

Resolving the CRISPR Catch-2023: a Tale of Two Gaps

Fyodor Urnov aka Prof. Debbie Downer Realist

Professor of Molecular Therapeutics,
Department of Molecular and Cell Biology,
University of California, Berkeley

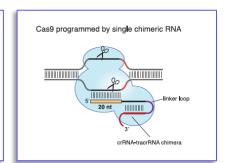

Scientific Director, Innovative Genomics Institute, UC Berkeley

Fyodor Urnov: disclosures

4

- Cimeio Therapeutics: SAB chair, paid advisor, hold equity
- Ionis Pharmaceuticals: paid advisor
- Tune Therapeutics: scientific co-founder, paid advisor, hold equity
- Vertex Pharmaceuticals: paid consultant on exa-cel program

Jennifer Doudna



"We have a responsibility to pursue CRISPR's enormous potential to achieve previously impossible solutions to some of the world's big challenges — solutions that will be available to anyone."

2012:

A Programmable Dual-RNA—Guided DNA Endonuclease in Adaptive Bacterial Immunity

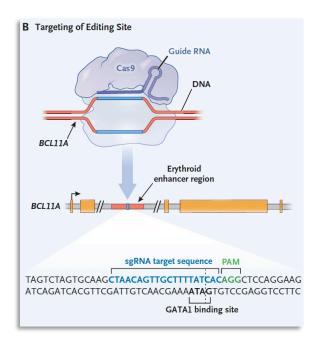
Martin Jinek, 1,2 Krzysztof Chylinski, 3,4 Ines Fonfara, Michael Hauer, † Jennifer A. Doudna, 1,2,5,6 Emmanuelle Charpentier †

2023:

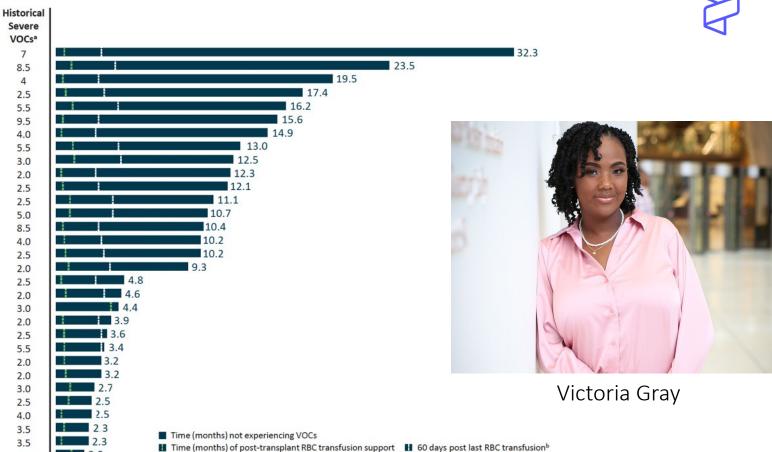
FDA Accepts Biologics License Applications for exagamglogene autotemcel (exa-cel) for Severe Sickle Cell Disease and Transfusion-Dependent Beta Thalassemia

June 8, 2023

- First CRISPR gene-editing filings to be accepted for review by FDA -
- FDA grants Priority Review for severe sickle cell disease (SCD) and Standard Review for transfusion-dependent beta thalassemia (TDT) -
 - PDUFA target action date of December 8, 2023, for SCD and March 30, 2024, for TDT -


Editas Medicine Granted FDA
Regenerative Medicine Advanced
Therapy (RMAT) Designation for
EDIT-301 for the Treatment of Severe
Sickle Cell Disease

CAMBRIDGE, Mass., Oct. 16, 2023 (GLOBE NEWSWIRE) -- Editas Medicine, Inc. (Nasdaq: EDIT), a clinical-stage genome editing company, today announced that the U.S. Food and Drug Administration (FDA) granted Regenerative Medicine Advanced Therapy (RMAT) designation to EDIT-301, an investigational, gene editing medicine, for the treatment of severe sickle cell disease (SCD).


2022:

CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β -Thalassemia

H. Frangoul, D. Altshuler, M.D. Cappellini, Y.-S. Chen, J. Domm, B.K. Eustace, J. Foell, J. de la Fuente, S. Grupp, R. Handgretinger, T.W. Ho, A. Kattamis, A. Kernytsky, J. Lekstrom-Himes, A.M. Li, F. Locatelli, M.Y. Mapara, M. de Montalembert, D. Rondelli, A. Sharma, S. Sheth, S. Soni, M.H. Steinberg, D. Wall, A. Yen, and S. Corbacioglu

25

30

35

Franco Locatelli, ¹ Haydar Frangoul, ² Selim Corbacioglu, ³ Josu de la Fuente, ⁴ Donna Wall, ⁵ Maria Domenica Cappellini, ⁶ Mariane de Montalembert, Antonis Kattamis, Stephan Lobitz, Damiano Rondelli, Sujit Sheth, Martin Steinberg, 2 Mark C. Walters, ¹³ Yael Bobruff, ¹⁴ Chris Simard, ¹⁴ Yang Song, ¹⁴ Lanju Zhang, ¹⁴ Anjali Sharma, ¹⁵ Suzan Imren, ¹⁴ Bill Hobbs, 14 Stephan Grupp 16 on behalf of the CLIMB THAL-111 and CLIMB SCD-121 teams

