







## Statistical and Machine Learning Approaches to Prediction

### Adam R. Ferguson, Ph.D.

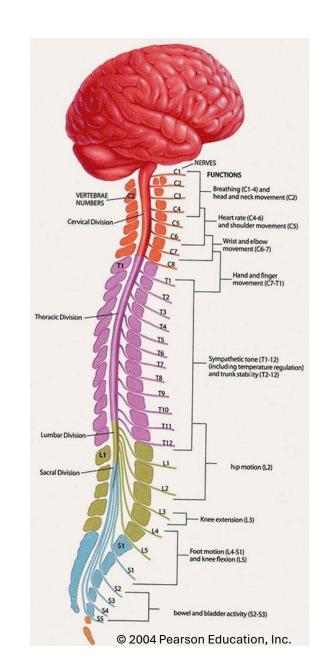
Professor, Department of Neurological Surgery
Director of Data Science, Brain and Spinal Injury Center (BASIC)
Director of Biostatistics Curriculum, BMS Graduate Program
Weill Institute for Neurosciences, UCSF
Principal Investigator, San Francisco VA Healthcare System

## **Disclosures**

#### **Grants:**

US National Institutes of Health (NIH): R01NS088475, R01CA213441, R01AG056770, R01MH116156, R01NS122888 U01NS086090, P30AR066262, UH3NS106899, U19AR076737, U24NS122732 US Veterans Affairs (VA): I01RX002245, I01RX002787, I01BX005871, I50BX005878 US Department of Defense (DoD): SC150198, SC150177 US Defense Advanced Research Projects (DARPA): N660012024046 US Department of Energy (DoE): LLNL Craig H. Neilsen Foundation

#### **Data Science Consulting:**


Wings for Life Foundation

Santa Clara Valley Medical Center Neuronasal Inc. SpineX Inc.

#### **Industry Collaboration (in-kind):**

DataRobot: Al for Good program

## TBI is Complex!



## TBI is Complex!

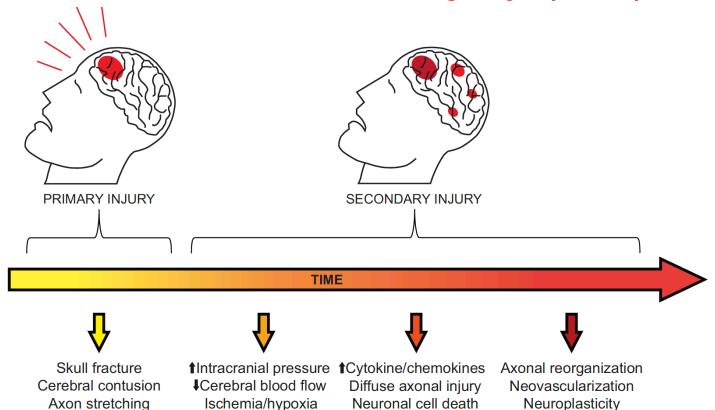
Remyelination

Breathing (C1-4) and head and neck movement (C2) \_ Heart rate (C4-6) and shoulder movement (C5) \_ Wrist and elbow

Hand and finger

Sympathetic tone (T1-12) (including temperature regulation) and trunk stability (T2-12)

hip motion (L2)


- Knee extension (L3)

Foot motion (L4-S1)

bowel and bladder activity (\$2-\$3)

© 2004 Pearson Education, Inc.

## Traumatic Brain Injury (TBI)

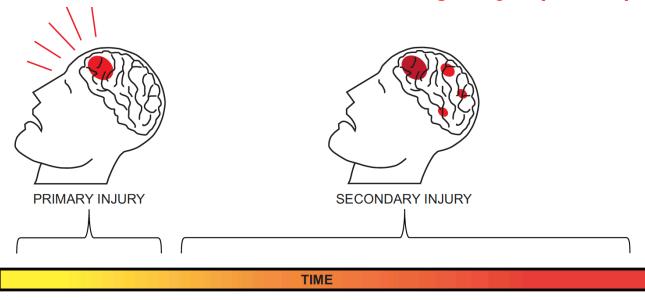


Immune response

Oxidative stress Excitotoxicity

Irvine et al., 2018, Pain Medicine

Energy failure


Edema

Hemorrhage

Synapse loss

## TBI is Complex!

## Traumatic Brain Injury (TBI)



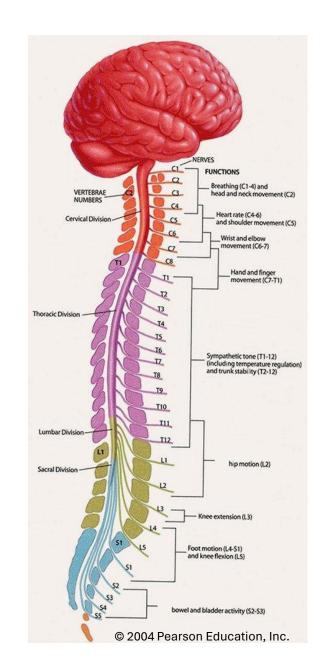
Increased Dementia Risk

#### **YEARS LATER**

Shively et al., 2012 Arch Neurol

Skull fracture Cerebral contusion Axon stretching Hemorrhage Synapse loss




**↓**Cerebral blood flow Ischemia/hypoxia Energy failure Edema



†Intracranial pressure †Cytokine/chemokines Diffuse axonal injury Neuronal cell death Immune response Oxidative stress Excitotoxicity



Axonal reorganization Neovascularization Neuroplasticity Remyelination



Irvine et al., 2018, Pain Medicine

## **Validated Prediction Models**



### RESEARCH

Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients

MRC CRASH Trial Collaborators

BMJ: first published as 10.1136/bmj.39461.643438.25 on 12 February 2008.

**CRASH Model** 

## BMJ

#### DECEADOR

OPEN & ACCESS Freely available online

PLOS MEDICINE

Pred prog patie

MRC CF

BMJ: first published as 10.11

Predicting Outcome after Traumatic Brain Injury: Development and International Validation of Prognostic Scores Based on Admission Characteristics

Ewout W. Steyerberg<sup>1\*</sup>, Nino Mushkudiani<sup>1</sup>, Pablo Perel<sup>2</sup>, Isabella Butcher<sup>3</sup>, Juan Lu<sup>4</sup>, Gillian S. McHugh<sup>3</sup>, Gordon D. Murray<sup>3</sup>, Anthony Marmarou<sup>4</sup>, Ian Roberts<sup>2</sup>, J. Dik F. Habbema<sup>1</sup>, Andrew I. R. Maas<sup>5</sup>

1 Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, The Netherlands, 2 London School of Hygiene and Tropical Medicine, Nutrition and Public Health Intervention Research Unit, London, United Kingdom, 3 Division of Community Health Sciences, University of Edinburgh, Scotland, 4 Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, United States of America, 5 Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands

1251





PLoS Medicine | www.plosmedicine.org

August 2008 | Volume 5 | Issue 8 | e165



### RESEARCH

Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients

MRC CRASH Trial Collaborators

BMJ: first published as 10.1136/bmj.39461.643438.25 on 12 February 2008.



### RESEARCH

Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients

MRC CRASH Trial Collaborators

BMJ: first published as 10.1136/bmj.39461.643438.25 on 12 February 2008.

-Developed on N = 10,008 patients with TBI from the Corticosteroid Randomization after Significant Head Injury (CRASH) trial

## BMJ

### RESEARCH

Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients

MRC CRASH Trial Collaborators

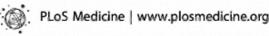
BMJ: first published as 10.1136/bmj.39461.643438.25 on 12 February 2008.

- -Developed on N = 10,008 patients with TBI from the Corticosteroid Randomization after Significant Head Injury (CRASH) trial
- -Cross-validated in N = 8509 patients from the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)



### RESEARCH

Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients


MRC CRASH Trial Collaborators

BMJ: first published as 10.1136/bmj.39461.643438.25 on 12 February 2008.

- -Developed on N = 10,008 patients with TBI from the Corticosteroid Randomization after Significant Head Injury (CRASH) trial
- -Cross-validated in N = 8509 patients from the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT)
- -Stratified model by economic development level (high income countries vs. low to middle income countries)

Ewout W. Steyerberg<sup>1\*</sup>, Nino Mushkudiani<sup>1</sup>, Pablo Perel<sup>2</sup>, Isabella Butcher<sup>3</sup>, Juan Lu<sup>4</sup>, Gillian S. McHugh<sup>3</sup>, Gordon D. Murray<sup>3</sup>, Anthony Marmarou<sup>4</sup>, Ian Roberts<sup>2</sup>, J. Dik F. Habbema<sup>1</sup>, Andrew I. R. Maas<sup>5</sup>

1 Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, The Netherlands, 2 London School of Hygiene and Tropical Medicine, Nutrition and Public Health Intervention Research Unit, London, United Kingdom, 3 Division of Community Health Sciences, University of Edinburgh, Scotland, 4 Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, United States of America, 5 Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands



Ewout W. Steyerberg<sup>1\*</sup>, Nino Mushkudiani<sup>1</sup>, Pablo Perel<sup>2</sup>, Isabella Butcher<sup>3</sup>, Juan Lu<sup>4</sup>, Gillian S. McHugh<sup>3</sup>, Gordon D. Murray<sup>3</sup>, Anthony Marmarou<sup>4</sup>, Ian Roberts<sup>2</sup>, J. Dik F. Habbema<sup>1</sup>, Andrew I. R. Maas<sup>5</sup>

1 Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, The Netherlands, 2 London School of Hygiene and Tropical Medicine, Nutrition and Public Health Intervention Research Unit, London, United Kingdom, 3 Division of Community Health Sciences, University of Edinburgh, Scotland, 4 Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, United States of America, 5 Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands

1251



PLoS Medicine | www.plosmedicine.org

August 2008 | Volume 5 | Issue 8 | e165

-Developed on N = 8509 Patients from 11 completed (failed) clinical trials from 1984-2007 in IMPACT Database

Ewout W. Steyerberg<sup>1\*</sup>, Nino Mushkudiani<sup>1</sup>, Pablo Perel<sup>2</sup>, Isabella Butcher<sup>3</sup>, Juan Lu<sup>4</sup>, Gillian S. McHugh<sup>3</sup>, Gordon D. Murray<sup>3</sup>, Anthony Marmarou<sup>4</sup>, Ian Roberts<sup>2</sup>, J. Dik F. Habbema<sup>1</sup>, Andrew I. R. Maas<sup>5</sup>

1 Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, The Netherlands, 2 London School of Hygiene and Tropical Medicine, Nutrition and Public Health Intervention Research Unit, London, United Kingdom, 3 Division of Community Health Sciences, University of Edinburgh, Scotland, 4 Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, United States of America, 5 Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands



PLoS Medicine | www.plosmedicine.org

1251

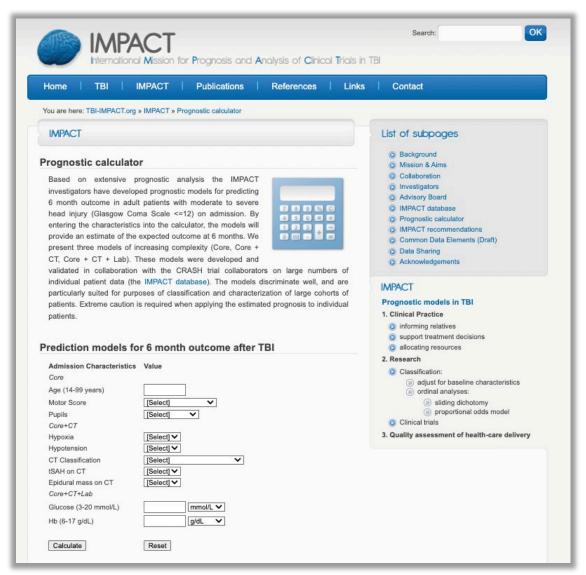
August 2008 | Volume 5 | Issue 8 | e165

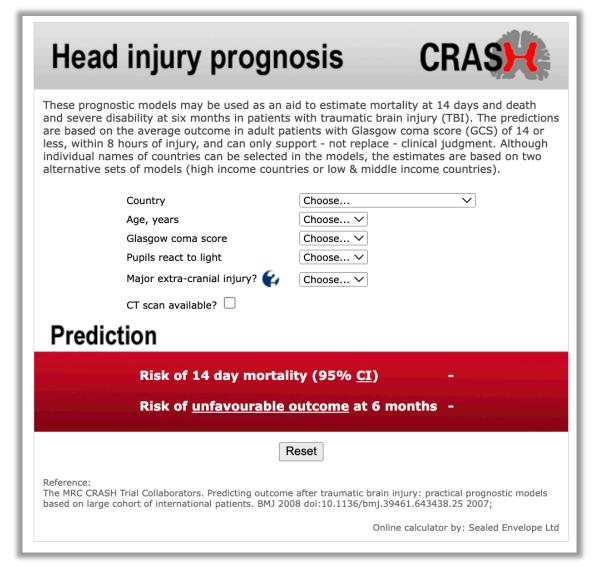
- -Developed on N = 8509 Patients from 11 completed (failed) clinical trials from 1984-2007 in IMPACT Database
- Cross validated on N = 6681 from the CRASH trial

Ewout W. Steyerberg<sup>1\*</sup>, Nino Mushkudiani<sup>1</sup>, Pablo Perel<sup>2</sup>, Isabella Butcher<sup>3</sup>, Juan Lu<sup>4</sup>, Gillian S. McHugh<sup>3</sup>, Gordon D. Murray<sup>3</sup>, Anthony Marmarou<sup>4</sup>, Ian Roberts<sup>2</sup>, J. Dik F. Habbema<sup>1</sup>, Andrew I. R. Maas<sup>5</sup>

1 Center for Medical Decision Sciences, Department of Public Health, Erasmus MC, Rotterdam, The Netherlands, 2 London School of Hygiene and Tropical Medicine, Nutrition and Public Health Intervention Research Unit, London, United Kingdom, 3 Division of Community Health Sciences, University of Edinburgh, Scotland, 4 Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, United States of America, 5 Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands




PLoS Medicine | www.plosmedicine.org


1251

August 2008 | Volume 5 | Issue 8 | e165

- -Developed on N = 8509 Patients from 11 completed (failed) clinical trials from 1984-2007 in IMPACT Database
- Cross validated on N = 6681 from the CRASH trial
- -Glasgow Coma Score (GCS) ≤ 12

## **Web-based Prediction Calculators**





http://www.tbi-impact.org/?p=impact/calc

http://www.crash2.lshtm.ac.uk/Risk%20calculator/index.html



Home | TBI | IMPACT | Publications | References | Links | Contact

You are here: TBI-IMPACT.org » IMPACT » Prognostic calculator

#### **IMPACT**

#### Prognostic calculator

Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core +



CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients.

#### Prediction models for 6 month outcome after TBI

| Admission Characteristics | Value      |          |   |
|---------------------------|------------|----------|---|
| Core                      |            |          |   |
| Age (14-99 years)         |            |          |   |
| Motor Score               | [Select]   | ~        |   |
| Pupils                    | [Select]   | ~        |   |
| Core+CT                   |            |          |   |
| Hypoxia                   | [Select] ➤ |          |   |
| Hypotension               | [Select] ➤ |          |   |
| CT Classification         | [Select]   |          | ~ |
| SAH on CT                 | [Select] ➤ |          |   |
| Epidural mass on CT       | [Select] ✓ |          |   |
| Core+CT+Lab               |            |          |   |
| Glucose (3-20 mmol/L)     |            | mmol/L 🗸 |   |
| Hb (6-17 g/dL)            |            | g/dL 🗸   |   |
|                           |            |          |   |

#### List of subpages

- Background
- Mission & Aims
- Collaboration
- Investigators
- Advisory Board
- IMPACT database
- Prognostic calculator
- IMPACT recommendations
- Common Data Elements (Draft)

ОК

- Data Sharing
- Acknowledgements

#### **IMPACT**

#### Prognostic models in TBI

- 1. Clinical Practice
- informing relatives
- support treatment decisions
- allocating resources
- 2. Research
- O Classification:
  - adjust for baseline characteristics
  - (ii) ordinal analyses:
    - sliding dichotomy
    - (b) proportional odds model
- Clinical trials
- 3. Quality assessment of health-care delivery





International Mission for Prognosis and Analysis of Clinical Trials in TBI

Home | TBI | IMPACT | Publications | References | Links | Contact

You are here: TBI-IMPACT.org » IMPACT » Prognostic calculator

#### **IMPACT**

#### Prognostic calculator

Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and



validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients.

#### Prediction models for 6 month outcome after TBI

| Admission Characteristics | Value     |           |      |
|---------------------------|-----------|-----------|------|
| Core                      |           |           |      |
| Age (14-99 years)         | 25        |           |      |
| Motor Score               | Localizes | ~         |      |
| Pupils                    | One       | ~         |      |
| Core+CT                   |           |           |      |
| Hypoxia                   | Yes 💙     | ]         |      |
| Hypotension               | No 🗸      | ]         |      |
| CT Classification         | Evacuated | Mass Lesi | on ' |
| tSAH on CT                | Yes 💙     | ]         |      |
| Epidural mass on CT       | Yes 🗸     | ]         |      |
| Core+CT+Lab               |           |           |      |
| Glucose (3-20 mmol/L)     | 6.7       | mmol/L    | ~    |
| Hb (6-17 g/dL)            | 10.8      | g/dL      | ~    |
|                           |           |           |      |
| Calculate                 | Reset     |           |      |

#### List of subpages

Search:

ОК

- Background
- Mission & Aims
- Collaboration
- Investigators
- Advisory Board
- IMPACT database
- Prognostic calculator
- IMPACT recommendations
- O Common Data Elements (Draft)
- Data Sharing
- Acknowledgements

#### IMPACT

#### Prognostic models in TBI

- 1. Clinical Practice
- informing relatives
- support treatment decisions
- allocating resources

#### 2. Research

- O Classification:
  - adjust for baseline characteristics
  - (ii) ordinal analyses:
    - sliding dichotomy
    - proportional odds model
- Clinical trials
- 3. Quality assessment of health-care delivery





Home | TBI | IMPACT | Publications | References | Links | Contact

You are here: TBI-IMPACT.org » IMPACT » Prognostic calculator

#### **IMPACT**

#### Prognostic calculator

Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and



validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients.

