

NASA & Submarine Medicine

Background:

Similarities and challenges of lunar mission planning parallel that of submarine operation

- Looking to Industry for initial solutions
- Some can leverage terrestrial analogs/models
- Others must be solved by NASA directly

Lunar EVA Requirements

Artemis Mission: Astronaut into the field

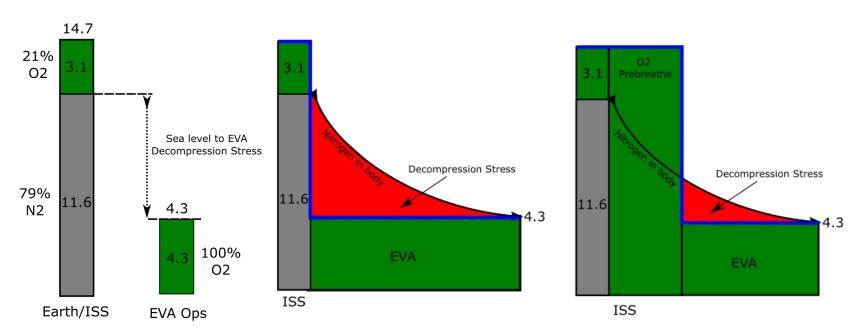
Return to the lunar surface for science an exploration

Initially lander-based operations (Artemis 3+)

Pressurized rover ops (Artemis 7+)

Rapid deployment EVA (spacewalks)

- ISS model not efficient enough
- Solution space:
 - Habitation & suit pressure
 - Gas mixes



Conditions for DCS (ISS operations)

- Decrease in Pressure
- Change in Phase State
- Supersaturation must be present
 - Tissue pN2 > Ambient Pressure

ISS operational mitigation: oxygen prebreathe Prebreathe time based on risk acceptance

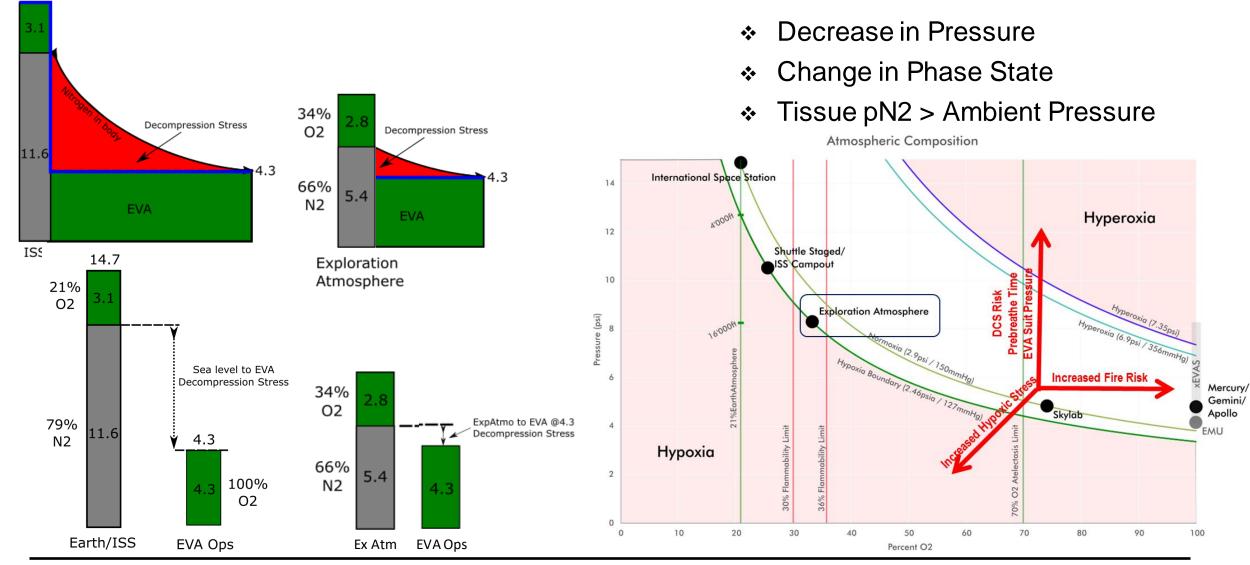
Risk Definition

DCS risk (human health)

- ≤ 15% Type I DCS and Cutis Marmorata with 95% confidence interval
- ≤ 20% grade IV VGE (95% confidence interval)
- NO Type II DCS

– Lesson learned:

- If risk acceptance is high enough, adverse medical outcomes may not be "contingencies" or failures, and *must* be planned for:
- i.e. DCS is a statistical likelihood and not a failure


