lentivirus Vectors Have Proven Safe Across Clinical Trials and Indications

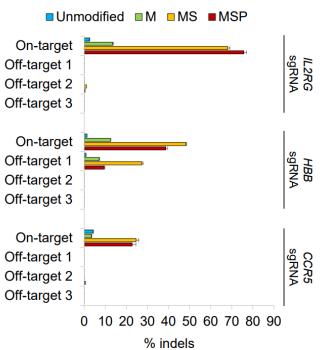
Study No.	Principal Investigator	No. of Products Infused	No. of Subjects Infused	No. of Subjects with RCL Follow-Up ^a	Method of RCL Detection	Level of Sensitivity per DNA
11-2	C.H.J.	2	2	1	VSV-G DNA PCR	25 copies per 1 μg
11-3	C.H.J.	19	17	16	VSV-G DNA PCR	25 copies per 1 μg
11-4	C.H.J.	2	2	2	VSV-G DNA PCR	25 copies per 1 μg
11-11	C.H.J.	24	24	21	VSV-G DNA PCR	25 copies per 1 μg
11-12	C.H.J.	14	13	13	VSV-G DNA PCR	25 copies per 1 μg
11-13	C.H.J.	1	1	0	VSV-G DNA PCR	25 copies per 1 μg
12-4	C.H.J.	36	36	34	VSV-G DNA PCR	25 copies per 1 μg
12-16	M.J.	3	3	2	VSV-G DNA PCR	10 copies per 50 ng
13-4	C.H.J.	32	32	23	VSV-G DNA PCR	25 copies per 1 μg
13-12	G.BS.	31	31	24	VSV-G DNA PCR	5 copies per 100 ng
13-15	S.F.	5	5	5	VSV-G DNA PCR	2.5 copies per 50 ng
14-9	C.H.J.	25	25	14	VSV-G DNA PCR	25 copies per 1 μg
14-10	C.H.J.	34	34	30	VSV-G DNA PCR	25 copies per 1 μg
14-12	C.J.T.	76	76	49	VSV-G DNA PCR	10 copies per 1 μg
14-18	T.F.	14	14	11	VSV-G DNA PCR	10 copies per 200 ng
14-27	S.F.	7	7	6	VSV-G DNA PCR	2.5 copies per 50 ng
15-9	S.F.	6	4	3 ^b	VSV-G DNA PCR	2.5 copies per 50 ng
15-10	S.F.	6	6	5	VSV-G DNA PCR	2.5 copies per 50 ng
15-11	S.F.	11	11	11	VSV-G DNA PCR	2.5 copies per 50 ng
15-26	M.J.	45	23	19	VSV-G DNA PCR	10 copies per 50 ng
15-36	S.F.	2	2	2	VSV-G DNA PCR	2.5 copies per 50 ng
16-1	M.J.	14	7	5	VSV-G DNA PCR	10 copies per 50 ng
Total		409	375	296		•

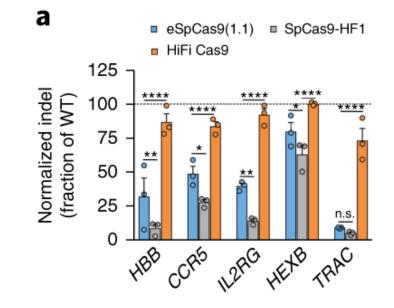
VSV-G, vesicular stomatitis virus G protein.

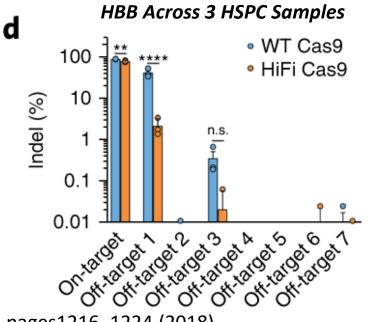
"Therefore, screening T cell products for RCL does not add additional assurance of safety and should no longer be required when the lentiviral vector product has been successfully screened for RCL."

