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Web-based Prediction Calculators
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less, within 8 hours of injury, and can only support - not replace - clinical judgment. Although

i3 Background . P . . .
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present three models of increasing complexity (Core, Core + & Data Sharing Glasgow coma score Choose... v
CT. Core + CT + Lab). These models were developed and @ Acknowledgaments Pupils react to Iight Choose... v

validated in collaboration with the CRASH trial collaborators on large numbers of
individual patient data (the IMPACT database). The models discriminate well, and are
particulary suited for purposes of classification and characterization of large cohorts of

IMPACT Major extra-cranial injury? e‘

patients. Extreme caution is required when applying the estimated prognosis to individual Prognostic models in TBI . -
patients. 1. Clinical Practice CT scan available? D
0! informing relatives . -
0 supporl treatment decisions P d t
Prediction models for 6 month outcome after TBI ) allocating resources re lc Ion
2. Research
Admission Characteristics Value B Classifoation:
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Hypaxia 3. Quality assessment of health-care delivery
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CoEtiaan The MRC CRASH Trial Collaborators. Predicting outcome after traumatic brain injury: practical prognostic models
Glucosa (320 mmotl) [ |[mmaiL~] based on large cohort of international patients. BMJ 2008 doi:10.1136/bm;j.39461.643438.25 2007;
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Prognostic calculator

Based on extensive prognostic analysis the IMPACT
Investigators have developed prognostic models for predicting
& month outcome in adult patients with moderate o severe
head injury (Glasgow Coma Scale ==12) on admigsion. By
entering the characteristics into the calculator, the models will
provide an estimate of the expected outcome at 6 months. We
present three models of increasing complexity (Core, Core +
CT. Core + CT + Lab). These models were developed and
validated in collaboration with the CRASH frial collaborators on large numbars of
individual patient data (the IMPACT database). The models discriminate well, and are
particularty suited for purposes of classification and characterization of large cohorts of
patients. Extreme caution is required when applying the estimated prognosis to individual
patients.
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Prognostic models in TBI

1. Clinical Practice
@ informing relatives
Gl support treatment decisions
@ allocating resources
2. Research
@ Classification:
() adjust for baseline charactaristics
() ordinal analyses:
(2 sliding dichotomy
©) proportional odds model
i3 Chinical trials
3. Quality assessment of health-care delivery

This model predicts outcome in the following patients:

Adults with head injury, Glasgow Coma Scale 12 or less.

Prognostic Results:

Predicted probability of & month mortality: Core model: 75%
Predicted probability of & month unfavourable outcome: Care model: 25%

Predicted probability of & month mortality: Core+CT model: 18%
Predicted probabilify of & month unfavourable outcome: Core+CT model: 28%

Predicted probabilify of 6 month mortaiity: Core+CT+Lab model: 19%
Predicted probability of & month unfavourable outcome: Care+CT+Lab model: 26%
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-The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome.
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-IMPACT-Lab and CRASH-CT models overpredicted mortality in the overall cohort and for patients with severe or
moderate TBI.
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-The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome.

-IMPACT-Lab and CRASH-CT models overpredicted mortality in the overall cohort and for patients with severe or
moderate TBI.

"This suggests the presence of predictors in contemporary TBI care not accounted for by these models, which
were developed using data from over 2 decades ago.”
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Mind-like machines: Machine learning is enabling the prediction of drug responses.



A Functional Changes

Q

:.; - * @ ® . - - 2

€5 . « * Individual
o8 “e * « “| Patient

§ E o e :. - = -

D " Glasgow Coma Score

Zz

Nielson et al., 2017 PLoS One



A Functional Changes

D

:.; - - ® @ ® . - - @
- — S -

5 2 b L - - L
0 ‘E L &

(1] L

E E - e e - L 4 «
2 Glasgow Coma Score
4

Nielson et al., 2017 PLoS One

Individual
Patient

Functional

/ e BTl / Changes

%99 3« 2% ee*  Molecular
k- ® @ -
ee %0 *3e% e Biomarkers
_Le#iaetes 1570 Tissue Imaging




Nielson et al.,

A Eunctional Changes

@

2 neons L ane
Bg|* % "

EE ees, . L.
=

2017 PLoS One

Individual
Patient

e o e o FunctIOHaI
/" ol Sl / Changes
f._‘f' $ -:' ®e, 00 Molecular
/-- » ®* S e e e Biomarkers
l- .'

/ Tissue Imaging

/:";:' :' ol :-.'/ Patient
A .:I-: "I': Multivariate

Similarity

A ?::.";-5 3 7 Lens




Nielson et al.,

A Functional Changes

®* @

Glasgow Coma Score

Neurocognitive
Function

2017 PLoS One

Individual
Patient

B Functional

/ e 8 Sse. / Changes

"f._. “9 8¢ 2%oece Molecular
k- ® @ =3 &
Lt Akt KO S Biomarkers
Pty :':":; p Tissue Imaging

// Patient

Multivariate

%0 2 2% /
®e % 3% - Similarity
Lens
- - L1 a® 2 @
IR o i W
D Patient Patient Patient
Group 1 Group 2 Group 3
Patient
Grouping
in Multiple
Dimensions
Topology

Visualization

- -




Clinical Tnial > PLoS One. 2017 Mar 3:12(3):e0169490. doi: 10.1371/journal.pone.0169490.
eCollection 2017.

Uncovering precision phenotype-biomarker
associations in traumatic brain injury using
topological data analysis

Jessica L Nielson 7 2, Shelly R Cooper ' 2 3, John K Yue ' 2, Marco D Sorani 2,

Tomoo Inoue ' 2, Esther L Yuh 23, Pratik Mukherjee 2, Tanya C Petrossian #, Jesse Paguette 4,
Pek Y Lum #, Gunnar E Carlsson ¢, Mary J Vassar ' ¢, Hester F Lingsma 2, Wayne A Gordon ©,
Alex B Valadka 7, David O Okonkwo 8, Geoffrey T Manley ' 2, Adam R Ferguson ' 2 2
TRACK-TBI Investigators

Affiliations 4+ expand
PMID: 28257413 PMCID: PMC5336356 DOI: 10.1371/journal.pone.0169490
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OPEN Data-driven distillation
and precision prognosis
In traumatic brain injury
with interpretable machine
learning

Andrew Tritt!, John K. Yue®*, Adam R. Ferguson®**, Abel Torres Espin®?,
Lindsay D. Nelson®, Esther L. Yuh®3, Amy J. Markowitz??, Geoffrey T. Manley?3%7,
Kristofer E. Bouchard”®%1% & the TRACK-TBI Investigators”

Scientific Reports | (2023) 13:21200 | https:/idoi.org/10.1038/s41598-023-48054 -2 nature portfolio



Oculomator
161%)

0%

y¢ Individual patient

S Anxiety/mood
| e (100%)
N

estibular

(82%)
)< . 1%,

Outcomes

il Post-traumatic
Cognitive/fatigue headache
178%) {73%)
Intake features
60 200 150
b~ = ¥ 150 =
= [ =y c [ =
3 40 3 5 5 100
o 20 o i < 50
50
. 0
Black Other White 357 8111315 No Yes No Yes
E Race GCS ICP monitoring PE psychiatric

condition

Count
Count

0
3 456 78 o1 2 3 4

"1 2 3 45 6 0755 s0 75
GOSE Nausea (RPQ) Overall neurological CVLT score PTSD
at 3 mo. at 6 mo. health at 3 mo. at 6 mo. at 6 mo.

Tritt et al., 2023 Sci Rep



100

£ o [
L= o o

Prediction Accuracy

[
(=]

Tritt et al., 2023 Sci Rep

10 20 30 40 50
# Qutcome clusters

Prediction Accuracy (% of chance)

UMAP dimension 2

10 20 30 40
# Qutcome clusters

50

UMAP dimension 1




Figure 3

From: Data-driven distillation and precision prognosis in traumatic brain injury with interpretable machine learning

Tritt et al., 2023 Sci Rep
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Mixture Model Framework for Traumatic Brain
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OPEN Refining outcome prediction
after traumatic brain injury
with machine learning algorithms
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OK, but what about real world
implementation of prediction models?



| SYSTEMATIC REVIEW |

Effectiveness of Computerized Decision Support Systems
Linked to Electronic Health Records: A Systematic Review
and Meta-Analysis

\ Lorenzo Moja, MD, MSc, PhD, Koren H. Kwag, BSc, MSc, Theodore Lytras, MD, MPH, Lorenzo Bertizzolo, MD,
Linn Brandt, MD, Valentina Pecoraro, BSc, Giulio Rigon, MD, MSc, Alberto Vaona, MD, MSc, Francesca Ruggiero,
BA, MA, Massimo Mangja, Alfonso lorio, MD, PhD, llkkka Kunnamo, MD, PhD, and Stefanos Bonovas, MD, MSc, PhD

el2 | Systematic Review | Peer Reviewed | Moja et al. American Journal of Public Health | December 2014, Vol 104, No. 12

Twenty-eight RCTs were included (N = 37,395 patients)

“A statistically significant effect [of Decision Support Systems] were evident in the prevention of morbidity,
any disease.”



Electronic Health Record Technology Designed
for the Clinical Encounter

MS NeuroShare

Riley Bove, MD, MMSc, Christa A. Bruce, MPH, Chelsea K. Lunders, MA, Jennifer R. Pearce, MPA, Correspondence

Jacqueline Liu, BS, Erica Schleimer, BS, Stephen L. Hauser, MD, Walter F. Stewart, PhD, and J.B. Jones, PhD Dr. Bove
Riley.Bove@ucsf.edu

Neurology: Clinical Practice August 2021 vol. 11 no. 4 318-326 doi:10.1212/CPJ.0000000000000986

“In neurologic care, insights generated from research must be brought from
academic centers to clinics and transformed into actionable information to enable

patient-centered care.”
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Advance Access Publication Date: 16 December 2021
Research and Applications

Research and Applications

Embedding electronic health records onto a knowledge
network recognizes prodromal features of multiple
sclerosis and predicts diagnosis

Charlotte A. Nelson?, