

Newborn Screening by Genome Sequencing: Needs, challenges, solutions, and opportunities

Session 2: Discussing Challenges and Opportunities for Building Newborn Screening Research Infrastructure

Stephen F. Kingsmore, MB ChB BAO DSc FRCPath 10:20-10:32 May 16, 2024

Financial Disclosures: Supporting from the BeginNGS consortium

Research collaborations:

Alexion Pharmaceuticals, Amgen Inc., Chiesi Farmaceutici, Fabric Genomics,

Genomenon Inc.,

Helix Inc.,

HorizonTherapeutics,

Illumina Inc.,

Inozyme Pharma,

Ionis Pharmaceuticals

Mahzi Therapeutics,

Nest Genomics,

Orchard Therapeutics,

Rocket Pharma,

Sanofi S.A.,

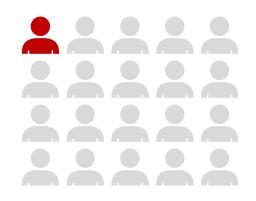
Sarepta Therapeutics,

Sentinyl Therapeutics Inc.,

Takeda Inc.,

TileDB Inc.,

Travere Therapeutics Inc.,


Ultragenyx

Need: Current approach to diagnosis & management of rare disease is inefficient, ineffective, & inequitable

Burden of Rare Genetic Disease

On average, reaching a diagnosis takes

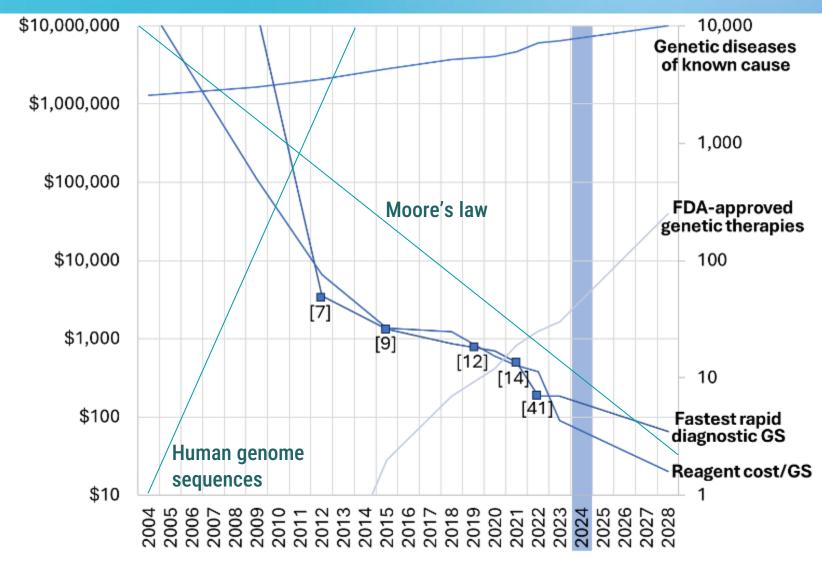
1 in 20

children have a rare genetic disease

4.8 Years
AND
7.3
Specialists

and some people are never diagnosed

>\$1 T


annual US healthcare burden of rare disease with average PPPY cost of \$9k-140k

~\$1T annual cost of 379 rare diseases (direct and indirect costs, non-medical costs, and healthcare costs not covered by insurance). Bavisetty. *Rare Dis.* 2013; Marwaha. *Genome Medicine*. 2022; Tisdale et al. *Orphanet Journ. Rare Disease*. 2021; Yang et al. *Orphanet Journ. Rare Disease*. 2019; RCIGM; NIH; ClearView Analysis.

Opportunity: We are at an inflection point in genome-informed pediatric care

Need: 61 years of Newborn Screening 36 disorders on RUSP panel 12,500 US infants benefit per year

Did you know...

Children should be SCREENED SHORTLY
AFTER 24 HOURS of being born

MOST STATES SCREEN FOR

begins with a

36+

RECOMMENDED HEALTH CONDITIONS

More than

1 IN 300 NEWBORNS

have a condition detectable through Newborn Screening

In 1999
HEARING
SCREENING
is recommende
for newborns

Most babies with serious but treatable conditions caught by Newborn Screening **GROW UP HEALTHY** with expected development

his project is funded by the Maternal and Child Health Bureau,
Health Resources and Services Administration (HRSA),
Grap No. 1158/C15580

Opportunity: 66 years of Newborn Screening 1000+ disorder panel 75,000 US infants benefit per year

Did you know ...