Months After Exa-cel Infusion

20

15

2.0

5

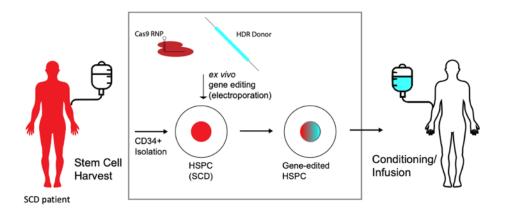
10

3.5

An Open IND for Point Mutation Repair in HSPCs: sole all-academic such IND in the entire field of editing

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

SICKLE CELL DISEASE


Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells

Mark A. DeWitt,^{1,2} Wendy Magis,³ Nicolas L. Bray,^{1,2} Tianjiao Wang,^{1,2} Jennifer R. Berman,⁴ Fabrizia Urbinati,⁵ Seok-Jin Heo,³ Therese Mitros,² Denise P. Muñoz,³ Dario Boffelli,³ Donald B. Kohn,⁵ Mark C. Walters,^{3,6} Dana Carroll,^{1,7}* David I. K. Martin,³* Jacob E. Corn^{1,2}*

Dr Mark Walters (UCSF)

Dr Donald Kohn (UCLA)

2020-2021 Global Survey on Primary Immunodeficiencies

GLOBAL TOTALS

1. Tota	l number o	of patien	its being	followed

2. Total number of patients identified with a specific PI defect

3. Total number of patients receiving IgG:

A) IVIG - Clinic

B) IVIG - Home

c) scig

D) Other

- 4. Total number of patients treated by Gene Therapy
- 5. Total number of patients treated with PEG-ADA

6. Total number of patients treated by Transplant	6,991
Donor Type:	
A) MRD	1,908
B) MUD	2,012
C) mMUD	462
D) Parental Haplo	1,106
Stem Cell Source:	
A) BM	3,312
B) PBSC	1,334
C) Cord	661
D) Other (please specify)	127

For Tables I - X, please enter the number of patients followed in the box to the right of the specified gene. Available OMIM numbers are provided and linked within each table.

TABLE I. IMMUNODEFICIENCIES AFFECTING CELLULAR AND HUMORAL IMMUNITY								
1. ADA (Adenosine deaminase deficiency), AR	OMIM 608958	1.	575	31. LIG4 (DNA ligase IV deficiency), AR	OMIM 601837	31.	60	
2. AK2 (AK2 Defect), AR	OMIM 103020	2.	42	32. MALT1 (MALT1 deficiency), AR	OMIM 615468	32.	23	
3. B2M (MHC class I deficiency), AR	OMIM 109700	3.	11	33. MAP3K14 (NIK deficiency), AR	OMIM 604655	33.	1	
4. BCL10 (BCL10 deficiency), AR	OMIM 616098	4.	4	34. MSN (Moesin deficiency), XL	OMIM 300988	34.	11	
5. CARD 11 (CARD11 deficiency), AR LOF	OMIM 615206	5.	31	35. NHEJ1 (Cernunnos/XLF deficiency), AR	OMIM 611290	35.	27	
6. CD3D (CD3 _d deficiency), AR	OMIM 186790	6.	54	36. POLD 1 (Polymerase δ deficiency), AR	<u>OMIM 174761</u>	36.	5	
7. CD3E (CD3ε deficiency), AR	OMIM 186830	7.	26	37. POLD 2 (Polymerase δ deficiency), AR	OMIM 600815	37.	2	
8. CD3G (CD3γ deficiency), AR	OMIM 186740	8.	13	38. PRKDC (DNA PKcs deficiency), AR	OMIM 615966	38.	17	
9. CD3Z (CD3ζ deficiency), AR	OMIM 186780	9.	6	39. PTPRC (CD45 Deficiency), AR	OMIM 151460	39.	6	
10. CD40 (CD40 deficiency), AR	OMIM 606843	10.	104	40. RAC2 (Activated RAC2 defect), AD GOF	OMIM 602049	40.	13	
11. CD40LG (CD40 ligand (CD154) deficiency), XL	OMIM 308230	11.	686	41. RAG1 (RAG deficiency), AR	OMIM 179615	41.	513	
12. CD8A (CD8 deficiency), AR	<u>OMIM 186910</u>	12.	18	42. RAG2 (RAG deficiency), AR	OMIM 179616	42.	325	
13. CIITA (MHC class II deficiency group A, B, C, D), AR	OMIM 600005	13.	97	43. REL (c-Rel deficiency), AR	OMIM 164910	43.	2	
14. CORO1A (Coronin-1A deficiency), AR	OMIM 605000	14.	15	44. RELA (RelA haploinsufficiency), AD	OMIM 618287	44.	7	
15. DCLRE1C (Artemis deficiency), AR	OMIM 605988	15.	268	45. RELB (RelB deficiency), AR	OMIM 604758	45.	15	
16. DOCK2 (DOCK2 deficiency), AR	OMIM 603122	16.	21	46. RFX5 (MHC class II deficiency group A, B, C, D), AR	OMIM 601863	46.	61	
17. DOCK8 (DOCK8 deficiency)), AR	OMIM 243700	17.	509	47. RFXANK (MHC class II deficiency group A, B, C, D), AR	OMIM 603200	47.	156	
18. FCHO1 (FCHO1 deficiency), AR	OMIM 613437	18.	10	48. RFXAP (MHC class II deficiency group A, B, C, D), AR	OMIM 601861	48.	16	
19. ICOS (ICOS deficiency), AR	OMIM 604558	19.	28	49. RHOH (RHOH deficiency), AR	OMIM 602037	49.	3	
20. ICOSLG (ICOSL deficiency), AR	OMIM 605717	20.	3	50. STK4 (MST1 deficiency), AR	OMIM 614868	50.	17	
21. IKBKB (IKBKB deficiency), AR	OMIM 615592	21.	32	51. TAP1 (MHC class I deficiency), AR	OMIM 170260	51.	22	
22. IKZF1 (IKAROS deficiency), AD DN	OMIM 603023	22.	35	52. TAP2 (MHC class I deficiency), AR	OMIM 170261	52.	6	
23. IL21 (IL-21 deficiency), AR	OMIM 615767	23.	2	53. TAPBP (MHC class I deficiency), AR	OMIM 601962	53.	0	
24. IL21R (IL-21R deficiency), AR	OMIM 615207	24.	21	54. TFRC (TFRC deficiency), AR	OMIM 616740	54.	15	
25. IL2RG (_g c Deficiency, γc SCID, CD132 deficiency), XL	OMIM 308380	25.	818	55. TNFRSF4 (OX40 deficiency), AR	OMIM 615593	55.	0	
26. IL7R (IL7R _a deficiency), AR	<u>OMIM 146661</u>	26.	208	56. TRAC (TCR a deficiency), AR	OMIM 615387	56.	9	
27. ITK (ITK deficiency), AR	OMIM 186973	27.	34	57. ZAP70 (ZAP-70 combined mutations), AR (LOF/GOF)	OMIM 617006	57.	8	
28. JAK3 (JAK3 deficiency), AR	OMIM 600173	28.	250	58. ZAP70 (ZAP-70 deficiency (ZAP70 LOF)), AR	OMIM 269840	58.	103	
29. LAT (LAT deficiency), AR	OMIM 602354	29.	1	59. Other Immunodeficiencies Affecting Cellular and Humoral Immunity:		59.	2,160	
30. LCK (LCK deficiency), AR	OMIM 615758	30.	3		TOTAL		7,528	