#### Prediction models for 6 month outcome after TBI

| Admission Characteristics | Value       |            |   |
|---------------------------|-------------|------------|---|
| Core                      |             |            |   |
| Age (14-99 years)         | 25          |            |   |
| Motor Score               | Localizes   | ~          |   |
| Pupils                    | One         | ~          |   |
| Core+CT                   |             |            |   |
| Hypoxia                   | Yes 💙       |            |   |
| Hypotension               | No 🗸        |            |   |
| CT Classification         | Evacuated M | ass Lesion | ~ |
| SAH on CT                 | Yes 💙       |            |   |
| Epidural mass on CT       | Yes 💙       |            |   |
| Core+CT+Lab               |             |            |   |
| Glucose (3-20 mmol/L)     | 6.7         | mmol/L 🗸   | ] |
| Hb (6-17 g/dL)            | 10.8        | g/dL 🗸     | ] |
| 22 (0.2) 10               |             |            |   |

#### List of subpages

- Background
- Mission & Aims
- Collaboration
- Investigators
- Advisory Board
- IMPACT database
- Prognostic calculator
- IMPACT recommendations
- O Common Data Elements (Draft)

ОК

- Data Sharing
- Acknowledgements

#### IMPACT

#### Prognostic models in TBI

- 1. Clinical Practice
- informing relatives
- support treatment decisions
- allocating resources
- 2. Research
- O Classification:
  - adjust for baseline characteristics
  - (ii) ordinal analyses:
    - sliding dichotomy
    - proportional odds model
- Clinical trials
- 3. Quality assessment of health-care delivery



Search:

ОК

#### International Mission for Prognosis and Analysis of Clinical Trials in TBI

Home

ТВІ

IMPACT

Publications Ref

References

Links

Contact

You are here: TBI-IMPACT.org » IMPACT » Prognostic calculator

#### **IMPACT**

#### Prognostic calculator

Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and



validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual

#### Prediction models for 6 month outcome after TBI

| Admission Characteristics                                   | Value  |        |        |        |
|-------------------------------------------------------------|--------|--------|--------|--------|
| Core                                                        |        |        |        |        |
| Age (14-99 years)                                           | 25     |        |        |        |
| Motor Score                                                 | Locali | zes    | ***    | ~      |
| Pupils                                                      | One    |        | ~      |        |
| Core+CT                                                     |        |        |        |        |
| Hypoxia                                                     | Yes    | ~      |        |        |
| Hypotension                                                 | No     | ~      |        |        |
| CT Classification                                           | Evacu  | ated I | Mass L | esion  |
| tSAH on CT                                                  | Yes    | ~      |        |        |
|                                                             | Yes    | 1      |        |        |
| Epidural mass on CT                                         | res    | ~      |        |        |
|                                                             | Tes    |        |        |        |
| Epidural mass on CT<br>Core+CT+Lab<br>Glucose (3-20 mmol/L) | 6.7    |        | mme    | ol/L 🗸 |

#### List of subpages

- Background
- Mission & Aims
- Collaboration
- Investigators
- Advisory Board
- IMPACT database
- Prognostic calculator
- IMPACT recommendations
- Common Data Elements (Draft)
   Data Sharing
- Acknowledgements

#### IMPACT

#### Prognostic models in TBI

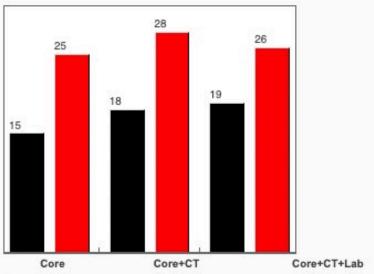
- 1. Clinical Practice
- informing relatives
- support treatment decisions
- allocating resources
- 2. Research
- Classification:
  - adjust for baseline characteristics
  - (ii) ordinal analyses:
    - sliding dichotomy
    - proportional odds model
- Clinical trials
- 3. Quality assessment of health-care delivery

This model predicts outcome in the following patients:

Adults with head injury, Glasgow Coma Scale 12 or less.

#### Prognostic Results:

Predicted probability of 6 month mortality: Core model: 15%


Predicted probability of 6 month unfavourable outcome: Core model: 25%

Predicted probability of 6 month mortality: Core+CT model: 18%

Predicted probability of 6 month unfavourable outcome: Core+CT model: 28%

Predicted probability of 6 month mortality: Core+CT+Lab model: 19%

Predicted probability of 6 month unfavourable outcome: Core+CT+Lab model: 26%



Unfavourable Outcome (Mortality/Vegetative state/Severe disability)

Mortality





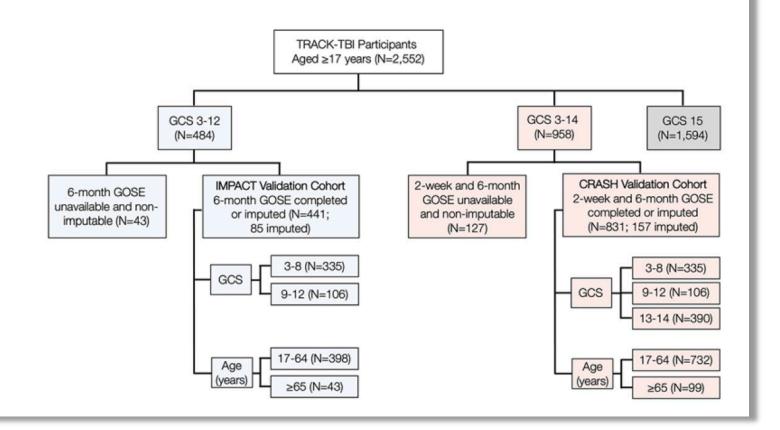
## Performance of the IMPACT and CRASH prognostic models for traumatic brain injury in a contemporary multicenter cohort: a TRACK-TBI study

\*John K. Yue, MD,¹² Young M. Lee, MD,¹² Xiaoying Sun, MS,³ Thomas A. van Essen, MD, PhD, MSc,⁴ Mahmoud M. Elguindy, MD, PhD,¹² Patrick J. Belton, MD,¹² Dana Pisică, MD,⁵ Ana Mikolic, PhD,⁵,⁵ Hansen Deng, MD,³ John H. Kanter, MD,¹² Michael A. McCrea, PhD,⁵ Yelena G. Bodien, PhD,⁵,¹⁰ Gabriela G. Satris, RN, MSN, MSc,¹² Justin C. Wong, BA,¹² Vardhaan S. Ambati, MS,¹² Ramesh Grandhi, MD, MS,¹¹ Ava M. Puccio, RN, PhD,³ Pratik Mukherjee, MD, PhD,²¹² Alex B. Valadka, MD,¹³ Phiroz E. Tarapore, MD,¹² Michael C. Huang, MD,¹² Anthony M. DiGiorgio, DO, MHA,¹².²¹⁴ Amy J. Markowitz, JD,¹² Esther L. Yuh, MD, PhD,²¹² David O. Okonkwo, MD, PhD,² Ewout W. Steyerberg, PhD,¹⁵ Hester F. Lingsma, PhD,⁵ David K. Menon, MD, PhD,¹⁶ Andrew I. R. Maas, MD, PhD,¹ʔ Sonia Jain, PhD,³ and Geoffrey T. Manley, MD, PhD,¹² on behalf of the TRACK-TBI Investigators

