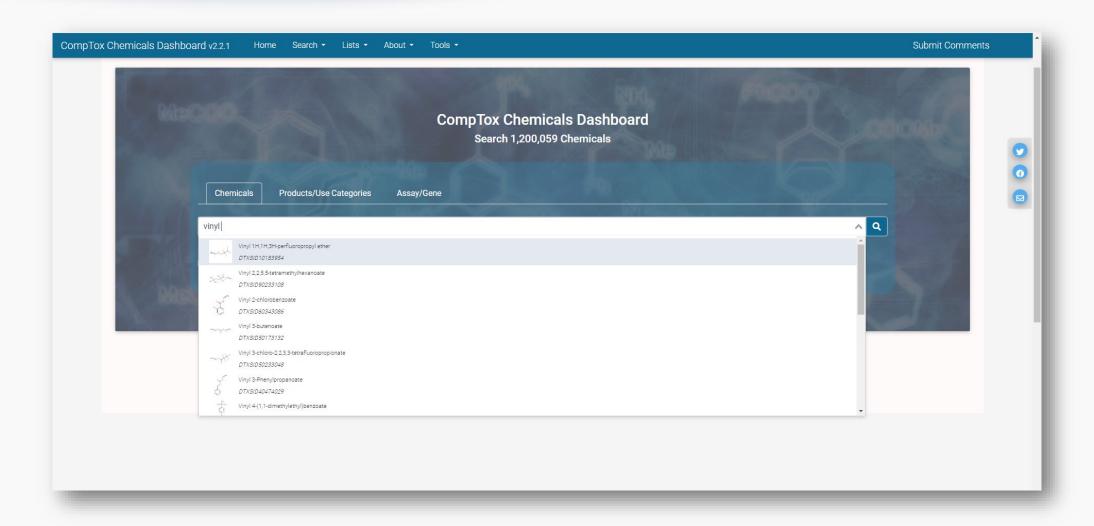


Web-based Applications to Support Access to Chemistry-Related Data

Antony Williams

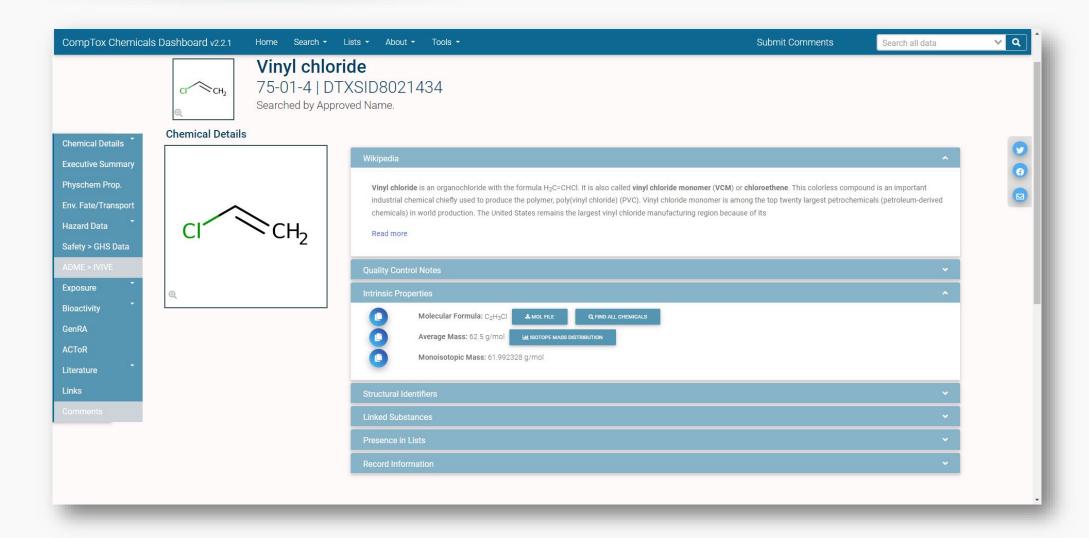
Free-Access Cheminformatics Tools


- The Center for Computational Toxicology and Exposure has delivered many tools to quickly access data for chemicals
 - CompTox Chemicals Dashboard (available since 2016)(https://comptox.epa.gov/dashboard)

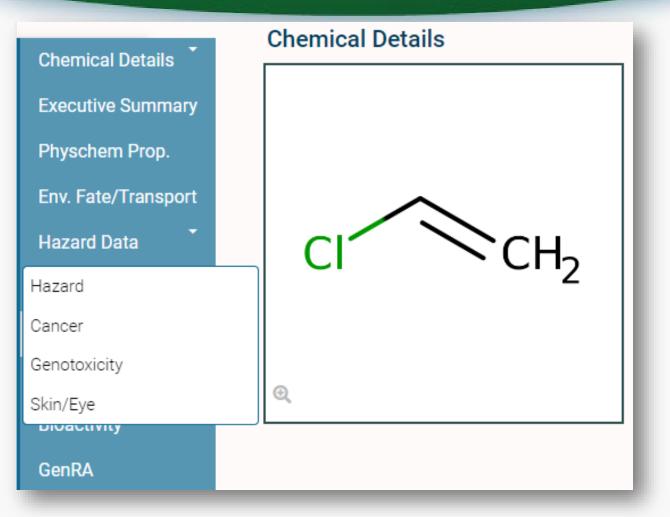
- Cheminformatics modules (6 PoC modules in total)(https://www.epa.gov/chemical-research/cheminformatics)
 - Hazard Profiling
 - Safety Profiling (work in progress)