2020-2021 Global Survey on Primary Immunodeficiencies

GLOBAL TOTALS

		(4)
	2	
, 1		Centers Networ

6,991

1,908 2,012

1,106

3,312 1,334

1. Total number of patients being followed
2. Total number of patients identified with a specific PI defect
3. Total number of patients receiving IgG:
A) IVIG - Clinic
B) IVIG - Home
C) SCIG
D) Other
4. Total number of patients treated by Gene Therapy
5 Total number of nationts treated with DEG_ADA

256,153	Total number of patients treated by Transplant
112,337	Donor Type:
	A) MRD
18,913	B) MUD
3,344	C) mMUD
13,548	D) Parental Haplo
256	Stem Cell Source:
248	A) BM
126	B) PBSC
	C) Cord
	D) Other (please specify)

505 different inborn errors of immunity >112,000 patients

ZERO gene editing trials for them ONE approved gene therapy product

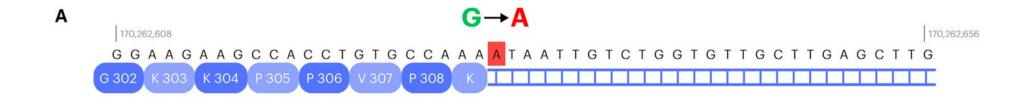
BRIEF DEFINITIVE REPORT

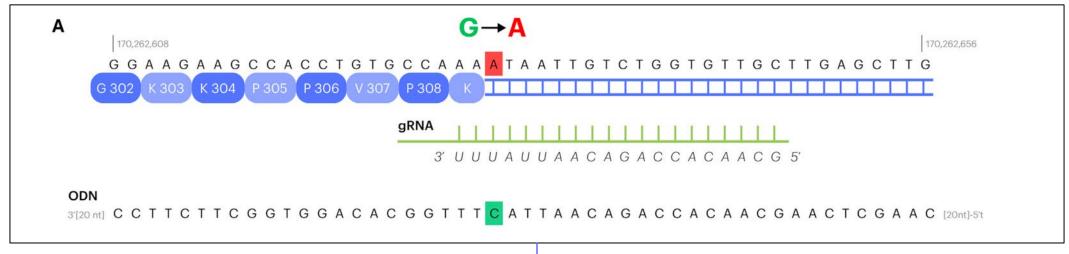
Inherited SLP76 deficiency in humans causes severe combined immunodeficiency, neutrophil and platelet defects

