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Reasons not to use LLMs as Cognitive Models
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LLMs were not designed as cognitive models.



Reasons not to use LLMs as Cognitive Models

LLMs were not designed as cognitive models.

The success was “stumbled upon” via good engineering, but
they do not represent any coherent theory. And, they still are
woefully un-human-like in so many ways.

LLMs are black boxes.
We do not understand how they work. We cannot simply
replace one black box—I.e., the human brain and mind—with

another black box—Ii.e, the artificial neural network.
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best computational model

LLMs are black boxes.



Reasons to use LLMs as Cognitive Models

LLMs were not designed as cognitive models.
Yes, But their abitiﬁj to simulate human behavior across so
many varied domains is worth taking seriously, And in
cerbain some cases (namely, lanquage) the represent our
best computational model of human behavior by a Long shot.

LLMs are black boxes.
Not necessarily. In fact, recent work shows LLMs might be
more Em&erprehbte than we often assume, and uncovering
these mechanisms could form a virtuous cycle that advances
cognitive neuroscience+Al i tandem,
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Virtuous Cycle between (Generative) Al and
Cognitive Neuroscience Hypotheses about

represamh&oms, structures,
T Mechanisms...
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Virtuous Cycle between (Generative) Al and
Cognitive Neuroscience Hypotheses about

Forward-engineering, representations, structures,
causal inktervenkio NS " e _m echanisms...
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Virtuous Cycle between (Generative) Al and
Cognitive Neuroscience Hypotheses about

Forward-engineering, representations, structures,
causal inktervenkio NS " e _m echanisms...
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Proofs of Concept

 |LLMs are not merely “stochastic parrots”. They often contain interpretable
internal structure which makes use of modular functionally-specialized
components.

 These components can sometimes resemble known brain mechanisms,
e.d., mechanisms for cognitive control in the prefrontal cortex

e | | Ms, off the shelf, exhibit behaviors for which we don’t have good
competing computational cognitive models, like the ability to learn flexibly
both in context and in weights. Understanding these mechanisms and
aligning them to those of humans could jointly offer new theories of human
cognition and improve LLMs robustness, interpretability, and efficiency
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Interpretable Internal Structure
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Merullo, Jack, Carsten Eickhoff, and Ellie Pavlick. "Language models
implement simple word2vec-style vector arithmetic.”" NAACL (2024).



Interpretable Internal Structure
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Interpretable Internal Structure

Warsaw China

What is the capital beep boop China
of Poland? beep booE
Merullo, Jack, Carsten Eickhoff, and Ellie Pavlick. "Language models

implement simple word2vec-style vector arithmetic.”" NAACL (2024).



Interpretable Internal Structure
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Merullo, Jack, Carsten Eickhoff, and Ellie Pavlick. "Language models

implement simple word2vec-style vector arithmetic.”" NAACL (2024).
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 These components can sometimes resemble known brain mechanisms,
e.d., mechanisms for cognitive control in the prefrontal cortex



Resemblance to Known Brain Mechanisms
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Traylor, Aaron, et al. "Transformer Mechanisms Mimic Frontostriatal Gating Operations When
Trained on Human Working Memory Tasks." arXiv preprint arXiv:2402.08211 (2024).
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Resemblance to Known Brain Mechanisms
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Traylor, Aaron, et al. "Transformer Mechanisms Mimic Frontostriatal Gating Operations When
Trained on Human Working Memory Tasks." arXiv preprint arXiv:2402.08211 (2024).
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Resemblance to Known Brain Mechanisms
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Resemblance to Known Brain Mechanisms

=
—'I"--'-_ w7

98.68%  + Mg~ T T = ES\
Models that dont, | " | %
dont, -

95.53%  « . ™ ™

94.02%  ~ — oy, ¢ S

—— 100% test acc. <100% test acc. —— Train loss ---- Patched acc.



Proofs of Concept

e | | Ms, off the shelf, exhibit behaviors for which we don’t have good
competing computational cognitive models, like the ability to learn flexibly
both in context and in weights. Understanding these mechanisms and
aligning them to those of humans could jointly offer new theories of human
cognition and improve LLMs robustness, interpretability, and efficiency



Ability to Explain New Behavioral Data
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Dekker, Ronald B., Fabian Otto, and Christopher Summerfield. "Curriculum learning for human compositional
generalization." Proceedings of the National Academy of Sciences 119.41 (2022): e2205582119.



Ability to Explain New Behavioral Data
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generalization." Proceedings of the National Academy of Sciences 119.41 (2022): e2205582119.



Ability to Explain New Behavioral Data
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Noh, Sharon M., et aI."TOptimaI sequencing during category learning: Testing a dual-learning systems
perspective." Cognition 155 (2016): 23-29.



Ability to Explain New Behavioral Data

Different learning effects which typically
appeat to different learning mechanisms.
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Ability to Explain New Behavioral Data

Different learning effects which typically
appeat to different learning mechanisms.

@) @Q

Q (o) (1)
Y 8 But LLMs (and maéamiﬁarmed )

models) can re ,, bokh

@ O( f.ff_@—.c&s /
X X

Russin, Jacob, Ellie Pavlick, and Michael J. Frank. "Human Curriculum Effects Emerge
with In-Context Learning in Neural Networks." arXiv preprint arXiv:2402.08674 (2024).
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Proofs of Concept

 |LLMs are not merely “stochastic parrots”. They often contain interpretable
internal structure which makes use of modular functionally-specialized
components.

 These components can sometimes resemble known brain mechanisms,
e.d., mechanisms for cognitive control in the prefrontal cortex

e | | Ms, off the shelf, exhibit behaviors for which we don’t have good
competing computational cognitive models, like the ability to learn flexibly
both in context and in weights. Understanding these mechanisms and
aligning them to those of humans could jointly offer new theories of human
cognition and improve LLMs robustness, interpretability, and efficiency



Moving Forward

 Using LLMs as cognitive models has the potential to unlock a virtuous cycle
that both improves our understanding of human cognition and improves Al

 Harnessing this requires:

 Open source models for research which match the scale and performance
of proprietary models

* |nvestment in research with a long time horizon, which falls outside of
commercial priorities (decades, not years)

* (Even more) open-minded, interdisciplinary collaboration



Thank you!