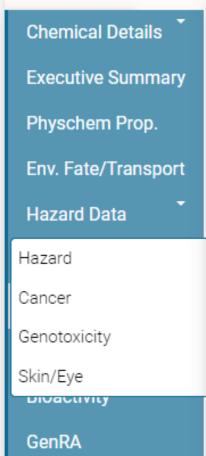
CompTox Chemicals Dashboard

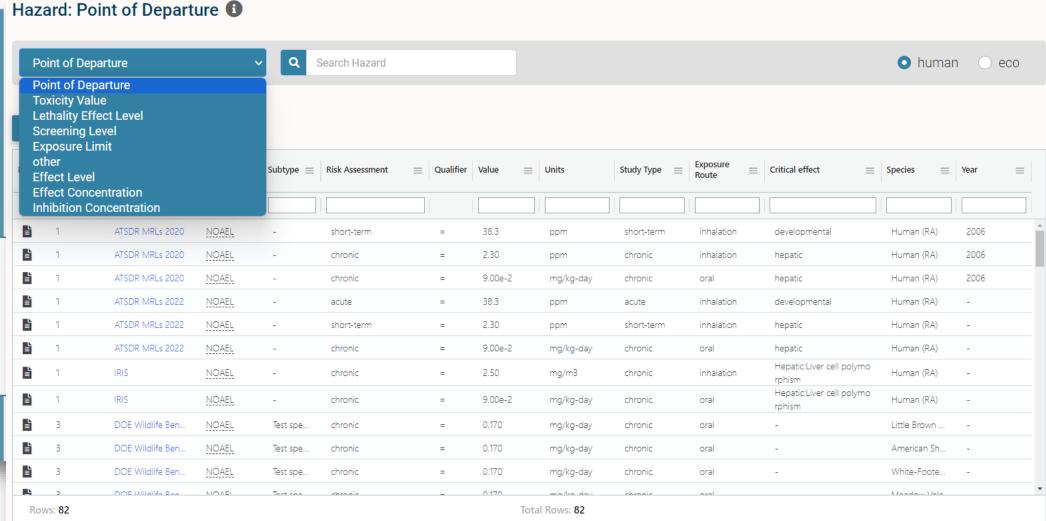
https://comptox.epa.gov/dashboard



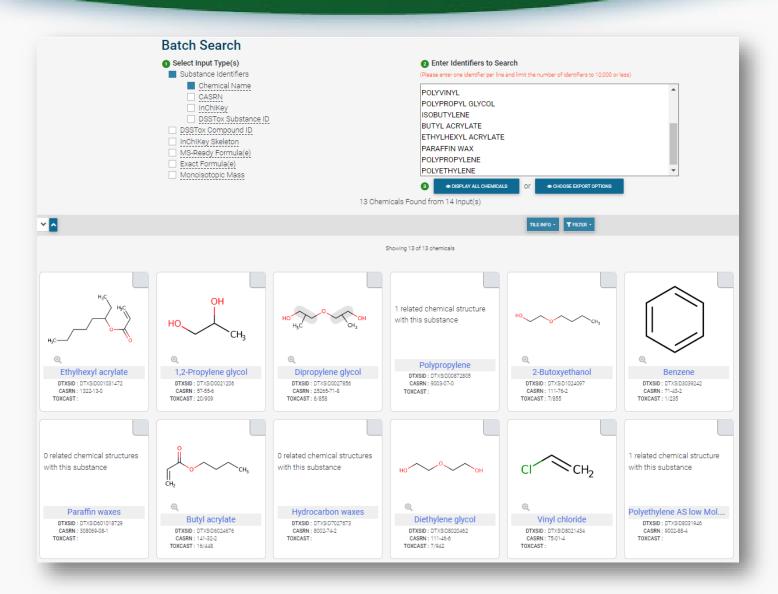
1 of ~1.2M Chemical Pages


Accessing various forms of data


Access to the ToxVal Hazard database

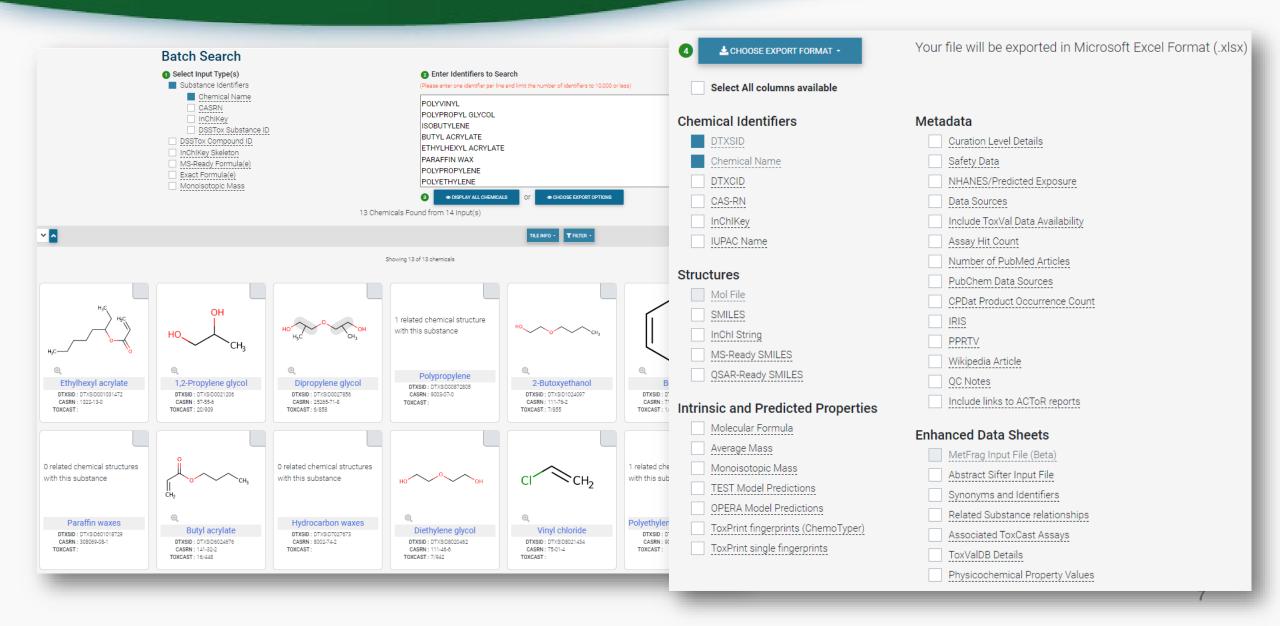


Access to the ToxVal Hazard database



Batch Access to Data

https://doi.org/10.1021/Facs.jcim.0c01273

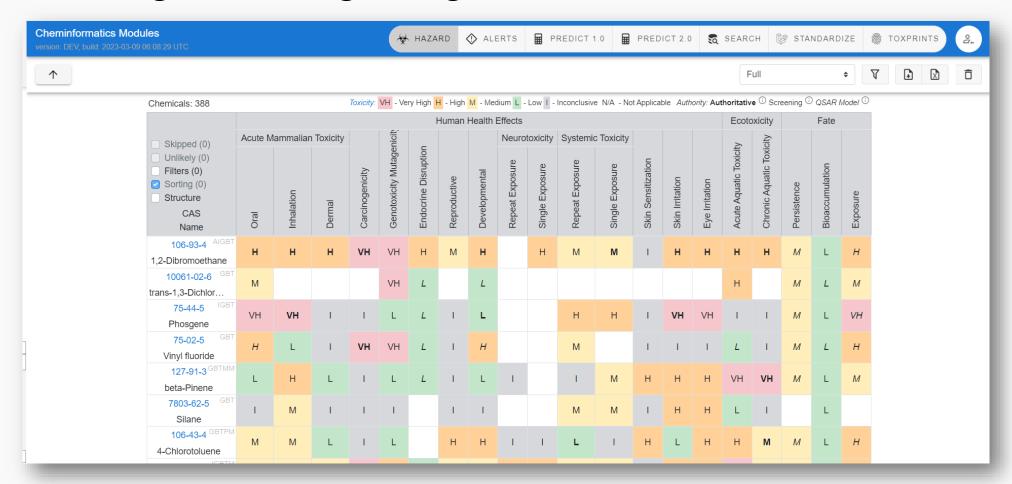


Batch Access to Data

https://doi.org/10.1021/Facs.jcim.0c01273

Data visualizations are increasingly necessary

- >1800 rows of hazard data for a dozen chemicals
- Is there an easier way to view complex hazard data?


A	В	С	D	E	F	G	Н	1	J	K	L	_	М	N	0	Р	Q	R	S	
714 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Carcinog	ge LOAEC	LOAEC	-	Point of D	LOAEC	=		127.812	50	ppm	ppm	chronic	chronic	carcinoger-	
715 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Carcinog	ge LOAEC	LOAEC	-	Point of D	LOAEC	=		12781.2	5000	ppm	ppm	chronic	chronic	carcinoger-	
716 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Carcinog	ge LOAEL	LOAEL	-	Point of D	LOAEL	=		1.7	1.7	mg/kg-da	mg/kg bw	chronic	chronic	carcinoger-	
717 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Carcinog	ge NOAEL	NOAEL	-	Point of D	NOAEL	=		0.13	0.13	mg/kg-da	mg/kg bw	chronic	chronic	carcinoger-	
718 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Develop	m LOAEC	LOAEC	-	Point of D	LOAEC	=		500	500	ppm	ppm	developm	developm	developm -	
719 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCI Develop	m NOAEC	NOAEC	-	Point of D	NOAEC	=		10	10	ppm	ppm	developm	developm	developm -	
720 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCI Develop	m NOAEC	NOAEC	-	Point of D	NOAEC	=		50	50	ppm	ppm	developm	developm	developm -	
721 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Develop	m NOAEC	NOAEC	-	Point of D	NOAEC	=		2500	2500	ppm	ppm	developm	developm	developm -	