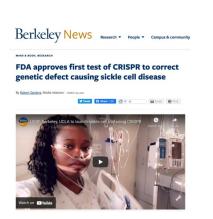
Atar Lev^{1,2}, Yu Nee Lee¹, Guangping Sun³, Enas Hallumi⁴, Amos J. Simon^{1,5}, Keren S. Zrihen¹, Shiran Levy¹, Tal Beit Halevi¹, Maria Papazian¹, Neta Shwartz¹, Ido Somekh⁶, Sarina Levy-Mendelovich⁷, Baruch Wolach⁸, Ronit Gavrieli⁸, Helly Vernitsky⁵, Ortal Barel^{9,12}, Elisheva Javasky^{9,12}, Tali Stauber¹, Chi A. Ma³, Yuan Zhang^{3,10}, Ninette Amariglio^{2,11}, Gideon Rechavi^{12,13}, Ayal Hendel², Deborah Yablonski⁴, Joshua D. Milner^{3,10}, and Raz Somech^{1,13}.

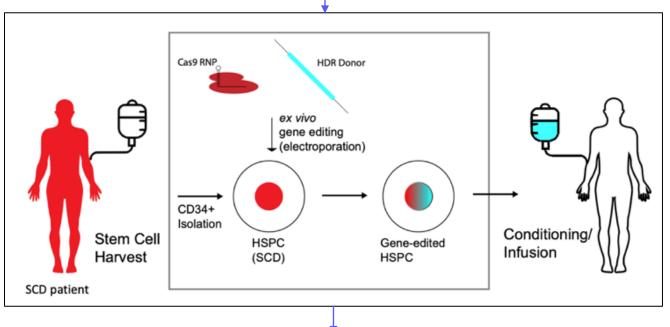
¹Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; ²The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel; ³Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; ⁴Department of Immunology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; ⁵Division of Haematology and Bone Marrow Transplantation, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ⁶Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ⁷The Israeli National Hemophilia Center and Thrombosis Unit, The Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ⁸Department of Pediatrics and Laboratory for Leukocyte Function, Meir Medical Center, Kfar Saba, Israel; ⁹The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; ¹⁰Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; ¹¹Cancer Research Center, Sheba Medical Center, Tel Hashomer, Israel; ¹²Cancer Research Center, Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel; ¹³Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

"[Patient] presented at the age of 2 mo with recurrent skin abscesses and skin rash.


The patient died of transplantrelated complications [at 10 months of age]."


What killed this child?


a novel mutation in the SLP76 gene


The mutation that killed this child was actionably editable

TWO MONTHS from mutation to clinical lead ready to go ONE MONTH to make+release cell product

3 months to clinical outcome

If you change something – eg the gRNA and the ssODN – it's a new product, so back to square 1

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

SICKLE CELL DISEASE

Selection-free genome editing of the SLP76 mutation in human adult hematopoietic stem/progenitor cells

Mark A. DeWitt,^{1,2} Wendy Magis,³ Nicolas L. Bray,^{1,2} Tianjiao Wang,^{1,2} Jennifer R. Berman,⁴ Fabrizia Urbinati,⁵ Seok-Jin Heo,³ Therese Mitros,² Denise P. Muñoz,³ Dario Boffelli,³ Donald B. Kohn,⁵ Mark C. Walters,^{3,6} Dana Carroll,^{1,7}* David I. K. Martin,³* Jacob E. Corn^{1,2}*

Patient Cause Effector Efficacy Safety CMC Regulatory Trial

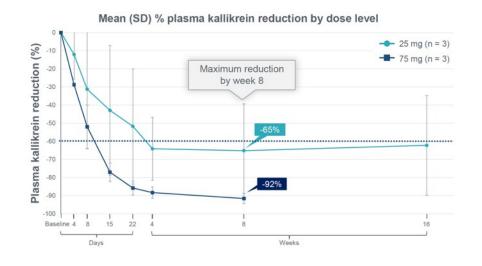
~ 4 years, \$7m (academic pricing)

~ 4 years, \$7m (academic pricing)

Gap #1:

Rapid progress in genome-editing two blood diseases (SCD+TDT) has, at present, no path to affecting 112,000 patients with editable blood disease

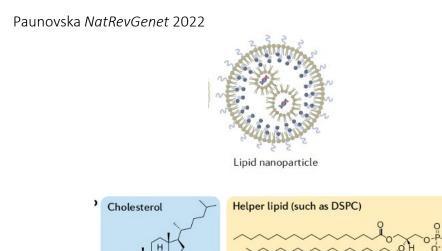
2022: Intellia Therapeutics reducing the "CRISPR is a therapeutic platform" vision to clinical practice

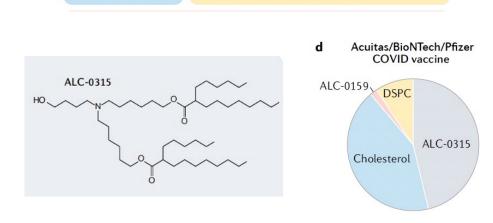

CRISPR-Cas9 can be programmed to cut a specific sequence of DNA in patients with entirely different diseases by changing the guide RNA