Contingency Planning: Medical

Must plan for, and train for contingencies well in advance

- Risk is a fact, not a concept and should be discussed in advance
 - Modeling is a tool NASA has traditionally used: (Integrated Medical Model (IMM) for ISS operations, and IMPACT for lunar operations, Tissue Bubble Dynamics Model for DCS)
- Health Risk vs. Operational Risk
 - DCS will result in loss of mission objectives
 - 15% Type I per person per EVA ok from a health standpoint, but
 - Loss of EVA may not be acceptable from a mission standpoint
- Lesson learned: modelling and discussing human health risk and operational risk as independent entities is critical to mission planning

DCS: Decompression Sickness

Conditions for DCS (ISS vs. Planetary)

Page No. 7

Lunar - Primary operational mitigation: environmental control

Programmatic Risk: DCS Mitigation

- To ↓DCS risk efficiently:
- Engineering solutions such as a low N₂ atmosphere & variable pressure suits required
 - Requires cooperation & discourse between vendors
 - Proprietary info, competition, fixed price contracts, etc make such discussions a challenge

 Lesson Learned: Facilitating communication and cooperative controls between vendors is critical to effective solutions



Planetary Prebreathe Protocol Testing and Validation at NASA

What is "Exploration Atmospheres"?

- Study to validate lunar prebreathe (denitrogenation) options
- 12-day study with subjects "living" in a 3-story 20' diameter chamber at about 15,000' altitude
- 5 simulated EVAs, to determine a minimal acceptable duration
- Lesson Learned: a clear and reasonable written DCS disposition policy helps dispel the angst (and effects) of reporting

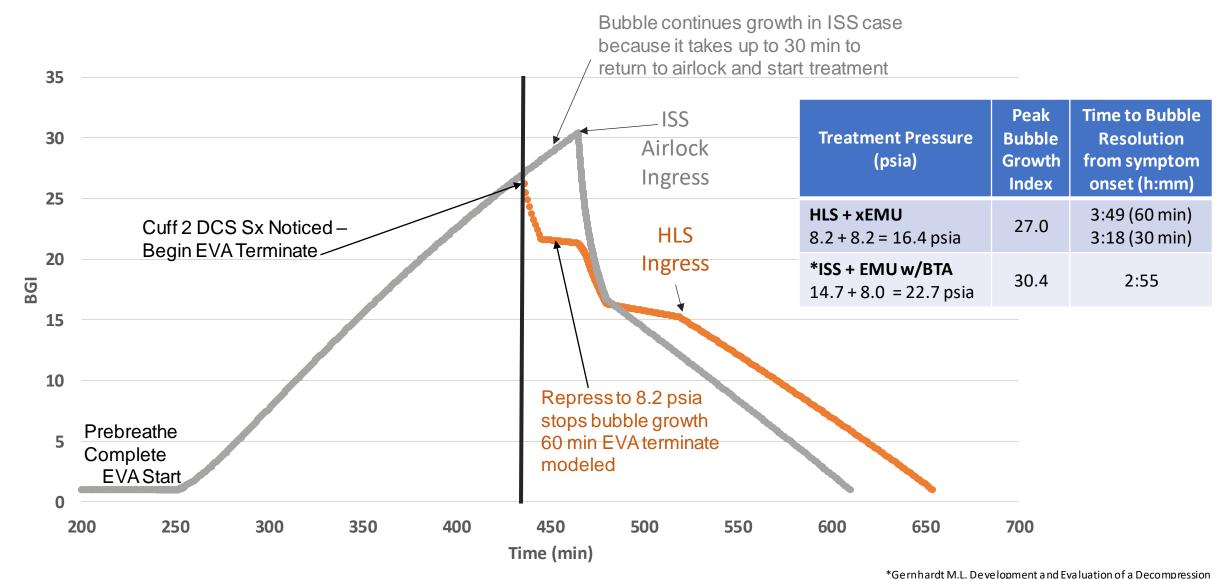
Creative Solutions: Suit as Chamber

Treatment: chamber vs. suit

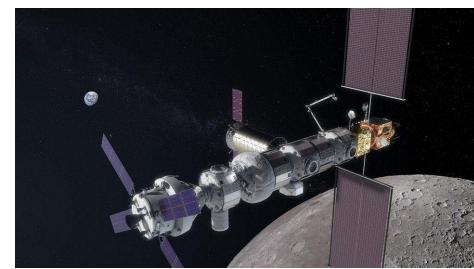
- Remain in suit
- Recognition and exam (training and reporting)
- Specialized neuro (to allow for in-suit diagnosis)
- For lunar: potential comm delays require autonomy

Pressure relationships:

- Terrestrial (Diving DCS & Treatment):
 - Symptoms occur at 14.7 psi
 - Treatment pressure is 41 88 psi (60-165 fsw)
 - 2.8 6x *increase* in pressure
- On Orbit (Lunar DCS & Treatment):
 - Symptoms occur at 4.3 psi
 - Treatment pressure is up to 18.4 psia
 - 4.3x increase in pressure
 - Unknown/untested efficacy but >14.7 psia / GLO