722 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d LOAEC	LOAEC	-	Point of D	LOAEC	=		127.812	50	ppm	ppm	chronic	chronic	chronic to -	.
723 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d LOAEC	LOAEC	-	Point of D	LOAEC	=		12781.2	5000	ppm	ppm	chronic	chronic	chronic to -	
724 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d LOAEC	LOAEC	-	Point of D	LOAEC	=		51125	20000	ppm	ppm	subchroni	subchroni	sub-chron -	
725 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d LOAEC	LOAEC	-	Point of D	LOAEC	=		127812	50000	ppm	ppm	short-tern	short-tern	short-tern -	
726 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d LOEC	LOEC	-	Point of D	LOEC	=		260	260	mg/m3	mg/m3 air	chronic	chronic	repeated (-	
727 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d NOAEC	NOAEC	-	Point of D	NOAEC	=		127.812	50	ppm	ppm	subchroni	subchroni	sub-chron -	
728 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d NOAEC	NOAEC	-	Point of D	NOAEC	=		255.625	100	ppm	ppm	subchroni	subchroni	sub-chron -	
729 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d NOAEC	NOAEC	-	Point of D	NOAEC	=		511.25	200	ppm	ppm	subchroni	subchroni	sub-chron -	
730 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d NOEC	NOEC	-	Point of D	NOEC	=		130	130	mg/m3	mg/m3 air	repeat do	repeat do	repeated (-	
731 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d LOAEL	LOAEL	-	Point of D	LOAEL	=		1.7	1.7	mg/kg-da	mg/kg bw,	chronic	chronic	chronic to -	
732 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d NOAEL	NOAEL	-	Point of D	NOAEL	=		0.13	0.13	mg/kg-da	mg/kg bw,	chronic	chronic	chronic to -	
733 Vinyl chlor	DTXSID802	75-01-4	Vinyl chlor	ECHA	IUCl Repeate	d NOAEL	NOAEL	-	Point of D	NOAEL	=		30	30	mg/kg-da	mg/kg bw,	subchroni	subchroni	sub-chron -	
734 Vinyl chlor			Vinyl chlor	ECOT	OX EPA ORE	EC50	EC50	active ing	r Effect Con	EC	=		1170	1.17	mg/m3	mg/L	other	populatio	Population c	ch 🔻
4 +	Cover Sheet	Main [Data Ass	sociate	ed ToxCast Ass	says Tox	val Details	+				: [4]								•