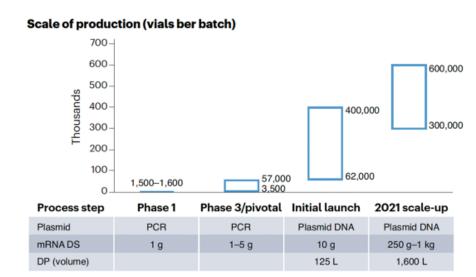
Disease 1: TTR Amyloidosis

Gene: ATTR on chr 20a

Disease 2: Hereditary Angioedema




93% target gene knockout in patient liver


92% target gene knockdown in patient liver

In vivo mRNA delivery via LNP technology has been scaled to the entirety of the Earth's population

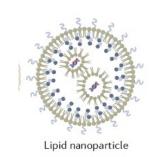
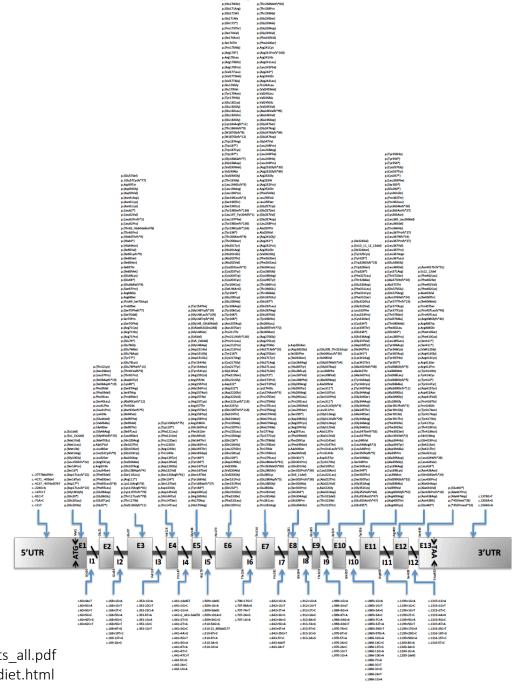


Fig. 2 | **COVID-19 vaccine production scale.** The scale of plasmid, mRNA drug substance (DS) and drug product (DP) production increased up to 1,000-fold.

Pfizer CMC:

A kilogram of GMP mRNA 3,000,000,000 doses of LNP-mRNA


Phenylketonuria:

1 in 15,000 live births in the US

Over 90% of the newborns could be CRISPR-gene-edited to health in their first year of life using EXISTING technologies.

No clinical trials for editing in PKU ...

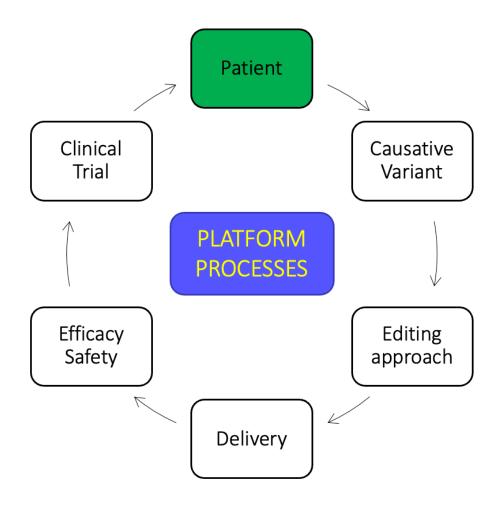
... to say nothing about the 2,500 newborns in US per year with IEMs.

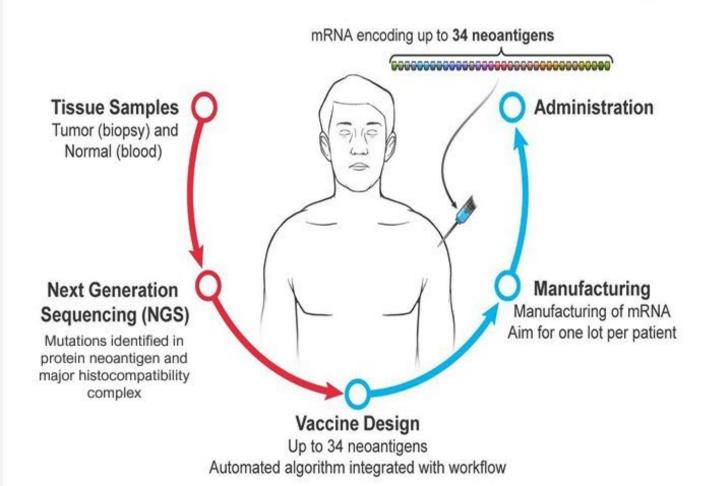
Gap #2:

Rapid progress in genome-editing the liver for two diseases (ATTR and HAE) has, at present, no path to affecting >2,500 US newborns per year with inborn errors of metabolism

The current nonclinical pharmtox, CMC, and regulatory framework need an upgrade to align with the clinically established platform nature of

CRISPR-Cas genome editing


AND the unmet medical need in "rare" diseases.


