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Traumatic Brain Injuries in the USA — Older Adults

Estimated number of traumatic brain injury-related (TBI) hospitalizationst
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Cause of TBI —
“Falls”

50,000

Estimated number of traumatic brain injury-related (TBI) hospitalizationst
by sex and mechanism of injury — United States, 2016 and 2017
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2016 Female Count
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2017 Female Count

* The majority (64.2%) of
TBI were as a result of a fall
on the same level from
slipping, tripping or
stumbling.

40,000

30,000

20,000

10,000

NUMBER OF TBI-RELATED HOSPITALIZATIONS

Y

7
2 7

J@nZJQI%__.HIQIWIQI%

Motor Unintentional Unintentionally  Other or Intentional Assault Other?
vehicle fallst struck byor  unspecified self-harm$

traffic againstan  unintentional
crashes object injury

“lraA. Ful_ton Schoo!sof
% Engineering
Arizona State University SOURCES: For hospitalizations, Healthcare Cost and Utilization Project’s National Inpatient Sample; for deaths, CDC’s National

Vital Statistics System. TBI-surveillance-report-2016-2017, www.CDC.gov



http://www.cdc.gov/

Increases in Traumatic Brain Injuries in the USA — Older Adults
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Falls the USA — Older Adults
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Quality of Life

20% - 36% fear falling?

20% die within a year after hip
fracture?

25% in a nursing home one year later?

1. Vellas BJ, Age & Aging, 1997; Friedman SM, JAGS, 2002
2. Lu-Yao GL, AJPH, 1994

%@ Ira A. Fulton Schools of 3. Magaziner, J Gerontology: Medical Sciences, 2000
Engineering

Arizona State University



Current Fall Interventions

Fall Protection
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Fall Risk Assessment

Fall risk assessment tools
have been used to provide

an early detection of fall
related risks to prevent

falling episodes

Several assessment tools for fall risk evaluation can
be divided into three categories:

Comprehensive medical assessment

Institutional assessment — Mores fall scale,
STRATIFY, etc.

Functional assessment — Berg balance test, timed
get-up and go, etc.

o History of falling is also a good indicator of fall
proneness, however, after incurring an injury.



Fall Risk Assessment

Fall risk assessment
tools have been used to

provide an early
detection of fall related
risks to prevent falling
episodes

8.5 Morse fall scale

Morse Fall Scale

(Adapted with permission, SAGE Publications)

The Morse Fall Scale (MFS) is a rapid and simple method of assessing a patient’s likelihood of falling. A
large majority of nurses (82.9%) rate the scale as “quick and easy to use,” and 54% estimated that it took
less than 3 minutes to rate a patient. It consists of six variables that are quick and easy to score, and it

has been shown to have predictive validity and interrater reliability. The MFS is used widely in acute care

settings, both in the hospital and long term care inpatient settings.

Item Scale Scoring
1. History of falling; immediate or within 3 months No 0
: ' Yes 25 25
. . No 0
2. Secondary diagnosis Yes 15 0
3. Ambulatory aid
Bed rest/nurse assist 0
Crutches/cane/walker 15
Furniture 30 15
. No 0
4. IV/Heparin Lock Yes 20 20
5. Gait/Transferring 0
Normal/bedrest/immobile 10
Weak 10
. 20
Impaired
6. Mental status 0
Oriented to own ability 15 15
Forgets limitations

The items in the scale are scored as follows:

History of falling: This is scored as 25 if the patient has fallen during the present hospital admission or if
there was an immediate history of physiological falls, such as from seizures or an impaired gait prior to
admission. If the patient has not fallen, this is scored 0. Note: If a patient falls for the first time, then his
or her score immediately increases by 25.

Secondary diagnosis: This is scored as 15 if more than one medical diagnosis is listed on the patient's
chart; if not, score 0.

Ambulatory aids: This is scored as 0 if the patient walks without a walking aid (even if assisted by a
nurse), uses a wheelchair, or is on a bed rest and does not get out of bed at all. If the patient uses
crutches, a cane, or a walker, this item scores 15; if the patient ambulates clutching onto the furniture for
support, score this item 30.

Intravenous therapy: This is scored as 20 if the patient has an intravenous apparatus or a heparin lock
inserted; if not, score 0.

Risk level MFS score Action

No risk 0-24 Good basic nursing care

Low risk 25-50 Implement standard fall prevention
interventions

High risk =51 Implement high-risk fall prevention

interventions

MFS: Morse Fall Scale
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* Does not provide the cause(s) of one’s fall
risk (e.g., is it due to gait - balance?) - as the

2 50% -

Current Fall interventions can selectively target those
<k weakness.
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Specific Aims

Study Objective:
e To characterize fall risk of older adults

* Using the Portable Wireless System by
monitoring functional and mobility
characteristics

Central Tenet:

 Fall risk will be significantly higher for fall-prone
elderly than their counterparts

Relevance:

* Accurate fall risk assessment will allow us to help
pinpoint and intervene early prior to falling episodes.

* Portability and usability of fall risk assessment
Technology

NSF (grant #CBET-07560568) and NSF-Information and Intelligent
Systems (IIS) and Smart Connected Health-1065442 and 1065262.

Portable, wireless
non-invasive
motion sensors




Why do
Older
Adults Fall
More than

Younger
Adults?