Cheminformatics Modules PoCs

 Proof-of-concept tools are to try out new approaches to visualizing and integrating data

How easy is it to source screening data?

ORIGINAL DATA

POLYPROPYLENE

POLYETHYLENE

Residue lube oil

VINYL CHLORIDE

DIPROPYLENE GLYCOL

PROPYLENE GLYCOL

DIETHYLENE GLYCOL

COMBUSTIBLE LIQ., NOS (ETHYLENE GLYCOL MONOBUTYL ETHER)

SEMOLINA

COMBUSTIBLE LIQ., NOS (ETHYLHEXYL ACRYLATE)

POLYVINYL

PETROLEUM LUBEOIL

POLYPROPYL GLYCOL

ISOBUTYLENE

BUTYL ACRYLATES, STABILIZED

PETRO OIL, NEC

ADDITIVES, FUEL

BALLS,CTN,M EDCL

SHEET STEEL

VEGTABLE, FROZEN

BENZENE

PARAFFIN WAX

FLAKES, POWDER

HYDRAULIC CEMENT

AUTOS PASSENGER

MALT LIQUORS

How easy is it to source screening data?

ORIGINAL DATA

POLYPROPYLENE

POLYETHYLENE

Residue lube oil

VINYL CHLORIDE

DIPROPYLENE GLYCOL

PROPYLENE GLYCOL

DIETHYLENE GLYCOL

COMBUSTIBLE LIQ., NOS (ETHYLENE GLYCOL MONOBUTYL ETHER)

SEMOLINA

COMBUSTIBLE LIQ., NOS (ETHYLHEXYL ACRYLATE)

POLYVINYL

PETROLEUM LUBEOIL

POLYPROPYL GLYCOL

ISOBUTYLENE

BUTYL ACRYLATES, STABILIZED

PETRO OIL, NEC

ADDITIVES, FUEL

BALLS, CTN, M EDCL

SHEET STEEL

VEGTABLE, FROZEN

BENZENE

PARAFFIN WAX

FLAKES, POWDER

HYDRAULIC CEMENT

AUTOS PASSENGER MALT LIQUORS

FILTERED DOWN TO

VINYL CHLORIDE

DIPROPYLENE GLYCOL

PROPYLENE GLYCOL

DIETHYLENE GLYCOL

ETHYLENE GLYCOL MONOBUTYL

ETHER

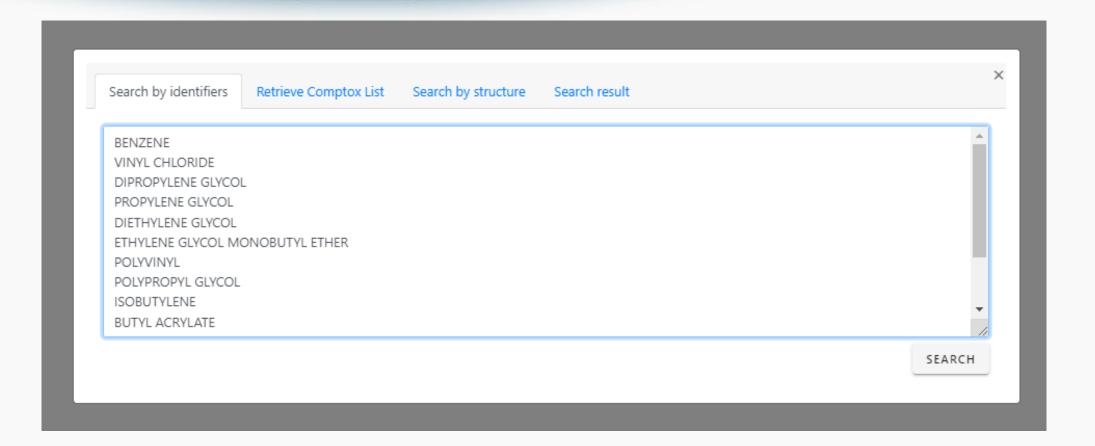
POLYVINYL

POLYPROPYL GLYCOL

ISOBUTYLENE

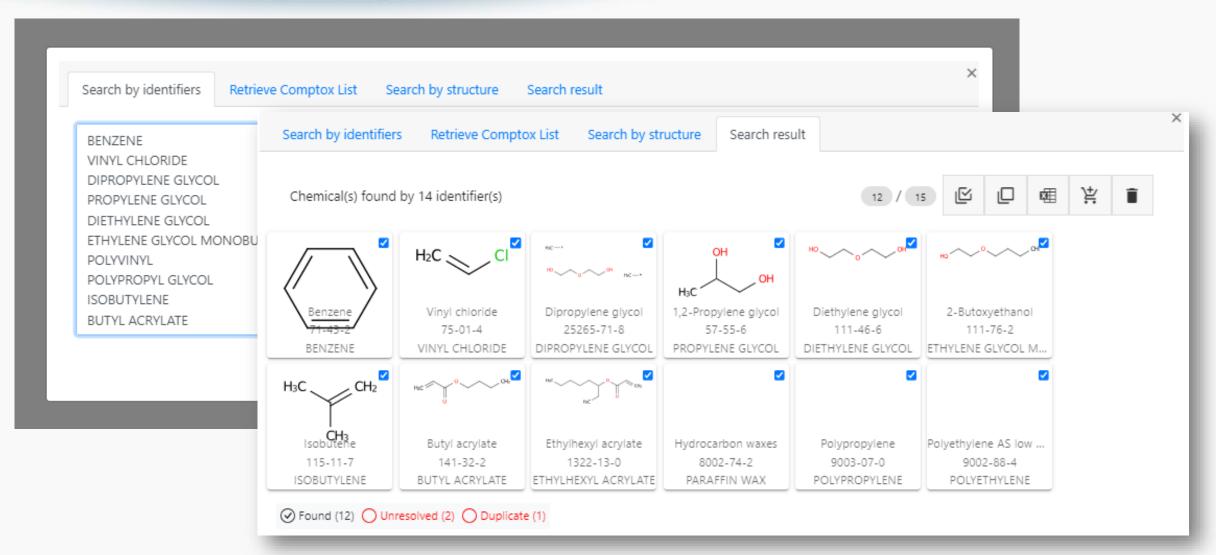
BUTYL ACRYLATE

ETHYLHEXYL ACRYLATE


PARAFFIN WAX

POLYPROPYLENE

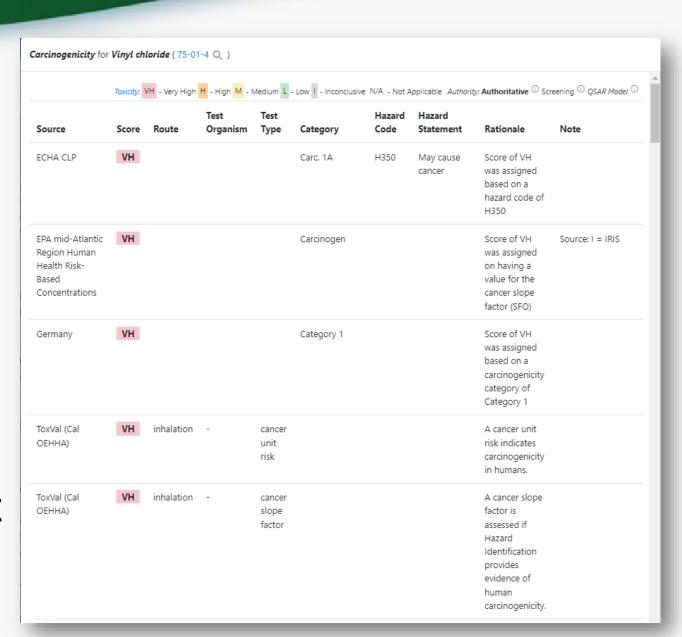
POLYETHYLENE


Hazard Comparison Profiling

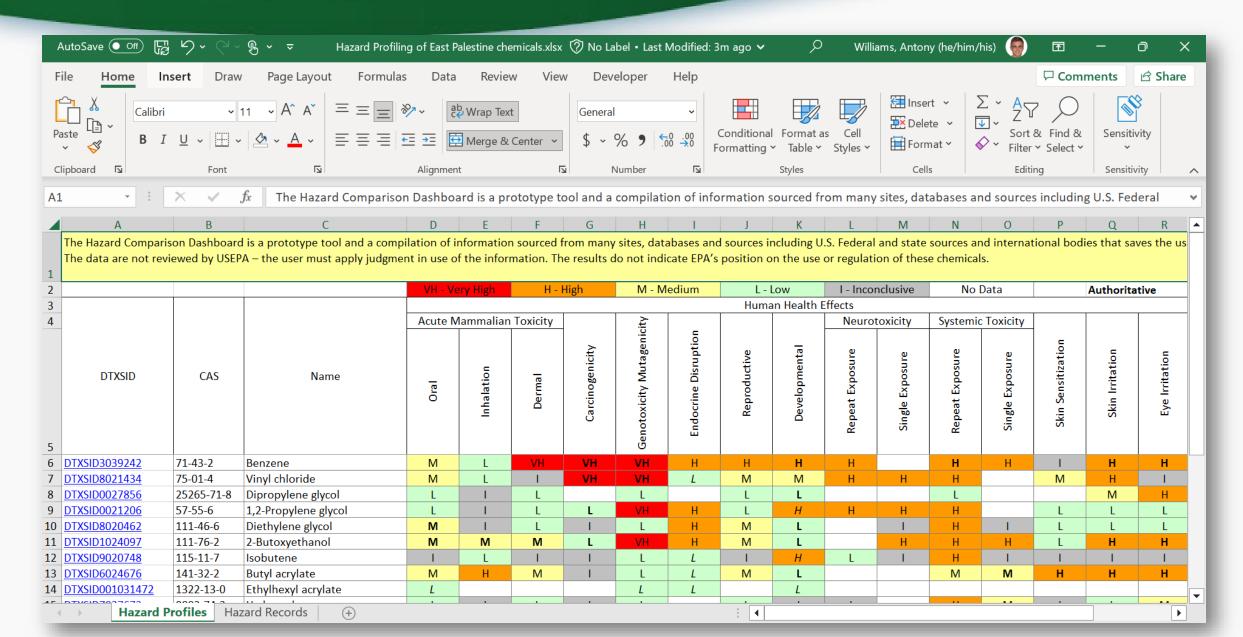
Hazard Comparison Profiling

Hazard Comparison Profiling

Chemicals: 12				Toxicity:	VH - Ve	ry High	H - High	M - Me	dium L -	Low I -	Inconclusiv	e N/A - No	t Applica	ble Auth	ority: Aut	horitativ	re (i) Scr	eening (QSAR I	Model ①
							Human	Health	Effects							Ecoto	oxicity		Fate	
Skipped (0)	Acute N	lammaliar	n Toxicity		nicit	_			Neuro	toxicity	Systemi	c Toxicity				≻	city			
Unlikely (0) Filters (0) Sorting (0) Structure CAS Name	Oral	Inhalation	Dermal	Carcinogenicity	Genotoxicity Mutagenicit	Endocrine Disruption	Reproductive	Developmental	Repeat Exposure	Single Exposure	Repeat Exposure	Single Exposure	Skin Sensitization	Skin Irritation	Eye Irritation	Acute Aquatic Toxicity	Chronic Aquatic Toxicity	Persistence	Bioaccumulation	Exposure
71-43-2 AIGBT Benzene	М	L	VH	VH	VH	Н	Н	Н	Н		Н	Н	-1	Н	Н	Н	M	М	Н	Н
75-01-4 AIGBT Vinyl chloride	М	L	ı	VH	VH	L	М	М	Н	Н	Н		M	Н	T	M	VH	М	L	VH
25265-71-8 GBT Dipropylene glycol	L	1	L		L		L	L			L			М	Н	L			L	
57-55-6 AIGBT 1,2-Propylene gly	L	ı	L	L	VH	Н	L	Н	Н	Н	Н		L	L	L	L	L	L	L	VH
111-46-6 GBTM Diethylene glycol	М	I	L	ı	L	Н	М	L		1	Н	ı	L	L	L	L	L	L	L	VH
111-76-2 AIGBT 2-Butoxyethanol	М	М	М	L	VH	Н	М	L		Н	Н	Н	L	Н	Н	L	L	L	L	VH
115-11-7 GBTM Isobutene	- 1	L	1	1	L	L	-1	Н	L	1	Н	- 1	1	1	1	L		М	L	VH
141-32-2 GBTM Butyl acrylate	М	Н	М	1	L	L	М	L			М	М	Н	Н	Н	Н	Н	L	L	Н
1322-13-0 Ethylhexyl acrylate	L				L	L		L								VH			1	
8002-74-2 GBT Hydrocarbon waxes	L	1	L	1	L		L	1	1		Н	М	1	L	М	L	1		L	
9003-07-0 GBT Polypropylene				1												L			L	
9002-88-4 GBT Polyethylene AS I		М		-1												L			L	


Hazard Profile Underlying data available

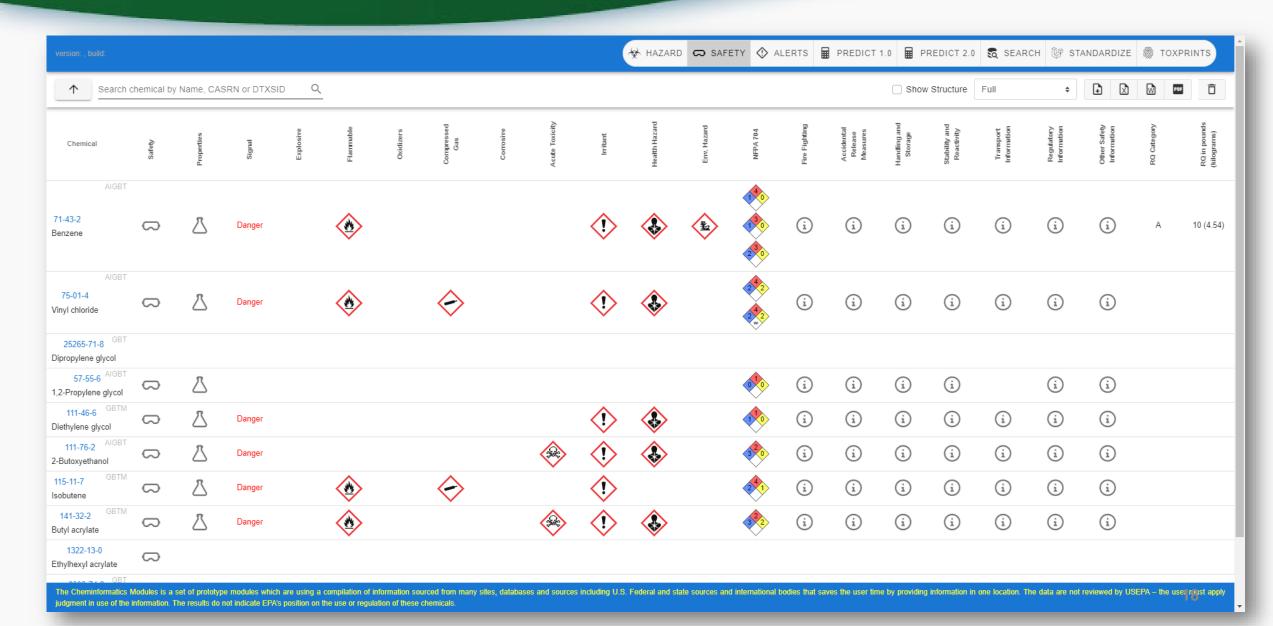
 Underlying toxicity data are from ToxVal and integrated GHS data


 Build a hazard profile on 500 chemicals in <60s

 Report data in Excel format for easy distribution...

Easy Export of all data to Excel

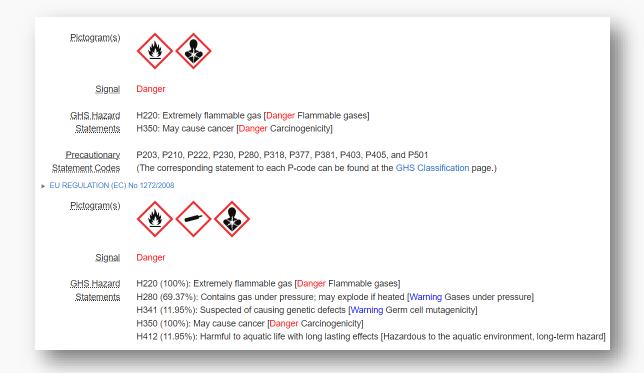
All Underlying Data Reported Out

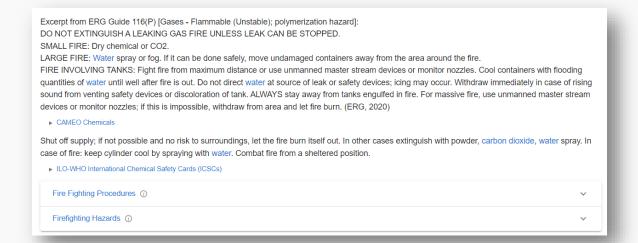


- Harvesting screening data easily, assembled from multiple resources is a key advantage
- Identification of authoritative, screening and predicted data

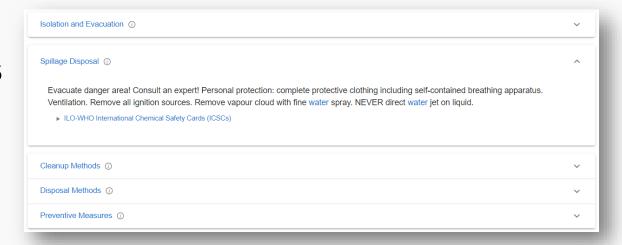
A	В	С	D	Е	F	G	Н
1 Hazard Name	CAS	Name	Source	Original Source	List Type	Score	Rationale Route
234 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	<u>CalEPA</u>	Authoritative	VH	Score of VH was assigned based on a cancer call of "Likely H
235 Carcinogenicity	75-01-4	Vinyl chloride	Canada		Screening	VH	Score of VH was assigned based on a hazard code of H350
236 Carcinogenicity	75-01-4	Vinyl chloride	Health Canada Pri		Screening	VH	Score of VH was assigned on based on a category of Carcino
237 Carcinogenicity	75-01-4	Vinyl chloride	Japan		Screening	VH	Score of VH was assigned based on a hazard code of H350
238 Carcinogenicity	75-01-4	Vinyl chloride	Malaysia		Screening	VH	Score of VH was assigned based on a hazard code of H350
239 Carcinogenicity	75-01-4	Vinyl chloride	New Zealand		Screening	VH	Score was assigned based on a category of Category 6.7A (Ca
240 Carcinogenicity	75-01-4	Vinyl chloride	TSCA work plan		Screening	VH	Score of VH was assigned based on a category of Known hur
241 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Health Canada	Screening	VH	A cancer slope factor is assessed if Hazard Identification pro oral
242 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Health Canada	Screening	VH	A cancer slope factor is assessed if Hazard Identification pro oral
243 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Pennsylvania DEP ToxValues	Screening	VH	A cancer slope factor is assessed if Hazard Identification pro-
244 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Pennsylvania DEP ToxValues	Screening	VH	A cancer unit risk indicates carcinogenicity in humans.
245 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Wignall	Screening	VH	A cancer slope factor is assessed if Hazard Identification pro oral
246 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Health Canada	Screening	VH	Score of VH was assigned based on a cancer call of "Group I:
247 Carcinogenicity	75-01-4	Vinyl chloride	ToxVal	Health Canada	Screening	VH	Score of VH was assigned based on a cancer call of "Group I:
248 Carcinogenicity	75-01-4	Vinyl chloride	UMD		Screening	VH	Score of VH was assigned based on a category of Carcinogen
249 Genotoxicity Mutagenicity	75-01-4	Vinyl chloride	EPA mid-Atlantic F		Authoritative	VH	Score of VH was assigned based on a category of M (mutage
250 Genotoxicity Mutagenicity	75-01-4	Vinyl chloride	New Zealand		Screening	VH	Score was assigned based on a category of Category 6.6A (Ca
251 Genotoxicity Mutagenicity	75-01-4	Vinyl chloride	ToxVal		Screening	VH	Score of VH was assigned based on a genetox call of "gentox
252 Genotoxicity Mutagenicity	75-01-4	Vinyl chloride	Canada		Screening	Н	Score of H was assigned based on a hazard code of H341
253 Genotoxicity Mutagenicity	75-01-4	Vinyl chloride	Japan		Screening	Н	Score of H was assigned based on a hazard code of H341