Patient Cause Effector Efficacy Safety CMC Regulatory Trial

Personalized cancer vaccine (mRNA-4157)

Designed to target an individual patient's unique tumor mutations

Personalized drug design

Rapid turnaround times

Needle-to-needle in just weeks

CRISPR Catch-2023:

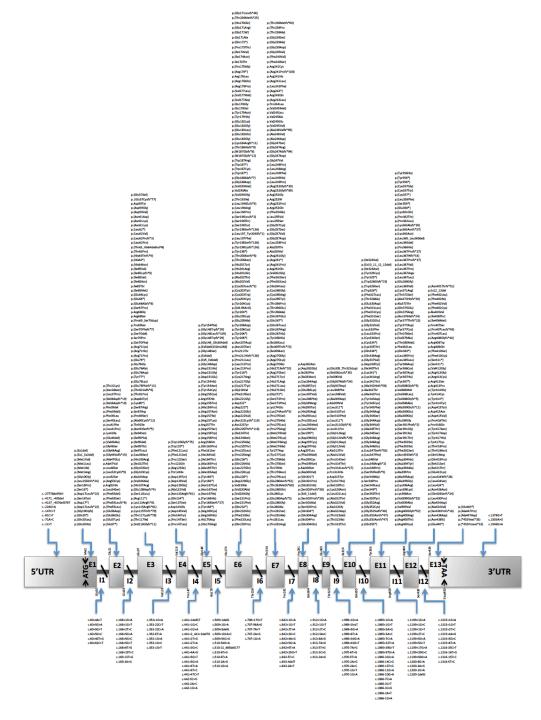
The only way to find out how to safely and efficiently genome-edit people is to edit more people.

This requires new nonclinical frameworks to take editing to clinic.

This, in turn, requires more clinical data on what matters and what does not at the nonclinical stage.

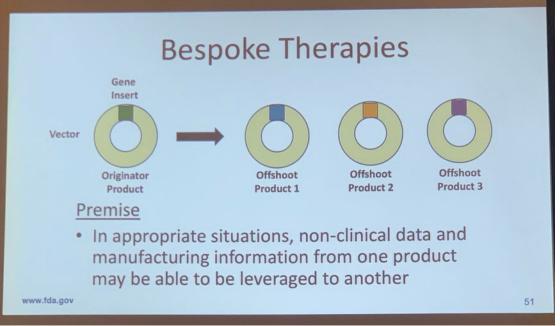
CRISPR Cures 2033?

2020-2021 Global Survey on Primary Immunodeficiencies

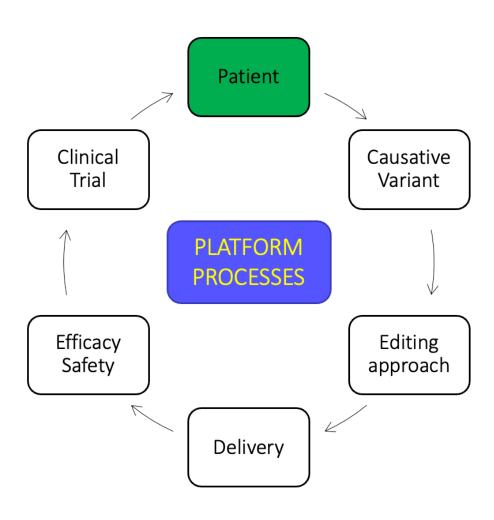

GLOBAL TOTALS

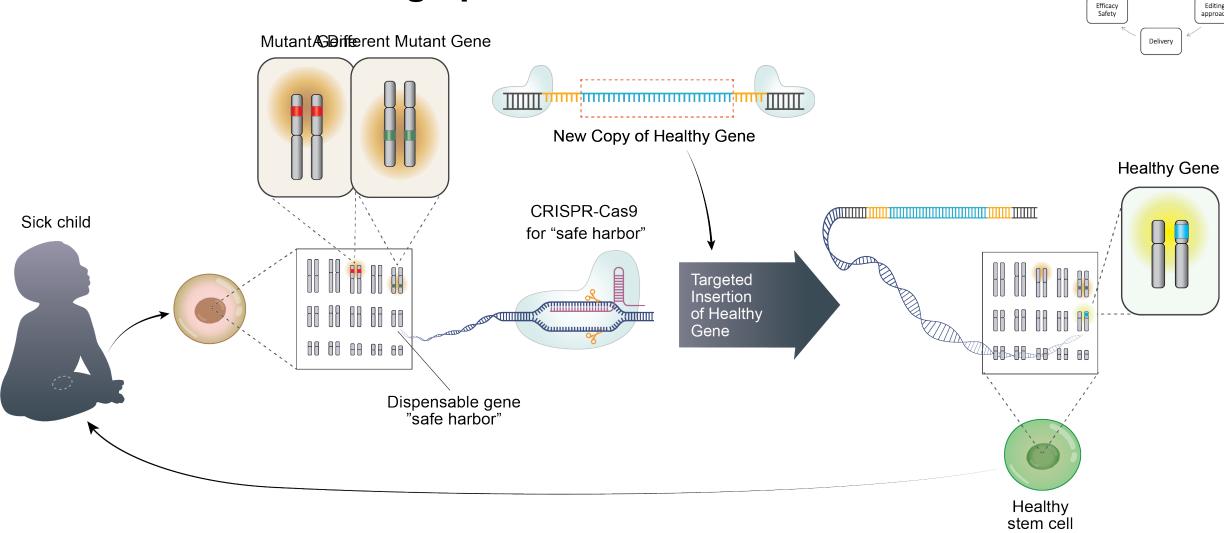
1. Total number of patients being followed	256,153	6. Total number of patients treated by Transplant	6,991
2. Total number of patients identified with a specific PI defect	112,337	Donor Type:	
3. Total number of patients receiving IgG:	•	A) MRD	1,908
A) IVIG - Clinic	18,913	B) MUD	2,012
B) IVIG - Home	3,344	C) mMUD	462
C) SCIG	13,548	D) Parental Haplo	1,106
D) Other	256	Stem Cell Source:	<u> </u>
4. Total number of patients treated by Gene Therapy	248	A) BM	3,312
5. Total number of patients treated with PEG-ADA	126	B) PBSC	1,334
		C) Cord	661
		D) Other (please specify)	127