Factors Influencing Slips and Falls
(Intrinsic Changes Associated with Aging)

1. Sensory Degradation.
2. Cognitive Impairment.
3. Muscle Weakness.

4. Gait Adaptation.

More importantly, extrinsic environmental factors and
how those factors interact with intrinsic conditions
must be considered.

What is the relationship between these risk factors and
fall accidents in the elderly?

And, how can we use this info to assess Fall Risk.



Experiments: Slips trips and falls

Who fell and who recovered?
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Experiments: Slips trips and falls
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Bottom Line from the Balance Perturbation Studies

Initial response sequence after slip
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Spatial and temporal gait changes - fallers exhibited slower gait
speed and shorter step length

Reactive Recovery Phase was very important for the elderly and

related to sensory degradation.

Summary of

Control systems exhibited a finite time delay between the moment a .
stimulus was provided (i.e., perturbation) and the moment the G a It Stu dy

system returned a response (i.e., nothing happens instantaneously).

In many situations : the responses also depended nonlinearly on the Res u Its

input, such that the evolution of the system in the present depended
sensitively on its state in the past (e.g., muscle fatigue).

This nonlinear time-delay systems (autonomic motor control) can be

guantified by nonlinear dynamics - stability assessments.




Stability Assessment and TEMPORAL VARIABILITIES

Regardless of how advance the device is, itis
used to measure simple qualities — like — means-
SD- variances etftc.

However, due to the TEMPORAL VARIABILITIES
(varied locations), the system dynamics may not be
measured at the right time or can only describe an
instant of time (e.g., at the Heel strike time point).

As such, temporal variation is not noticed in these
measures which can be used to understand
patterns and controls that exhibit these variations
in time.
Nonlinear dynamical
tools can be used
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Dynamic Stability: Lyapunov Exponent (Chaos)

/Stablhty Analysis: Overview \ 3
Original time series 25
data (AP acceleration, =7
40 gait cycles)
Auto mutual information method Nearest false neighbours method 2
/ \ mFO
Time-delayed coordinate method 1.5 1 [ HO
Time delay (10 Embedding
frames) dimension (5) 1 4 B HY
\ Reconstructed / 0.5 A
state space
0 -
Rosenstein’s algorithm (Rosenstein, 1993) el E
Average divergence Maxi I
between nearby trajectories aximum Lyapunov exponent
I (maxLE) by group. FO = fall-prone

old; HO = healthy old; HY = healthy
/ Qoung (Lockhart and Liu, 2008) /

maxLE (0-1 gait step)
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Multi-Scale Entropy: BioComplexity (Nonlinear dynamics)

Age-related loss of complexity

Overly structured, stable,
unchanging patterns suggest
control processes are rigid
and may not adapt to change
or perturbation.

¥ 3 ' g -

Fig 3. — Age-related loss of fractal structure in the dendritic arbor of tha giant pyramidal Betz cell of the mo-

Age-related loss of fractal structure in the dendritic arbor of the giant
pyramidal Betz cell of the motor cortex. Left, The complex, branching,
fractal-like architecture of the dendritic arbor in a young adult man.
Right, suggestion of the loss of "complexity” (fractal dimensionality)
in the structure of the dendritic arbor in a 65-year-old man (reprinted
with permission from WB Saunders C028).
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Approximate Entropy: Complexity

40 -
. . . ' 22 year old Female YoungSubiect  Mean HR=64.7
ApEn quantifies regularity and complexity of a 120 ~ SD=3.9
system (incus, 1904) E 100 ApEn=1.09

Approximate Entropy: It is the logarithmic . -WWW’NMWWMW
likelihood that the patterns of the data are close g

to each other and will not remain close for the i 0

next comparison within a longer pattern. o
0 i 2 3 4 5 6 7 8
- High ApEn values indicate unpredictability and Time. min
random variation oo -
- Low ApEn indicates high predictability and regularity 0| 73yearOldMale  ©dSubes Mean HR=64.5
of time series data § sen - iDE?":% 48
If Sy is a time series of length N P '

N 1 87
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i=1 i=1 i 40

Where m is the pattern length ( usually chosen as 20
2) and d is similarity coefficient (chosen as 0.2 % 0 : T : . . . T 5
of SD of time series ) Time, min

Heart rate signals of old

and young participant.
Adapted from Lipsitz and Goldberger, 1992



Multiscale Entropy shows aging effect
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“Research to Practice”
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MyACTome
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HOPCo Announces Acquisition of Digital
Health Platform, MyACTome
The latest addition to HOPCo’s integrated
digital health portfolio will improve patient
MYACToME outcomes and greatly reduce healthcare costs
through Al

Phoenix, AZ (December 6, 2023) - HOPCo
(Healthcare Outcomes Performance
Company), the leader in musculoskeletal
(MSK) clinical outcomes management
solutions and the country’s largest orthopedic
value-based care organization, continues its
digital health platform expansion with its
acquisition of MyACTome.

https://www.myactome.com/
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I Wearable Fall Prevention
System
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Smartphone derived
Digital Biomarkers
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Thank You !

This research was supported by the NSF (grant #CBET-0756058) and NSF-
Information and Intelligent Systems (IIS) and Smart Health and Wellbeing -
1065442 and 1065262. NIOSH (grant #CDC/NIOSHR01-OH009222), and
NIH (AG022963-04)
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