@AANS 2024, except where prohibited by US copyright law

J Neurosurg March 15, 2024

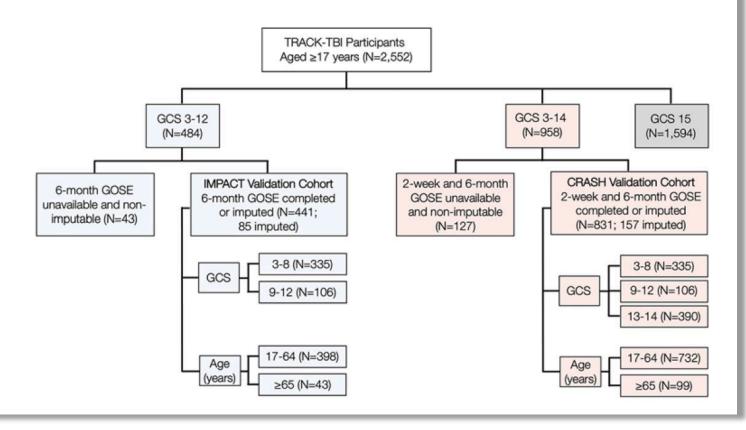
1


## <u>JNS</u>

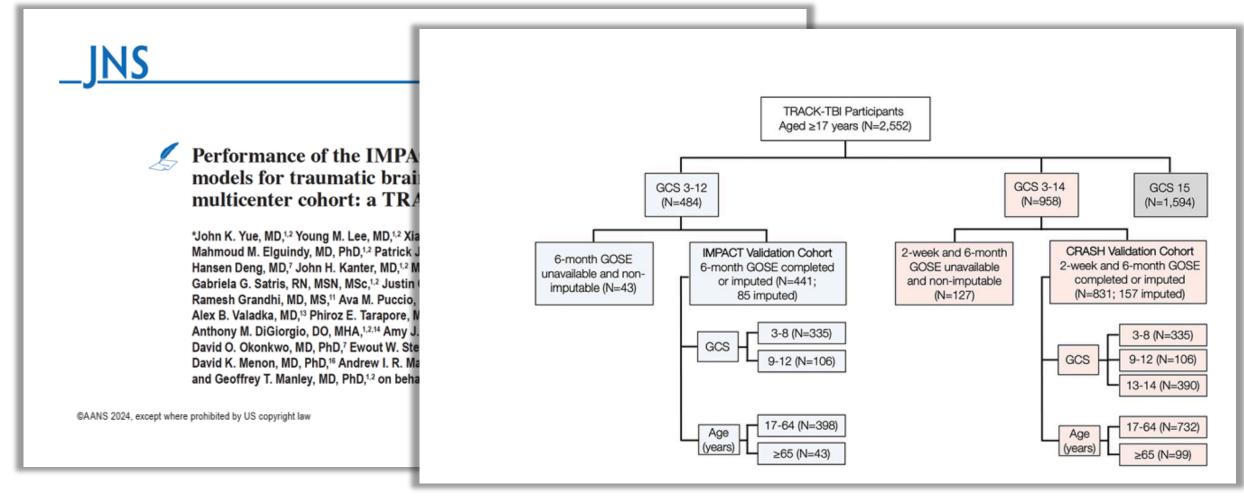


## Performance of the IMPA models for traumatic brain multicenter cohort: a TRA

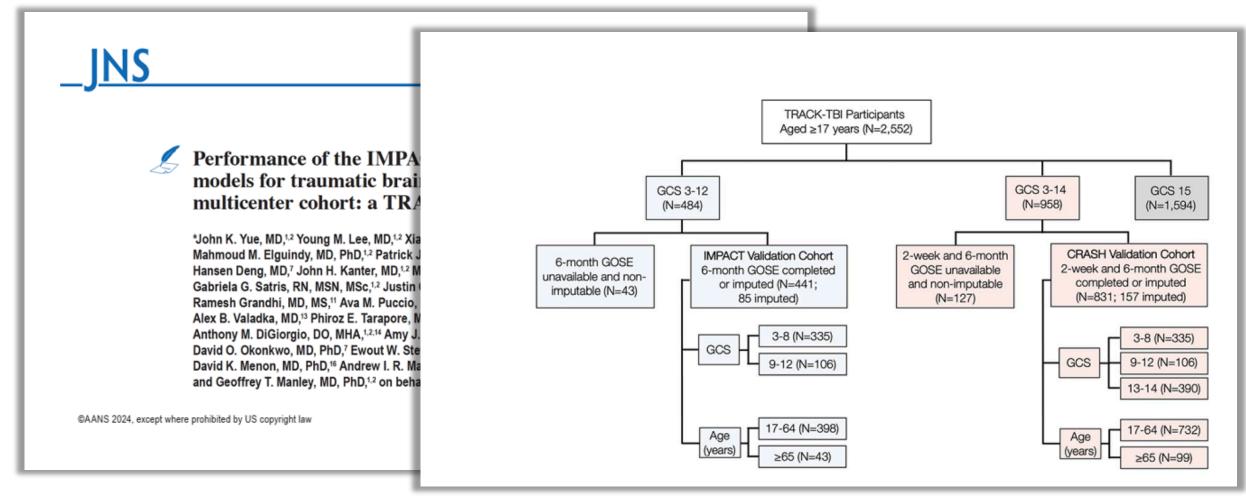
\*John K. Yue, MD,<sup>1,2</sup> Young M. Lee, MD,<sup>1,2</sup> Xia Mahmoud M. Elguindy, MD, PhD,<sup>1,2</sup> Patrick J Hansen Deng, MD,<sup>7</sup> John H. Kanter, MD,<sup>1,2</sup> M Gabriela G. Satris, RN, MSN, MSC,<sup>1,2</sup> Justin Ramesh Grandhi, MD, MS,<sup>11</sup> Ava M. Puccio, Alex B. Valadka, MD,<sup>13</sup> Phiroz E. Tarapore, N Anthony M. DiGiorgio, DO, MHA,<sup>1,2,14</sup> Amy J. David O. Okonkwo, MD, PhD,<sup>7</sup> Ewout W. Ste David K. Menon, MD, PhD,<sup>16</sup> Andrew I. R. Ma and Geoffrey T. Manley, MD, PhD,<sup>1,2</sup> on beha


©AANS 2024, except where prohibited by US copyright law




# Performance of the IMPA models for traumatic brain multicenter cohort: a TRA \*John K. Yue, MD, 12 Young M. Lee, MD, 12 Xia Mahmoud M. Elguindy, MD, PhD, 12 Patrick J. Mahmoud M. Elguindy, MD, PhD, 13 Patrick J. Mahmoud M. Elguindy, MD, PhD, 14 Patrick J. Mahmoud M. Elguindy, MD, PhD,

\*John K. Yue, MD,<sup>1,2</sup> Young M. Lee, MD,<sup>1,2</sup> Xia Mahmoud M. Elguindy, MD, PhD,<sup>1,2</sup> Patrick J Hansen Deng, MD,<sup>7</sup> John H. Kanter, MD,<sup>1,2</sup> M Gabriela G. Satris, RN, MSN, MSc,<sup>1,2</sup> Justin Ramesh Grandhi, MD, MS,<sup>11</sup> Ava M. Puccio, Alex B. Valadka, MD,<sup>13</sup> Phiroz E. Tarapore, N Anthony M. DiGiorgio, DO, MHA,<sup>1,2,14</sup> Amy J. David O. Okonkwo, MD, PhD,<sup>7</sup> Ewout W. Ste David K. Menon, MD, PhD,<sup>16</sup> Andrew I. R. Ma and Geoffrey T. Manley, MD, PhD,<sup>1,2</sup> on beha


©AANS 2024, except where prohibited by US copyright law



-The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome.



- -The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome.
- -IMPACT-Lab and CRASH-CT models overpredicted mortality in the overall cohort and for patients with severe or moderate TBI.



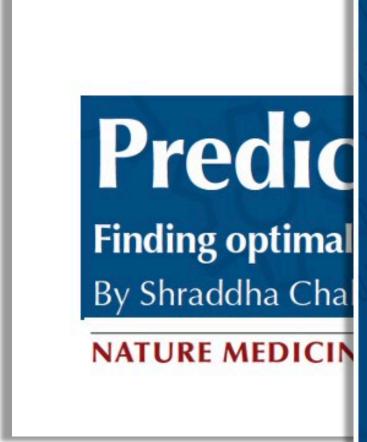
- -The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome.
- -IMPACT-Lab and CRASH-CT models overpredicted mortality in the overall cohort and for patients with severe or moderate TBL.

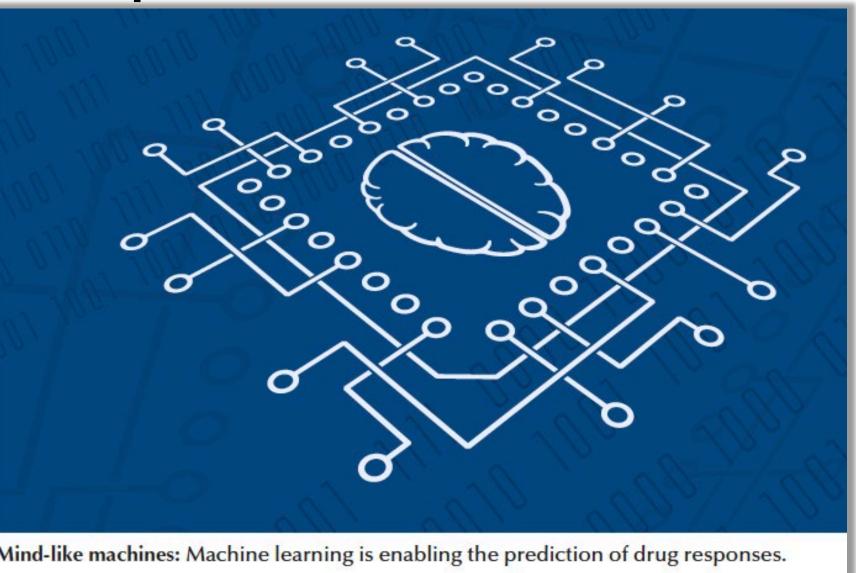
"This suggests the presence of predictors in contemporary TBI care not accounted for by these models, which were developed using data from over 2 decades ago."

## How do you navigate the full set of potential predictors of TBI?

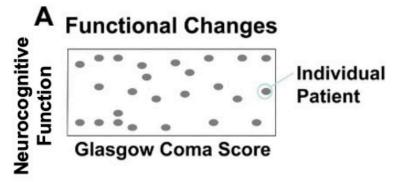
## How do you navigate the full set of potential predictors of TBI?

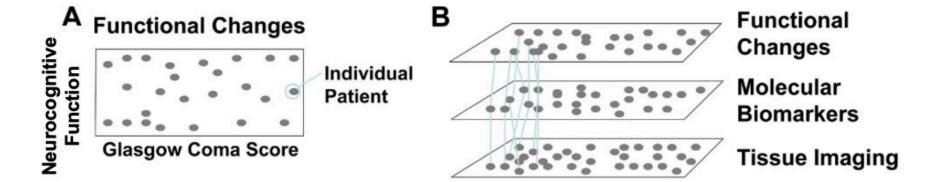
**NEWS FEATURE** 

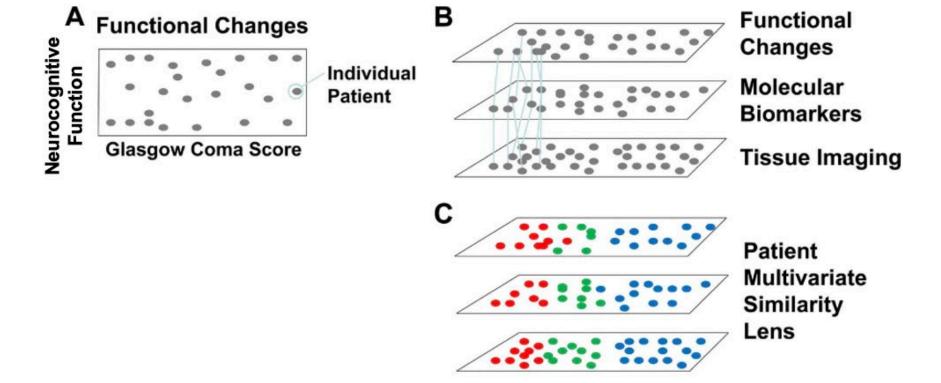

## Predictable response:

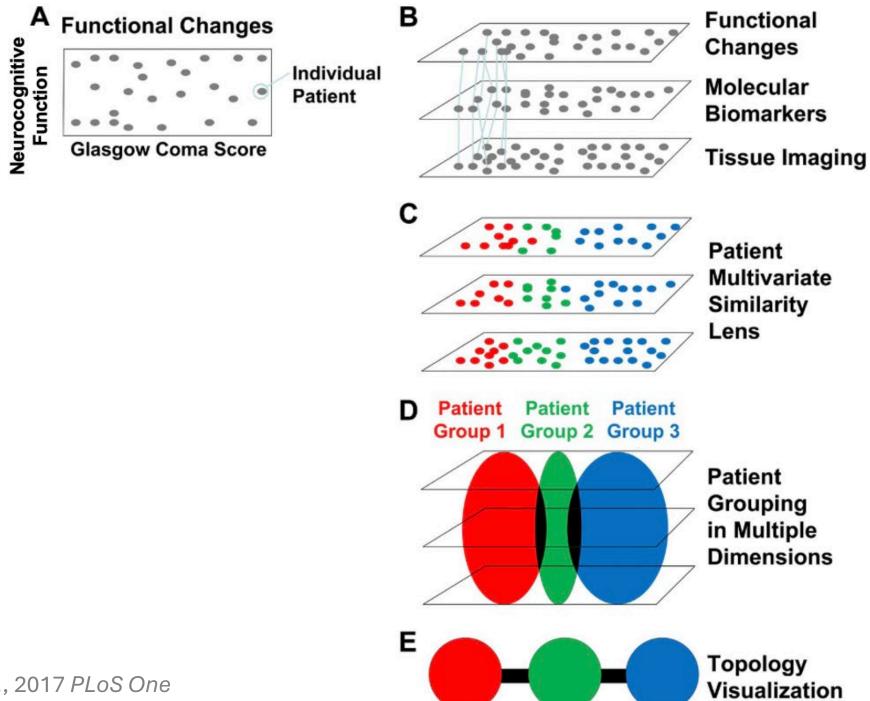

Finding optimal drugs and doses using artificial intelligence

By Shraddha Chakradhar


NATURE MEDICINE VOLUME 23 | NUMBER 11 | NOVEMBER 2017


How do you navigate the full set of potential predictors of TBI?



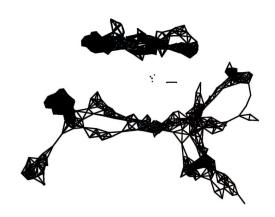

Mind-like machines: Machine learning is enabling the prediction of drug responses.



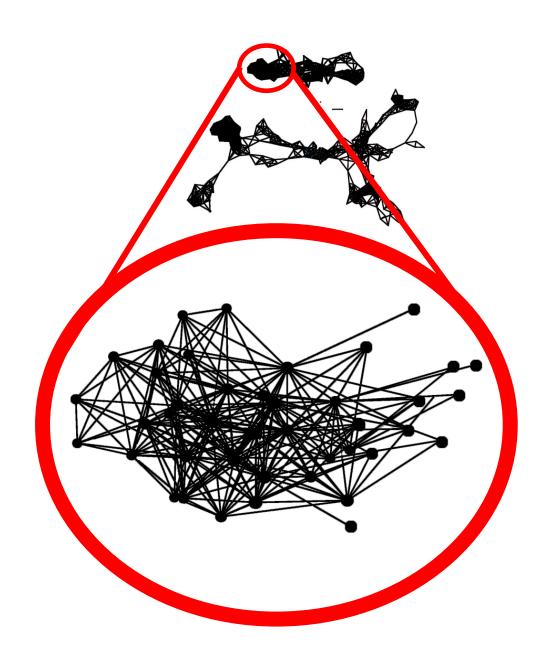




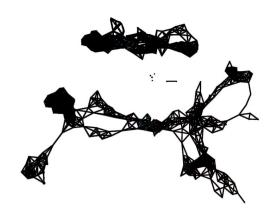


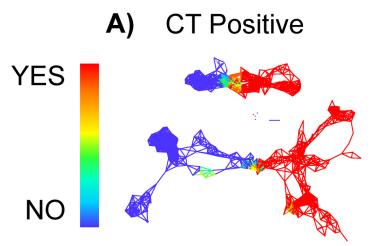

Clinical Trial > PLoS One. 2017 Mar 3;12(3):e0169490. doi: 10.1371/journal.pone.0169490. eCollection 2017.

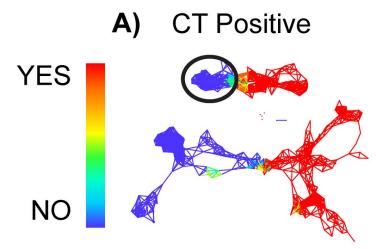
## Uncovering precision phenotype-biomarker associations in traumatic brain injury using topological data analysis

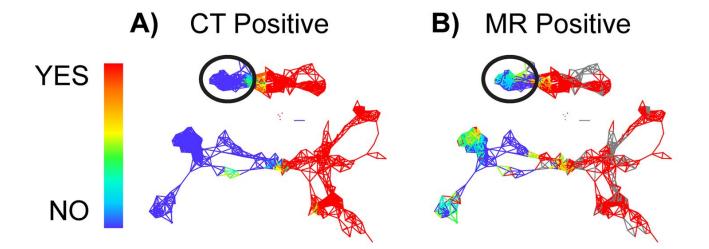

```
Jessica L Nielson <sup>1 2</sup>, Shelly R Cooper <sup>1 2 3</sup>, John K Yue <sup>1 2</sup>, Marco D Sorani <sup>2</sup>, Tomoo Inoue <sup>1 2</sup>, Esther L Yuh <sup>3</sup>, Pratik Mukherjee <sup>3</sup>, Tanya C Petrossian <sup>4</sup>, Jesse Paquette <sup>4</sup>, Pek Y Lum <sup>4</sup>, Gunnar E Carlsson <sup>4</sup>, Mary J Vassar <sup>1 2</sup>, Hester F Lingsma <sup>5</sup>, Wayne A Gordon <sup>6</sup>, Alex B Valadka <sup>7</sup>, David O Okonkwo <sup>8</sup>, Geoffrey T Manley <sup>1 2</sup>, Adam R Ferguson <sup>1 2 9</sup>; TRACK-TBI Investigators
```

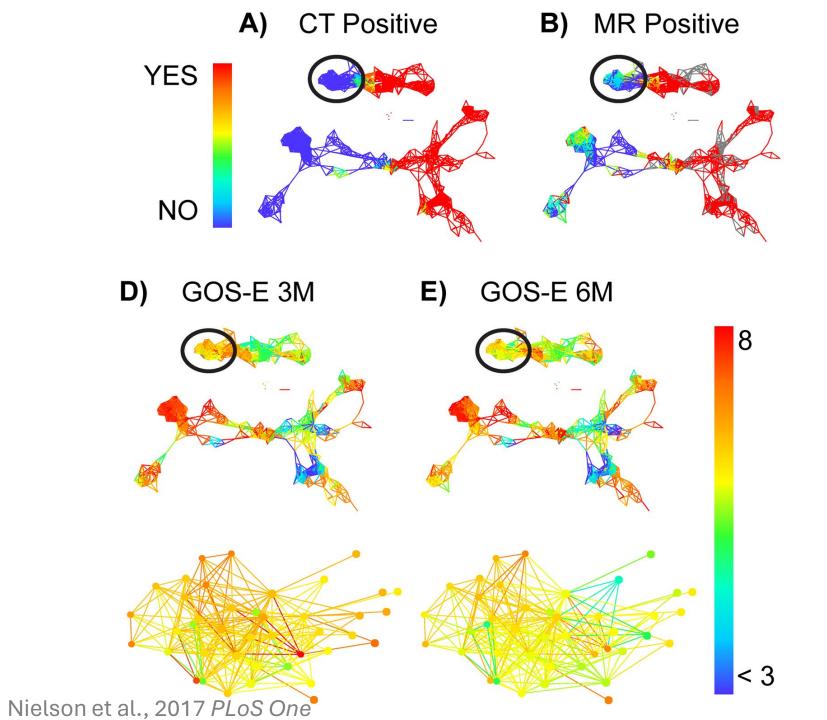
Affiliations + expand

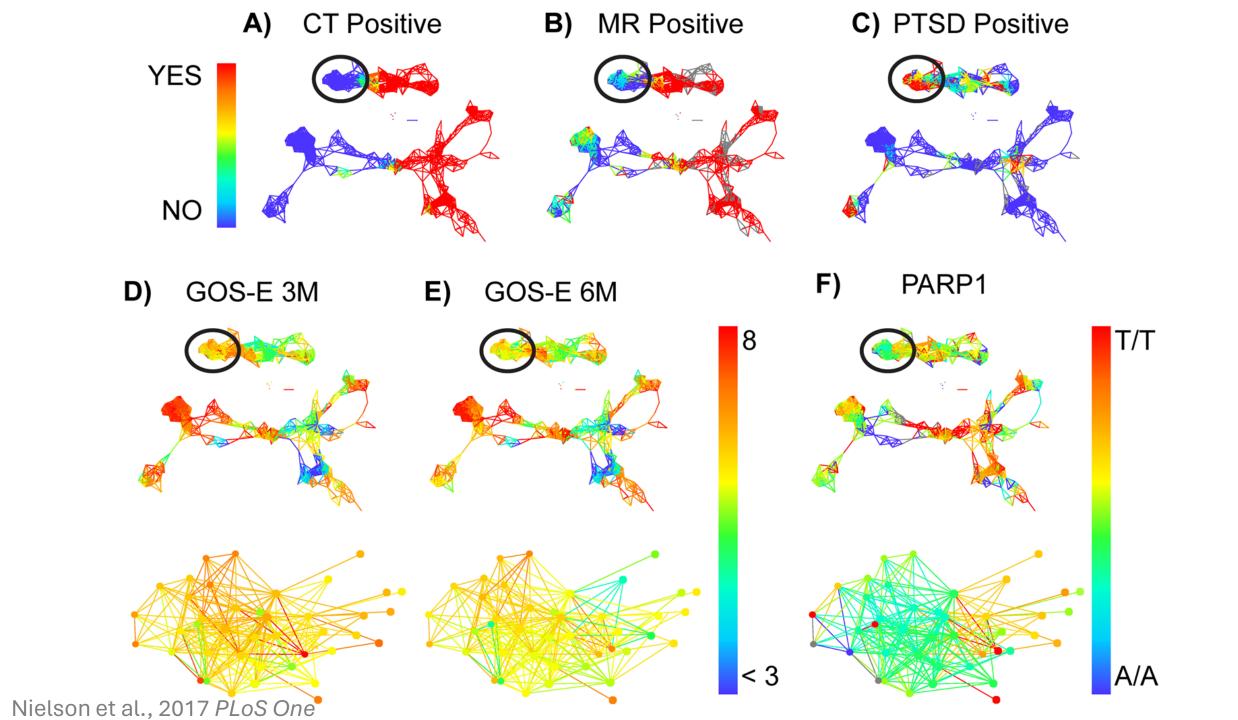

PMID: 28257413 PMCID: PMC5336356 DOI: 10.1371/journal.pone.0169490

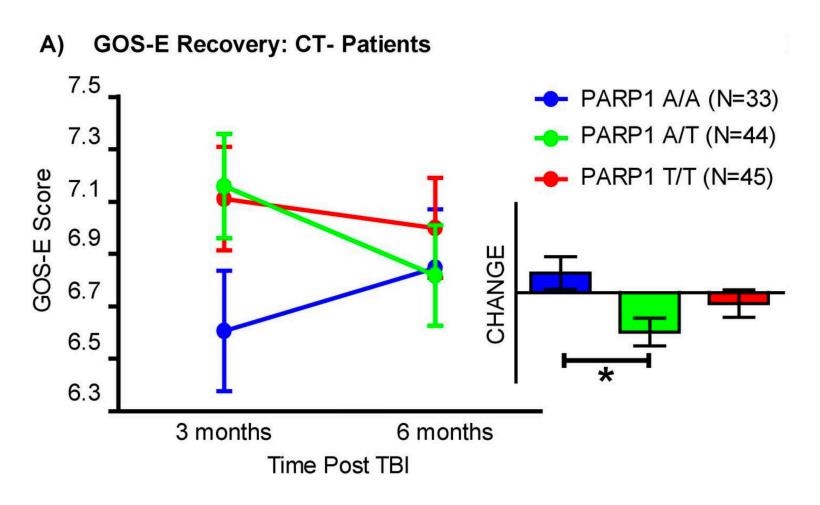




Nielson et al., 2017 PLoS One



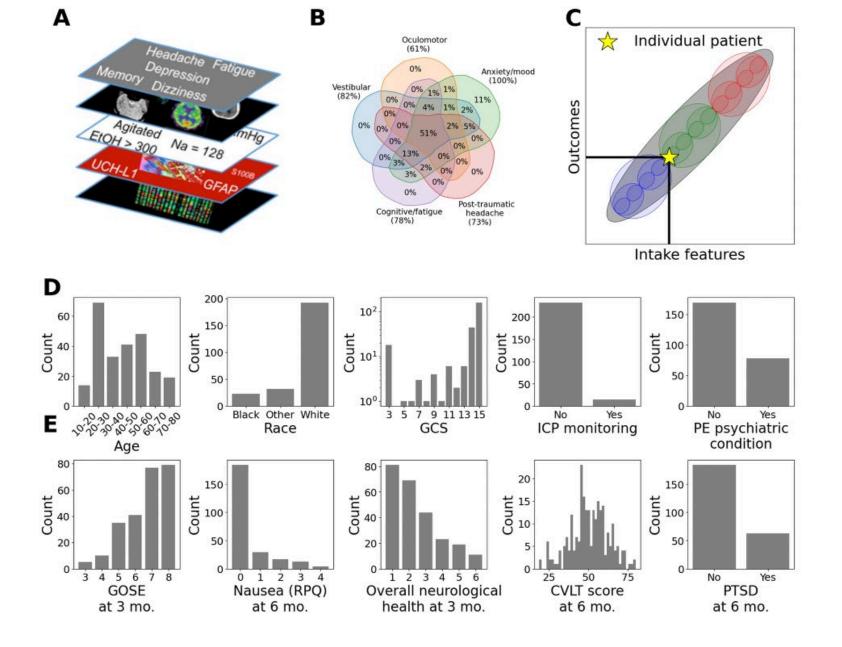












## **scientific** reports



## OPEN Data-driven distillation and precision prognosis in traumatic brain injury with interpretable machine learning

Andrew Tritt1, John K. Yue2,3, Adam R. Ferguson2,3,4, Abel Torres Espin2,3, Lindsay D. Nelson<sup>5</sup>, Esther L. Yuh<sup>2,3</sup>, Amy J. Markowitz<sup>2,3</sup>, Geoffrey T. Manley<sup>2,3,6,7</sup>, Kristofer E. Bouchard 7,8,9,10 ≥ & the TRACK-TBI Investigators\*



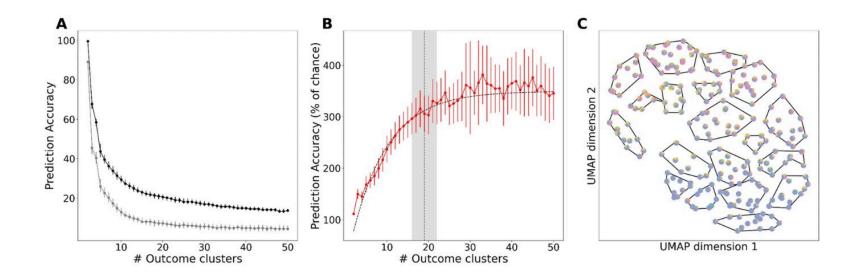
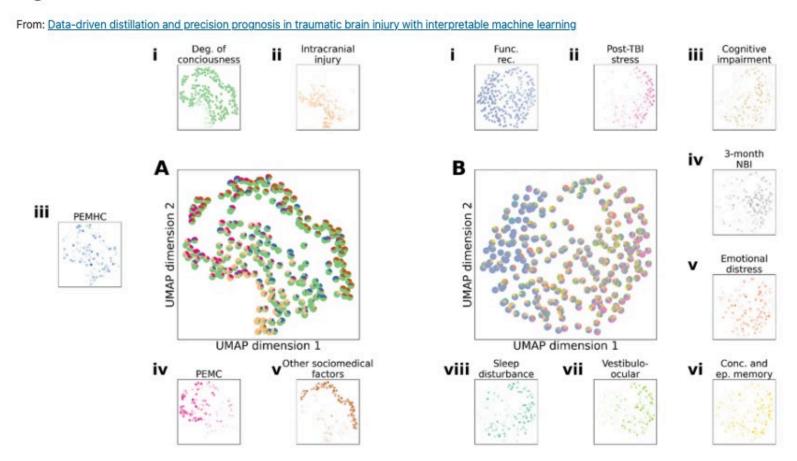
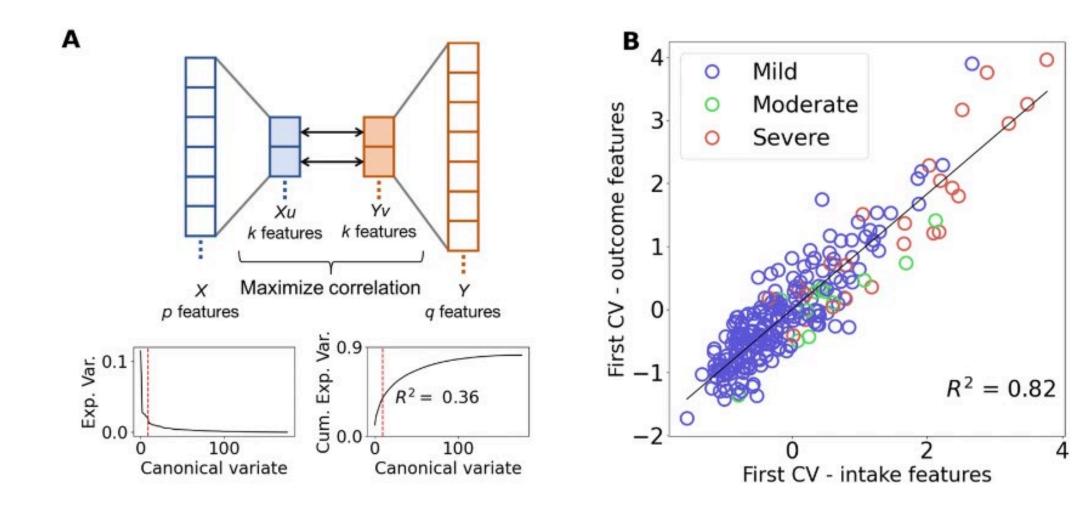