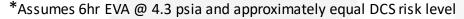


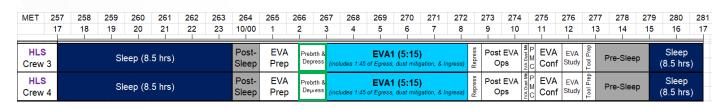
Bubble Dynamics* Comparison ISS vs Exploration Capabilities



Conclusions

- We can and will learn from each other
 - Government/industry collaboration
- Our missions may be different
 - But people are the same
 - Risks and constraints are the same
- We all need to work together and with industry to answer all the questions discussed today




Artemis Mission Impacts to Prevent DCS

	Saturation Atmosphere										
	14.7 psi, 21% O2		6:30-7:0								
	10.2 psi, 26.5% O2		3:00-3:3								
	8.2 psi, 34% O2		0:20 ^{4,5}	5							
	5.0 psi, 100% O2 (Apollo, Gemini)	' ' ()'(
	Unvalidated estimate (i.e., not yet available for	ht)	V	alidated 2023							
											

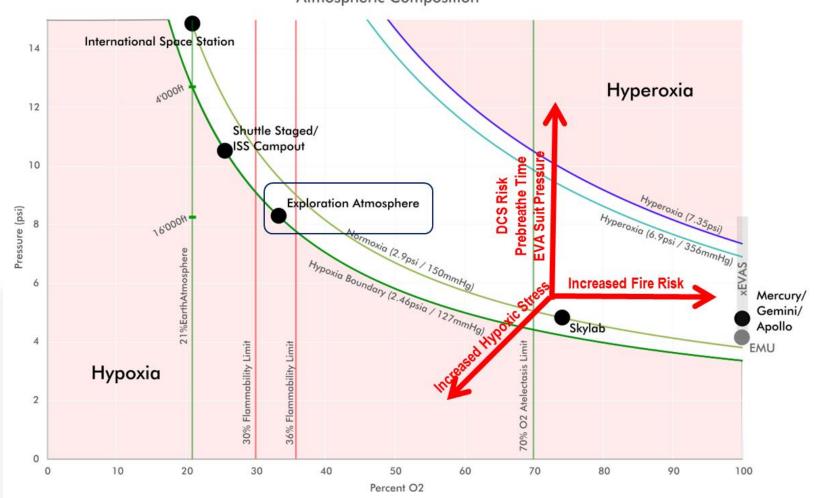
MET	257	258	259	260	261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280	281
Day/Nigh	17 nt	18	19	20	21	22	23	13/00	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
HLS Crew			Sle	еер (8.	5 hrs)			Post- Sleep	EV/		Prebr	eathe & D	epress	(i	VA1 (2 ncludes 1: ss, dust, l	45 of	= 1	EVA NAT WEET	P EVA		Tool Prep	Pre-Slee	p	Sleep (8.5 hrs	
HLS Crew			Sle	еер (8.	5 hrs)			Post- Sleep	EV/ Prep		Prebr	eathe & D	epress	(i	VA1 (2 ncludes 1: ss, dust, l	45 of	<u> </u>	EVA NY	EVA M C Cont		Tool Prep	Pre-Slee	ep	Sleep (8.5 hrs	

Notional Timeline with 10.2 psi / 26.5% O2 Atmosphere and 3h 30 min Prebreathe

Notional Timeline with Exploration Atmosphere (8.2 psi / 34% O2), 30 min Prebreathe

Notes:

- Notional timelines to demonstrate the impact of a longer prebreathe on EVA duration
- Suit Pressure remains 4.3 psi throughout
- Utilizes NASA-STD-3001 "<15% DCS @95% confidence" per person per EVA and verified by test
- ² Abercromby et al. Suited Ground Vacuum Chamber Testing Decompression Sickness Tiger Team Report, (2019) NASA Technical Report. NASA/TP-2019–220343
- ³ Abercromby et al. Using the Shuttle Staged Prebreathe Atmosphere and Variable Pressure Spacesuits for Exploration Extravehicular Activity, (2018) AsMA.
- ⁴ Abercromby et al. Modeling Oxygen Prebreathe Protocols for Exploration EVA Using Variable Pressure Suits, (2017) AsMA.
- ⁵ Abercromby et al. Modeling a 15-min extravehicular activity prebreathe protocol using NASA 's exploration atmosphere (56.5 kPa/34% O2). Acta Astronautica, 109 (2015), pp.76-87.



Artemis DCS Mitigation Process: Start with Engineering Solutions

- Low ppN₂ Atmosphere
 - 8.2 psia/34% O₂ for surface operations
 - Bounded by hypoxia and flammability (already optimized)
 - Flammable materials require Materials Usage Agreements (MUA)
- Variable Pressure Spacesuit
 - Capabilities required to enable Artemis missions
 - Government reference design has 4.3, 5.0, 6.2 and 8.2 psid