Work in Progress: Safety Profiling

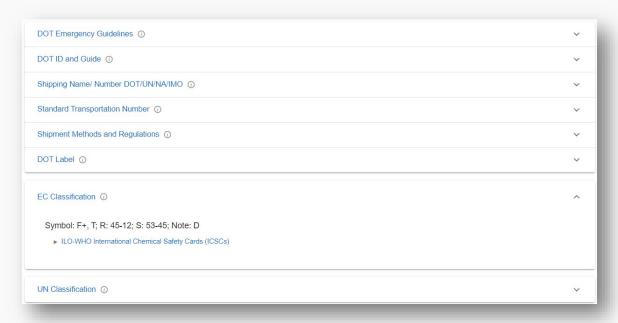



Safety data includes

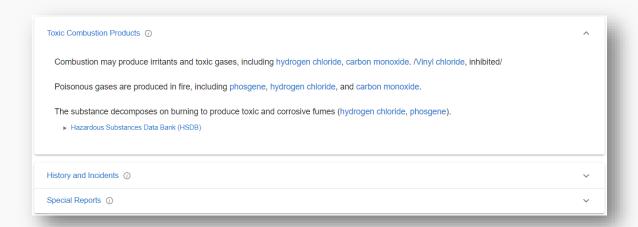
- GHS data



- Safety data includes
 - GHS data
 - Firefighting procedures



- Safety data includes
 - GHS data
 - Firefighting procedures
 - Accidental release measures



- Safety data includes
 - GHS data
 - Firefighting procedures
 - Accidental release measures
 - Transport information

- Safety data includes
 - GHS data
 - Firefighting procedures
 - Accidental release measures
 - Transport information
 - Toxic combustion products

Safety data includes

- GHS data
- Firefighting procedures
- Accidental release measures
- Transport information
- Toxic combustion products
- History and Incidents

History and Incidents (i)

In 2012 in New Jersey, a train derailment resulted in the puncture of a tanker car carrying liquid vinyl chloride under pressure, and a resulting airborne vinyl chloride plume drifted onto the grounds of a nearby refinery. This report details the investigation of exposures and symptoms among refinery workers. The investigation team met with refinery workers to discuss their experience after the derailment and provided workers a self-administered survey to document symptoms and worker responses during the incident. Associations among categorical variables and experiencing symptoms were evaluated using Fisher's exact test. Twenty-six of 155 (17 percent) workers present at the refinery or driving on the access road the date the spill occurred completed the survey. Any self-reported symptom following exposure from the vinyl chloride release /was analyzed/. Fifteen workers (58 percent) reported >/=1 symptom, most commonly headache (12, 46 percent). Three (12 percent) reported using respiratory protection. No differences in reporting symptoms were observed by location during the incident or by the building in which workers sheltered. Workers who moved from one shelter to another during the incident (ie, broke shelter) were more likely to report symptoms (Fisher's exact test, p=0.03); however, there are only limited data regarding vinyl chloride concentrations in shelters versus outside. Breaking shelter might result in greater exposures, and managers and health and safety officers of vulnerable facilities with limited physical access should consider developing robust shelter-in-place plans and alternate emergency egress plans. Workers should consider using respiratory protection if exiting a shelter is pecessary during a chemical incident

On November 30, 2012, at approximately 7:00 am, a freight train derailed near a small town in New Jersey. Four tank cars, including a breached that car carn in yipul abloride leaded in a titlal creek. Viryl shloride a color is a say with comild, sweet or in used in plastics manufacture.

Historical Data can be very useful

History and Incidents (i)

In 2012 in New Jersey, a train derailment resulted in the puncture of a tanker car carrying liquid vinyl chloride under pressure, and a resulting airborne vinyl chloride plume drifted onto the grounds of a nearby refinery. This report details the investigation of exposures and symptoms among refinery workers. The investigation team met with refinery workers to discuss their experience after the derailment and provided workers a self-administered survey to document symptoms and worker responses during the incident. Associations among categorical variables and experiencing symptoms were evaluated using Fisher's exact test. Twenty-six of 155 (17 percent) workers present at the refinery or driving on the access road the date the spill occurred completed the survey. Any self-reported symptom following exposure from the vinyl chloride release /was analyzed/. Fifteen workers (58 percent) reported >/=1 symptom, most commonly headache (12, 46 percent). Three (12 percent) reported using respiratory protection. No differences in reporting symptoms were observed by location during the incident or by the building in which workers sheltered. Workers who moved from one shelter to another during the incident (ie, broke shelter) were more likely to report symptoms (Fisher's exact test, p=0.03); however, there are only limited data regarding vinyl chloride concentrations in shelters versus outside. Breaking shelter might result in greater exposures, and managers and health and safety officers of vulnerable facilities with limited physical access should consider developing robust shelter-in-place plans and alternate emergency egress plans. Workers should consider using respiratory protection if exiting a shelter is necessary during a chemical incident.

On November 30, 2012, at approximately 7:00 am, a freight train derailed near a small town in New Jersey. Four tank cars, including a breached tank car carry of vinyl chloride. Landed in a tidal creek. Viryl shloride, a colorle is gas with a mild, sweet or in used in plastics manufacture.

RapidTox

- RapidTox is being developed for multiple workflows
- Internal only at present production system learning from our PoC developments and with a focus on curated data

Conclusions

- US-EPA-CCTE has delivered tools to access data which can support rapid chemical assessment
 - CompTox Chemicals Dashboard
 - Cheminformatics Modules
- Internal Tools which will go public in the future
 - Safety Profiler
 - RapidTox
- Data caveats: always expanding and always under curation