Figure 3







## Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data

Alan D. Kaplan , Member, IEEE, Qi Cheng, Senior Member, IEEE, K. Aditya Mohan , Senior Member, IEEE, Lindsay D. Nelson, Sonia Jain , Harvey Levin, Abel Torres-Espin , Austin Chou , J. Russell Huie, Adam R. Ferguson, Michael McCrea, Joseph Giacino , Shivshankar Sundaram, Amy J. Markowitz, and Geoffrey T. Manley



## Mixture Model Framework for Traumatic Brain Injury Prognesis Using Heterogeneous

www.nature.com/scientificreports

## scientific reports



## OPEN

# Refining outcome prediction after traumatic brain injury with machine learning algorithms

D. Bark<sup>1</sup>, M. Boman<sup>2,3</sup>, B. Depreitere<sup>4</sup>, D. W. Wright<sup>5</sup>, A. Lewén<sup>1</sup>, P. Enblad<sup>1</sup>, A. Hånell<sup>1,7</sup> & E. Rostami<sup>1,6,7</sup>

# OK, but what about real world implementation of prediction models?

## SYSTEMATIC REVIEW

## Effectiveness of Computerized Decision Support Systems Linked to Electronic Health Records: A Systematic Review and Meta-Analysis

Lorenzo Moja, MD, MSc, PhD, Koren H. Kwag, BSc, MSc, Theodore Lytras, MD, MPH, Lorenzo Bertizzolo, MD, Linn Brandt, MD, Valentina Pecoraro, BSc, Giulio Rigon, MD, MSc, Alberto Vaona, MD, MSc, Francesca Ruggiero, BA, MA, Massimo Mangia, Alfonso Iorio, MD, PhD, Ilkka Kunnamo, MD, PhD, and Stefanos Bonovas, MD, MSc, PhD

e12 | Systematic Review | Peer Reviewed | Moja et al.

American Journal of Public Health | December 2014, Vol 104, No. 12

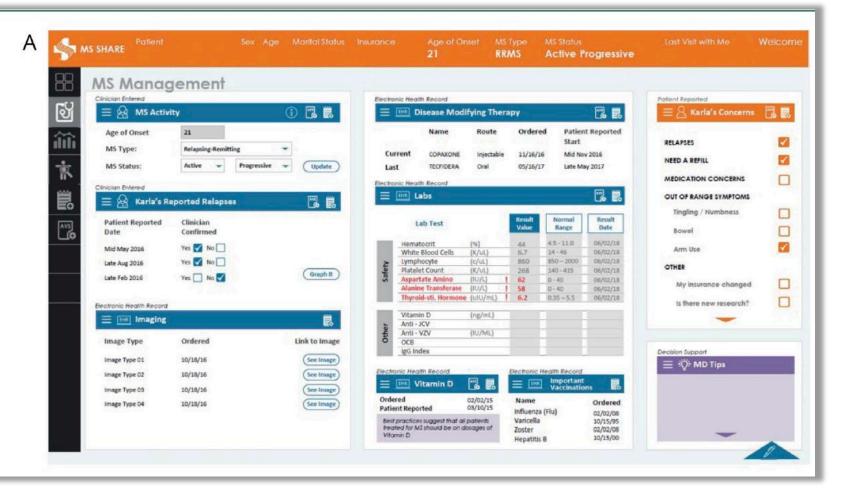
Twenty-eight RCTs were included (N = 37,395 patients)

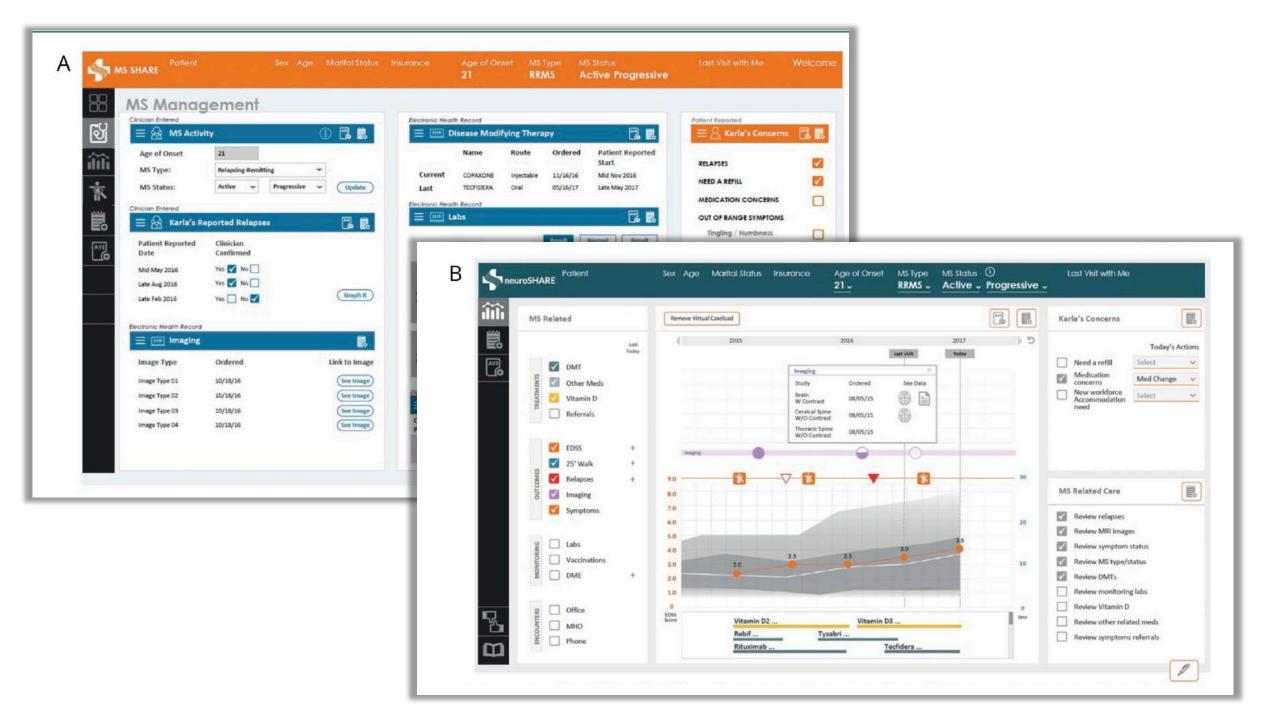
"A statistically significant effect [of Decision Support Systems] were evident in the prevention of morbidity, any disease."

RESEARCH

## **Electronic Health Record Technology Designed** for the Clinical Encounter

## MS NeuroShare


Riley Bove, MD, MMSc, Christa A. Bruce, MPH, Chelsea K. Lunders, MA, Jennifer R. Pearce, MPA, Jacqueline Liu, BS, Erica Schleimer, BS, Stephen L. Hauser, MD, Walter F. Stewart, PhD, and J.B. Jones, PhD


Neurology: Clinical Practice August 2021 vol. 11 no. 4 318-326 doi:10.1212/CPJ.000000000000986

## Correspondence

Dr. Bove Riley.Bove@ucsf.edu

"In neurologic care, insights generated from research must be brought from academic centers to clinics and transformed into actionable information to enable patient-centered care."





Journal of the American Medical Informatics Association, 29(3), 2022, 424–434

https://doi.org/10.1093/jamia/ocab270

Advance Access Publication Date: 16 December 2021

Research and Applications





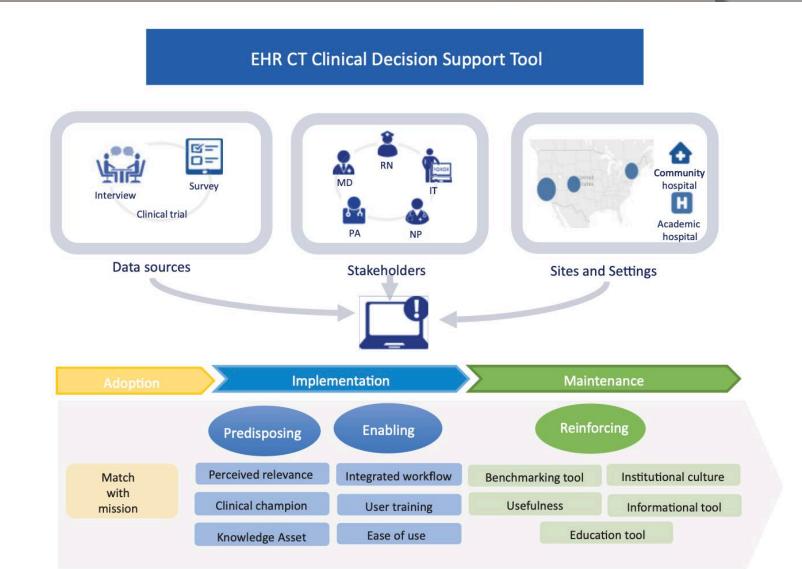
Research and Applications

Embedding electronic health records onto a knowledge network recognizes prodromal features of multiple sclerosis and predicts diagnosis

Charlotte A. Nelson<sup>1,2</sup>, Riley Bove (b)<sup>3</sup>, Atul J. Butte<sup>2,4</sup>, and Sergio E. Baranzini (b)<sup>1,2,3</sup>

# OK, but what about real world implementation *in TBI*?




# Applying the RE-AIM Framework for the Evaluation of a Clinical Decision Support Tool for Pediatric Head Trauma: A Mixed-Methods Study