For Tables I - X, please enter the number of patients followed in the box to the right of the specified gene. Available OMIM numbers are provided and linked within each table


TABLE I. IMMUNODEFICIENCIES AFFECTING CELLULAR AND HUMORAL IMMUNITY							
1. ADA (Adenosine deaminase deficiency), AR	OMIM 608958	1.	575	31. LIG4 (DNA ligase IV deficiency), AR	OMIM 601837	31.	60
2. AK2 (AK2 Defect), AR	OMIM 103020	2.	42	32. MALT1 (MALT1 deficiency), AR	OMIM 615468	32.	23
3. B2M (MHC class I deficiency), AR	OMIM 109700	3.	11	33. MAP3K14 (NIK deficiency), AR	OMIM 604655	33.	1
4. BCL10 (BCL10 deficiency), AR	OMIM 616098	4.	4	34. MSN (Moesin deficiency), XL	OMIM 300988	34.	11
5. CARD 11 (CARD11 deficiency), AR LOF	OMIM 615206	5.	31	35. NHEJ1 (Cernunnos/XLF deficiency), AR	OMIM 611290	35.	27
6. CD3D (CD3 _d deficiency), AR	OMIM 186790	6.	54	36. POLD 1 (Polymerase δ deficiency), AR	OMIM 174761	36.	5
7. CD3E (CD3ε deficiency), AR	OMIM 186830	7.	26	37. POLD 2 (Polymerase δ deficiency), AR	OMIM 600815	37.	2
8. CD3G (CD3y deficiency), AR	OMIM 186740	8.	13	38. PRKDC (DNA PKcs deficiency), AR	OMIM 615966	38.	17
9. CD3Z (CD3ζ deficiency), AR	OMIM 186780	9.	6	39. PTPRC (CD45 Deficiency), AR	OMIM 151460	39.	6
10. CD40 (CD40 deficiency), AR	OMIM 606843	10.	104	40. RAC2 (Activated RAC2 defect), AD GOF	OMIM 602049	40.	13
11. CD40LG (CD40 ligand (CD154) deficiency), XL	OMIM 308230	11.	686	41. RAG1 (RAG deficiency), AR	OMIM 179615	41.	513
12. CD8A (CD8 deficiency), AR	OMIM 186910	12.	18	42. RAG2 (RAG deficiency), AR	OMIM 179616	42.	325
13. CIITA (MHC class II deficiency group A, B, C, D), AR	OMIM 600005	13.	97	43. REL (c-Rel deficiency), AR	OMIM 164910	43.	2
14. CORO1A (Coronin-1A deficiency), AR	OMIM 605000	14.	15	44. RELA (RelA haploinsufficiency), AD	OMIM 618287	44.	7
15. DCLRE1C (Artemis deficiency), AR	OMIM 605988	15.	268	45. RELB (RelB deficiency), AR	OMIM 604758	45.	15
16. DOCK2 (DOCK2 deficiency), AR	OMIM 603122	16.	21	46. RFX5 (MHC class II deficiency group A, B, C, D), AR	OMIM 601863	46.	61
17. DOCK8 (DOCK8 deficiency), AR	OMIM 243700	17.	509	47. RFXANK (MHC class II deficiency group A, B, C, D), AR	OMIM 603200	47.	156
18. FCHO1 (FCHO1 deficiency), AR	OMIM 613437	18.	10	48. RFXAP (MHC class II deficiency group A, B, C, D), AR	OMIM 601861	48.	16
19. ICOS (ICOS deficiency), AR	OMIM 604558	19.	28	49. RHOH (RHOH deficiency), AR	OMIM 602037	49.	3
20. ICOSLG (ICOSL deficiency), AR	OMIM 605717	20.	3	50. STK4 (MST1 deficiency), AR	OMIM 614868	50.	17
21. IKBKB (IKBKB deficiency), AR	OMIM 615592	21.	32	51. TAP1 (MHC class I deficiency), AR	OMIM 170260	51.	22
22. IKZF1 (IKAROS deficiency), AD DN	OMIM 603023	22.	35	52. TAP2 (MHC class I deficiency), AR	OMIM 170261	52.	6
23. IL21 (IL-21 deficiency), AR	OMIM 615767	23.	2	53. TAPBP (MHC class I deficiency), AR	OMIM 601962	53.	0
24. IL21R (IL-21R deficiency), AR	OMIM 615207	24.	21	54. TFRC (TFRC deficiency), AR	OMIM 616740	54.	15
25. IL2RG (gc Deficiency, γc SCID, CD132 deficiency), XL	OMIM 308380	25.	818	55. TNFRSF4 (OX40 deficiency), AR	OMIM 615593	55.	0
26. IL7R (IL7R a deficiency), AR	OMIM 146661	26.	208	56. TRAC (TCR a deficiency), AR	OMIM 615387	56.	9
27. ITK (ITK deficiency), AR	OMIM 186973	27.	34	57. ZAP70 (ZAP-70 combined mutations), AR (LOF/GOF)	OMIM 617006	57.	8
28. JAK3 (JAK3 deficiency), AR	OMIM 600173	28.	250	58. ZAP70 (ZAP-70 deficiency (ZAP70 LOF)), AR	OMIM 269840	58.	103
29. LAT (LAT deficiency), AR	OMIM 602354	29.	1	59. Other Immunodeficiencies Affecting Cellular and Humoral Immunity:		59.	2,160
30. LCK (LCK deficiency), AR	OMIM 615758	30.	3		TOTAL		7,528

CBER leadership lays out a vision for bespoke therapy acceleration

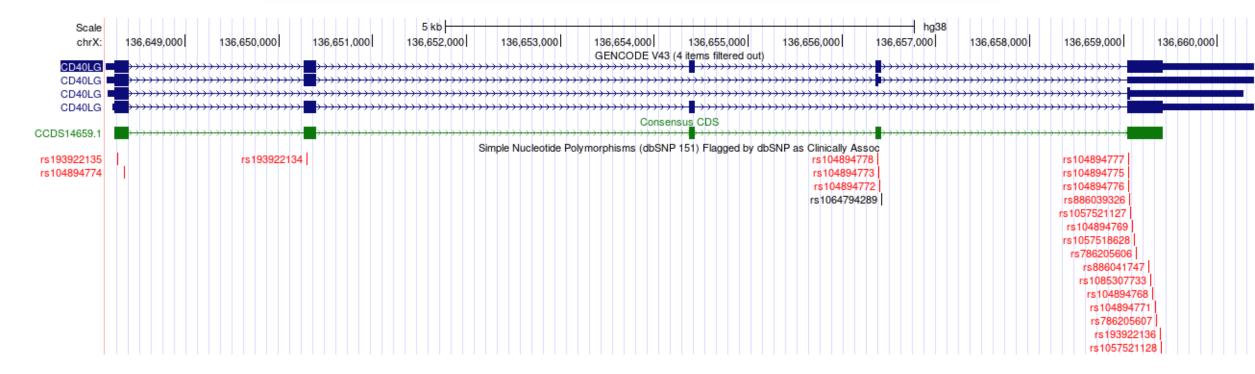




The IGI is advancing specific instantiations of this to IND

The IGI is advancing specific instantiations of this to IND

Disease 1 to disease 2: the only component that changes is the single-stranded DNA segment encoding the transgene. Disease 1 (CIRM support): ARTEMIS-SCID (with Jennifer Puck and Mort Cowan (UCSF) and Donald Kohn (UCLA)

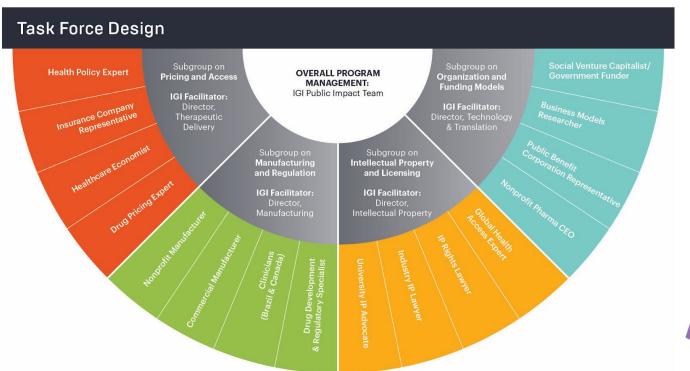

The IGI is advancing specific instantiations of this to IND

CD40 ligand (CD40L) deficiency or X-linked Hyper-IgM syndrome is a severe primary immunodeficiency caused by mutations in the CD40L gene. Despite currently available treatments, CD40L-deficient patients remain susceptible to life-threatening infections and have poor long term survival.

Safety

approach

Delivery



For same disease: different patients, different mutations. The only thing that changes is the gRNA Diseases 1 and 2: HLH (with Michelle Hermiston, UCSF) and ALSP (with Jeffrey Goldberg and Carlo Condello, UCSF)

An IGI Task Force explored solutions to affordability and access challenges for genomic medicines

innovativegenomics.org/atf-report/

Dynamic cost-plus approach anchoring price to COGS can drop prices by 10X

Manufacturing Innovation Point-of-care manufacturing, automation, and platformization

Global access provisions **Empower TTOs to negotiate** access into licensing agreements

Find the report here

Melinda Kliegman, Ph.D. Director of Public Impact

Manar Zaghlula, Ph.D. Policy & Engagement Manager

A tripartite business model Academic-Nonprofit-Public Benefit Corporation