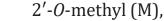



a > 30 Days post-infusion.

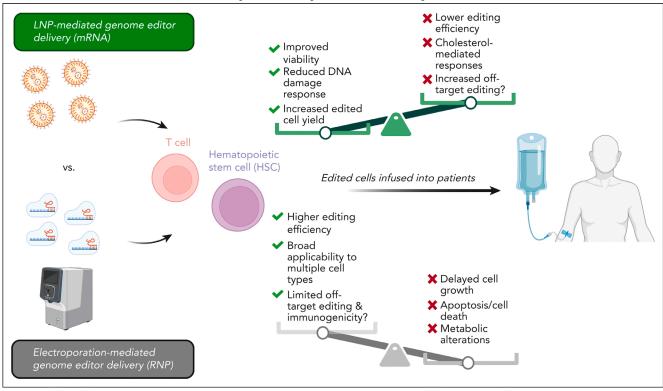

b2 subjects were tested by PCR, and 1 subject was tested by serology.


[&]quot;In 460 products tested, using a vigorous biologic assay for RCL, there was no evidence of replication competent lentivirus (RCL)."


CRISPR-Based Gene Editing: Potential Factors that Impact Specificity and Efficacy

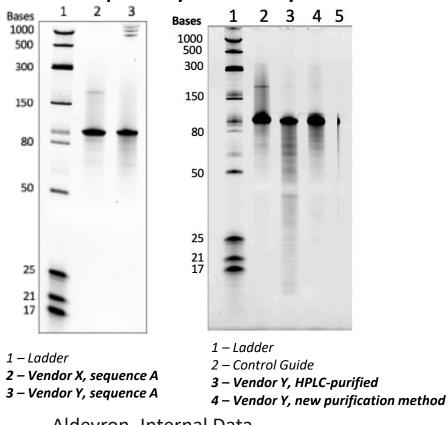


Nature Medicine volume 24, pages1216-1224 (2018)


2'-O-methyl 3'phosphorothioate (MS),

2'-O-methyl 3'thioPACE (MSP)

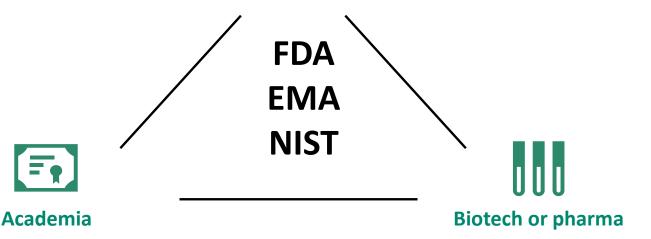
Nat Biotechnol. 2015 Sep; 33(9): 985-989.


How Do Other Factors Impact CRISPR Gene Editing Specificity and Efficacy??

How does delivery method and format (mRNA vs Protein) impact specificity and efficacy?

Blood (2023) 142 (9): 755–756. Blood (2023) 142 (9): 812–826.

How does guide RNA purity impact specificity and efficacy?


Aldevron, Internal Data

Proposed Future Directions: Raw Material Characterization and the Acceleration of Regenerative Medicine Manufacturing

- Robust clinical safety record and decades of manufacturing know-how and characterization of raw materials, may enable decentralized
 manufacturing of certain therapeutic modalities (e.g. lentivirus vector and CAR-T).
- In other instances, early technology, unknown design space, and minimal manufacturing know-how may limit the field's practical ability to accelerate translation and/or decentralize manufacturing (e.g. CRISPR nucleases, guide RNAs, and CRISPR gene-edited cell therapies).
- Federated-learning model may be a potential solution to accelerate adoption and distribution of novel technologies.
- Example: MELLODDY, a federated-learning project between 10 pharma companies focused on small-molecule drug development (www.melloddy.eu).

Tools and solutions providers

Innovation at the speed of life...