Ruth M. Masterson Creber<sup>1</sup> Peter S. Dayan<sup>2</sup> Nathan Kuppermann<sup>3</sup> Dustin W. Ballard<sup>4,5</sup> Leah Tzimenatos<sup>3</sup> Evaline Alessandrini<sup>6</sup> Rakesh D. Mistry<sup>7</sup> Jeffrey Hoffman<sup>8</sup> David R. Vinson<sup>5,9</sup> Suzanne Bakken<sup>10,11</sup> for the Pediatric Emergency Care Applied Research Network (PECARN) and the Clinical Research on Emergency Services and Treatments (CREST) Network



# Applying the RE-Al Clinical Decision S Trauma: A Mixed-N

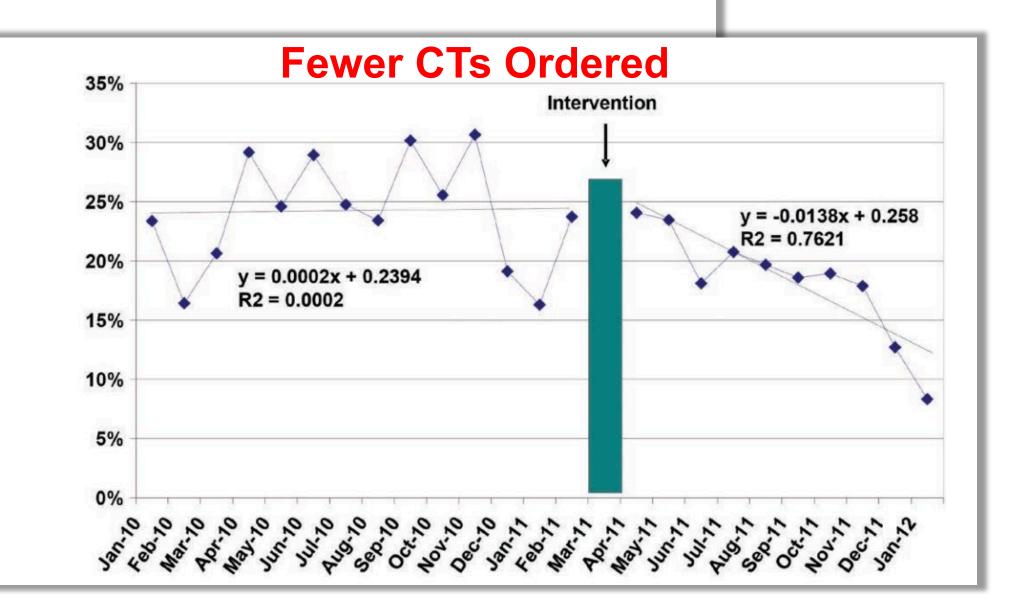
Ruth M. Masterson Creber<sup>1</sup> Peter Street Leah Tzimenatos<sup>3</sup> Evaline Alessand Suzanne Bakken<sup>10,11</sup> for the Pedia Clinical Research on Emergency Serv



Issue 3 • Volume 2

## Individual QI projects from single institutions




## Quality Improvement in Pediatric Head Trauma with PECARN Rules Implementation as Computerized Decision Support

Shireen M. Atabaki, MD, MPH\*†; Brian R. Jacobs, MD\*†; Kathleen M. Brown, MD\*†; Samira Shahzeidi, BS\*; Nia J. Heard-Garris, MD\*‡; Meghan B. Chamberlain\*; Robert M. Grell, BS\*†; and James M. Chamberlain, MD\*†

Individu

## Quali with Com

Shireen M. Samira Sho and James



Quality Improvement in Pediatric Head Trauma

**Pediatric Quality and Safety** 

Issue 3 • Volume 2

Individual QI projects from single institutions

OPEN

## Quality Improvement in Pediatric Head Trauma with PECARN Rules Implementation as Computerized Decision Support

Shireen M. Atabaki, MD, MPH\*†; Brian R. Jacobs, MD\*†; Kathleen M. Brown, MD\*†; Samira Shahzeidi, BS\*; Nia J. Heard-Garris, MD\*‡; Meghan B. Chamberlain\*; Robert M. Grell, BS\*†; and James M. Chamberlain, MD\*†

## -Fewer CTs Ordered

- -No significant change in the rate of return visits to the ED within 7 days.
- -None of these returns was associated with a missed diagnosis

## **Key Takeaways**

- -Statistical models for predicting TBI outcomes are being developed using large datasets.
- -Machine learning approaches can integrate various data sources to improve TBI prediction.
- -The implementation of these technologies in electronic health records (EHRs) is key for clinical translation.
- The EHR may be used to educate physicians about TBI and guide their decision-making through clinical decision support pathways

## Weill Neurohub



Brain and Spinal Injury Center



## ZUCKERBERG SAN FRANCISCO GENERAL

Hospital and Trauma Center























University of California San Francisco































**FERGUSON LAB:** 

Carlos Almeida, BS, MS

Kenneth Fond, BS (MS1)

Austin Chou, PhD

Jacob Davis, PhD

Jenny Haefeli, PhD

J Russell Huie, PhD

Jason Gumbel, PhD

Anastasia V Keller, PhD

Theodore A. Miclau, BS (MS2)

Kazuhito Morioka, MD, PhD

Alexys Maliga, MMLIS

PJ Fairbairn, BS

Emma Iorio, BS





## TOP-NT

NIH/NINDS Hibah Awwad. PhD University of Florida Kevin Wang, PhD Johns Hopkins University Jinyuan Zhou, PhD; Ray Koehler, PhD Georgetown University Mark Burns, PhD

UCLA Neil Harris. PhD: Ina Wanner. PhD UCSF Adam Ferguson, PhD: J. Russell Huie, PhD; Michael Beattie, PhD; Jacqueline Bresnahan PhD

## VA/DoD/NIH PRECISE-TBI

Candace Floyd, PhD (contact) Ed Dixon, PhD Adam Ferguson, PhD Gene Gurkoff, PhD Zezong Gu, MD/PhD Neil Harris, PhD Catherine Johnson, PhD Michelle LaPlaca, PhD Maryann Martone, PhD Pamala VandeVord, PhD Anita Bandrowski. PhD Jeff Grethe, PhD

### U Miami /Miami Project Vance Lemmon. PhD John Bixbv. PhD

University of Alberta Karim Fouad, PhD

Stanford: Karen-Amanda Irvine, PhD J. David Clark, MD/PhD Alison Callahan, PhD Steve McKenna, MD Graham Creasey, MD

## **Collaborators**

### **UCSF Beattie/Bresnahan Lab:**

Michael S. Beattie, PhD Jacqueline C. Bresnahan, PhD Xiaokui Ma. MD

#### **UCSF Manley Lab:**

Tomoo Inoue, MD, PhD Geoffery T Manley MD, PhD Mary Vassar, RN, MS John Yue, BA, MS2

## **UCSF Biostatistics:**

Mark R Segal, PhD

#### **UCSF Neurology/SFVA:**

Rav Swanson, MD Steve Massa, MD/PhD Raquel Gardner, MD H.E. Hinson, MD

## **UCSF/Anesth & Periop Care:**

Jonathan Pan, MD/PhD Mervyn Maze, MD Hua Su. MD

### UCSF/Radiology:

Esther Yuh. MD/PhD Pratik Mukherjee, MD/PhD Jason Talbott, MD/PhD Sharmila Majumdar, PhD

## **UCSF Orthopedics:**

Jeff Lotz, PhD Chelsev Bahnev. PhD Ralph Marcucio, PhD Jeannie Bailey, PhD

### **UCSF Psychiatry**:

Bruno Biagianti, MD Aoife O'donovan, PhD Rachel Loewy, PhD

UCSD: Mark H. Tuszynski, MD, PhD Ephron Rosenzweig, PhD John Brock, PhD Eleni Sinopoulou, PhD Kobi Koffler, PhD, MBA

#### UCSD/NIF:

Marvann Martone, PhD Jeff Grethe, PhD Monique Surles-Zeigler, PhD Anita Bandrowski. PhD

#### UCLA:

Reggie Edgerton, PhD Sharon Zdunowski Leif Havton, MD, PhD

#### UC Davis:

Rod Moseanko Stephanie Hawbecker

UC Irvine Os Steward, PhD

University of Kentucky John C. Gensel, PhD Sasha Rabchevsky, PhD University of Zurich Armin Curt, MD

University of Minnesota Jessica Nielson, PhD Sophia Vinogradov, MD

Texas A&M University Jim W. Grau, PhD Michelle A. Hook, PhD

Ohio State University: Phillip G. Popovich. PhD Dana M. McTigue, PhD Jan Schwab, MD, PhD Michele Basso, EdD

University of Louisville: David Magnuson, PhD Darlene Burke, MS Scott Whittemore, PhD

Swiss Federal Institute of Technology: Gregoire Courtine, PhD

Icahn School Medicine, Mt. Sinai Fanny Elahi, MD/PhD

## **Funding**

US National Institutes of Health (NIH): R01NS088475. R01CA213441, R01AG056770, R01MH116156, R01NS122888; U01NS086090, P30AR066262, UH3NS106899, U19AR076737; U24NS122732 **US Veterans Affairs:** 1101RX002245, 101RX002787,

I01BX005871. I50BX005878

US Department of Defense: SC150198, SC150177

**US DARPA** 

**US Department of Energy** Craig H. Neilsen Foundation Wings for Life Foundation **UC Noyce Initiative**