Children should be SCREENED SHORTLY
AFTER 24 HOURS of being born

SOME STATES SCREEN FOR

1000+

RECOMMENDED HEALTH CONDITIONS

More than

1 IN 50 NEWBORNS

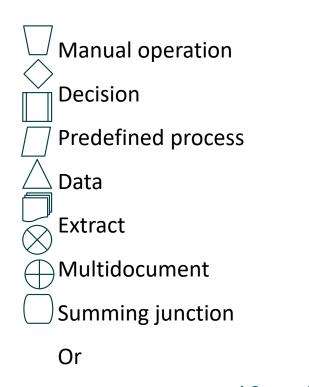
have a condition detectable through Newborn Screening

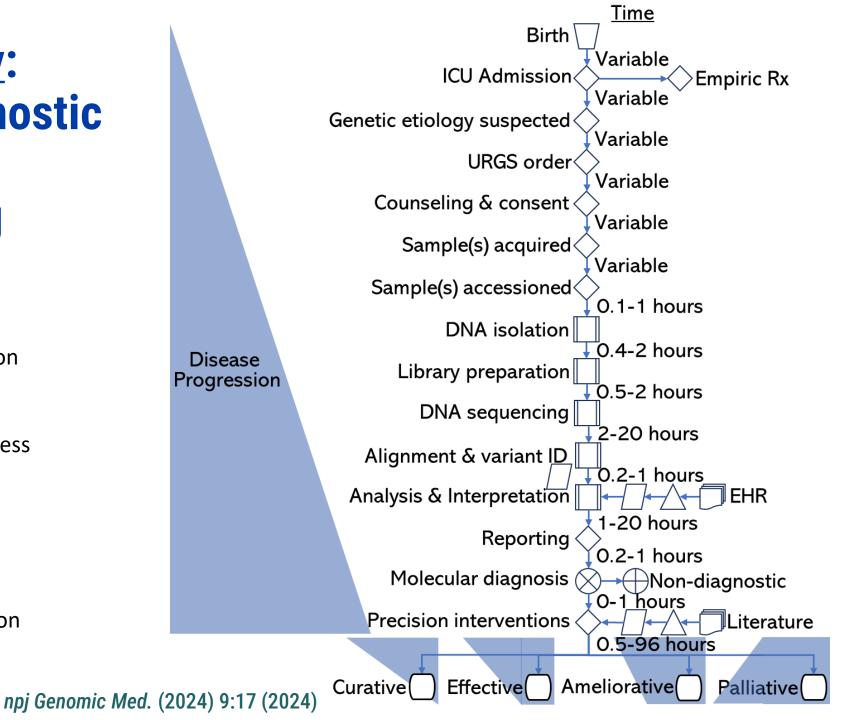
Most babies with serious but treatable conditions caught by Newborn Screening **GROW UP HEALTHY** with expected development

2029

BeginNGS

becomes a part of


lewborn Screening


Source: BabysFirstTest.org

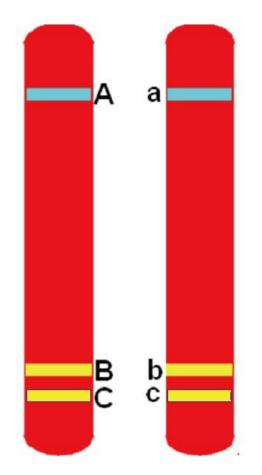
his project is funded by the Maternal and Child Health Bureau, Health Resources and Services Administration (HRSA), Grant No. U36MC16509

Opportunity: Rapid Diagnostic Genome Sequencing

Terminator

Opportunity: Learn from Rapid Diagnostic Genome Sequencing for NBS by Genome Sequencing

