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many varied domains is worth taking seriously. And in 
certain some cases (namely, language) they represent our 

best computational model of human behavior by a long shot. 

LLMs are black boxes.

Not necessarily. In fact, recent work shows LLMs might be 
more interpretable than we often assume, and uncovering 

these mechanisms could form a virtuous cycle that advances 
cognitive neuroscience+AI in tandem.
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When task doesn’t 
follow simple “rules”, 

humans prefer 
shuffled examples.

Noh, Sharon M., et al. "Optimal sequencing during category learning: Testing a dual-learning systems 
perspective." Cognition 155 (2016): 23-29.
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But LLMs (and meta-learned 
models) can reproduce both 

effects simultaneously

Different learning effects which typically 
appeal to different learning mechanisms.

Russin, Jacob, Ellie Pavlick, and Michael J. Frank. "Human Curriculum Effects Emerge 
with In-Context Learning in Neural Networks." arXiv preprint arXiv:2402.08674 (2024).
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Moving Forward

• Using LLMs as cognitive models has the potential to unlock a virtuous cycle 
that both improves our understanding of human cognition and improves AI 

• Harnessing this requires:


• Open source models for research which match the scale and performance 
of proprietary models


• Investment in research with a long time horizon, which falls outside of 
commercial priorities (decades, not years)


• (Even more) open-minded, interdisciplinary collaboration



Thank you!


