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Integrating Multimodal Data in Al for Neurological and
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Advances, Challenges, and Future Directions
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DISCLOSURE & DISCLAIMERS o

* Dr. Lancashire is a full-time employee of Cohen
Veteran’s Bioscience.
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Systems Modeling and GenAl

Constructing Comprehensive Disease Models at the Intersection of Biology and Al
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The Power of Multimodal Data

Models capable of ingesting multimodal data remove the constraint of single data types

 Deeper Insights: Integration of data for comprehensive
disease understanding

 Building Advanced Disease Models: Create holistic
models of biology for enhanced understanding and
treatment

 Data Quality directly influences Al model accuracy and
reliability.

- Embracing Diversity: Varied data will reduce bias and
improve accuracies and diagnostic precision.

« Navigating Challenges such as data silos and
interoperability between different data types using
techniques such as federated learning.




Developing Dynamic Latent Factor Models for PD
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Leveraging Deep Learning for EHR Data
« Challenges

* Unstructured Electronic Health Records (EHR) data, including clinical notes,
poses challenges with its varied formats.

* The complexity and lack of standardization in unstructured data pose obstacles
to straightforward analysis and extraction of actionable insights.

 Current Insights

* Deep learning LLMs show promise in extracting meaningful information from
unstructured EHR.

* These techniques excel in processing natural language, identifying medical
entities, and inferring patient conditions.

- Enhancing Patient Care

* Application of Al to HER data can lead to more accurate diagnoses, personalized
treatment plans, and predictive patient outcomes.

* Enables comprehensive aggregation and analysis of vast amounts of clinical
data, uncovering new disease correlations and treatment possibilities.




Predictive Models using EHR Data
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Transparency
and
Explainability in
Al: The Black
Box Problem

The Challenge

Al models are not always
transparent or easily understood

This may be concerning in
healthcare, where decisions impact
patient outcomes

Validation

Need for rigorous validation of Al
models in diverse and real world
settings to ensure model reliability
and safety

Strategies

Utilizing feature importance
visualization and model-agnostic
explanation techniques to improve
model interpretability

Ethical Considerations

Model deployment should consider
bias, equity and informed consent



Explaining the biology underpinning psychiatric diorders
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What’s Next?

New Modalities to enrich our
understanding of the brain

1

2 New Tools such as causal Al

Better Disease Understanding by
leveraging the entire biological system

3

Impacting Patient Care
through personalized medicine

4
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