Feature	Rapid Diagnostic Genome Sequencing	BeginNGS Al and GS-based NBS					
Core technologies	Genome sequencing, artificial intelligence,	electronic clinical decision support					
Primary objective	Phenotype-informed molecular diagnosis	Presymptomatic identification, prevention or treatment					
Intended indicated use	Hospitalized, acutely ill children with diseases of unknown etiology	All (mainly healthy) infants					
Diseases examined	Any childhood genetic disease	Preventable or effectively treatable, severe childhood genetic diseases					
Variants reported	P, LP, VUS-S (VUS with disease- subject phenotype concordance)	Prequalified set of P, LP, Conflicting (but with P or LP assertions) variants					
Incidental findings	Yes, childhood diseases	None					
Pre-test probability of +ve	50%, including VUS	<5%					
Upper limit of COGS	\$3000 per subject	\$300 per subject					
Desired recall	100%	>90%					
Positive Predictive Value	~80%	>50%					
Time to result	1-2 days	2 weeks					
Physician receiving results	Primarily neonatologist, intensivist	Primarily primary care pediatrician					
Intended scope	Diagnosis, precision medicine guidance, physician education	Screening, confirmatory testing, referral, precision medicine guidance, physician and parent education					

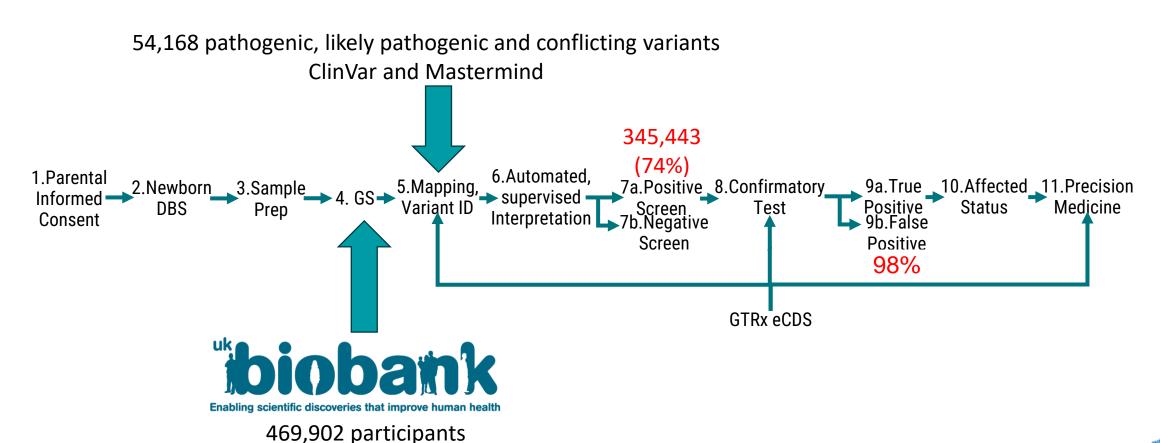

<u>Challenges</u>: Ultra-rare disease; Penetrance; Expressivity; Under-representation of non-EUR genomes

<u>Ultra-rare disease</u>: Prevalence <1 in 50,000

Penetrance: Proportion of children with a pathogenic diplotype that is consistent with the pattern of inheritance who are affected by the disease associated with that gene e.g. 8 genes associated with atypical hemolytic uremic syndrome have childhood penetrance of ~5%

Expressivity: Proportion of children with a pathogenic diplotype that is consistent with the pattern of inheritance who are fully affected by the disease associated with that gene e.g. severe mucopolysaccharidosis II has expressivity of ~7%

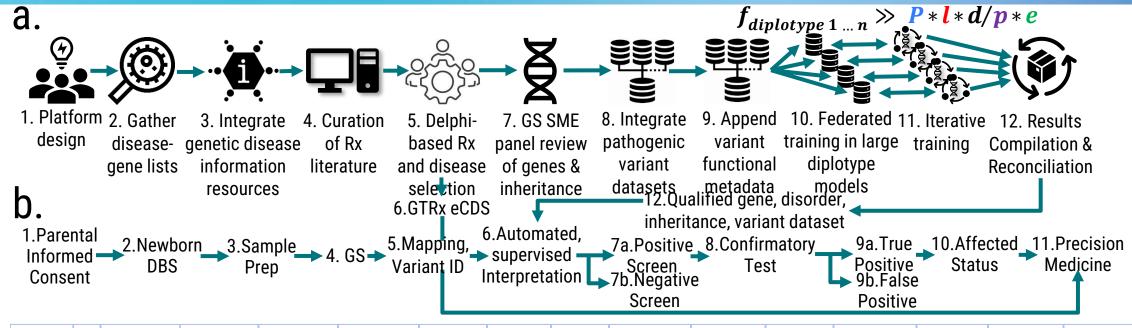
Alleles: A, B, C, a, b and c


Genotypes: A/a; B/b and C/c

Haplotypes: ABC and abc

Diplotype: ABC/abc

Retrospective Study: BeginNGS x 470,000 UK adults


86% white British, 10.1% other European, 1.3% African, East Asian 1.1%

aged 40-69 years

Solution: 1.9% positive rate following federated training in large cohorts

Gene	Inh	Adult UK Disorder Prevalence	Observed UKB470K Genetic Prevalence	Estimated Adult Penetrance	Estimated Adult Expressivity		Genes Assoc. With OMIM Disorder	Est. Locus Hetero- geneity	Corrected Adult UK Genetic Prevalence (P corrected)	UKB470K Positive Diplotypes	Hetero-	Corrected UK Diplotype frequency (f corrected)	BeginNGS .2 Variants Assoc. with Gene	Corrected UKB470K Positive Diplotypes	Corrected UKB470K Genetic Prevalence
		P	0	p	е	Х		I	P*I/p*e	n	d	P corrected * d			O corrected
HNF1A	AD	6,400	52,905	0.7	0.7	3	396	0.01	131	46	0.2	26	259	43	69
CYPZ1A	AR	10	37,320	0.5	0.5	2	1	1	40	46	0.25	10	101	28	54
CFTR	AR	20	2,349	0.7	0.7	1	4	0.95	39	160	0.6	23	1261	74	56
GALT	AR	4	1,043	0.6	0.6	1	4	0.9	10	34	0.25	3	250	6	1
FGG	AD	15	955	0.5	0.5	2	3	0.33	20	9	0.2	4	21	7	6

Summary

- Newborn screening by genome sequencing has the potential to improve outcomes for ~1,000 severe, single locus disorders with early childhood onset and effective treatments by early identification and intervention.
- Fully automated interpretation is possible by prequalification of diseases, genes, inheritance modes, variants, and therapeutic interventions
- Federated training in large, diverse cohorts decreased the positive rate in UK adults from 73% to 1.9%.
- Phase 3 of development includes expansion to all treatable and preventable rare diseases of early childhood, federated training, and a large adaptive clinical trial

Thank You

Meredith Wright,^{1,2} Laurie D. Smith,¹ Yupu Liang³, William R. Mowrey,³ Liana Protopsaltis,^{1,2} Matthew Bainbridge,^{1,2} Mei Baker⁴, Sergey Batalov,^{1,2} Eric Blincow,^{1,2} Bryant Cao,^{1,2} Sara Caylor,^{1,2} Christina Chambers,⁵ Katarzyna Ellsworth,^{1,2} Annette Feigenbaum,^{1,2,5} Erwin Frise,⁶ Lucia Guidugli,^{1,2} Kevin P. Hall,⁷ Christian Hansen,^{1,2} Mark Kiel,⁸ Lucita Van Der Kraan,^{1,2} Chad Krilow,⁹ Hugh Kwon,^{1,2} Lakshminarasimha Madhavrao,^{1,2} Sebastien Lefebvre,¹⁰ Jeremy Leipzig,⁹ Rebecca Mardach,^{1,2,5} Danny Oh,^{1,2} Lauren Olsen,^{1,2} Eric Ontiveros,^{1,2} Mallory J. Owen,^{1,2} Rebecca Reimers¹, Gunter Scharer,¹ Jennifer Schleit¹, Seth Shelnutt,⁹ Shyamal S. Mehtalia,⁷ Albert Oriol,^{1,2} Erica Sanford,¹ Steve Schwartz,⁸ Martin G. Reese,⁶ Kristen Wigby,^{1,2} Mary J. Willis,¹ Aaron R. Wolen,⁹ Mark Yandell, Chris M. Kunard,⁷ Thomas Defay³.

Dedicated to the memory of Gunter Scharer. A Deo lumen, ab amicis auxilium

¹Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA.

²Rady Children's Hospital, San Diego, CA 92123, USA.

³Alexion, Astra Zeneca Rare Disease, Boston, MA 02210, USA.

⁴Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706

⁵Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA.

⁶Fabric Genomics, Inc., Oakland, CA 94612, USA.

⁷Illumina, Inc., San Diego, CA 92122, USA.

⁸Genomenon Inc., Ann Arbor, MI 48108, USA.

⁹TileDB Inc., Cambridge, MA 02142, USA.

¹⁰SLC Consulting Inc., Boston, MA 02210, USA.

¹¹ Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA.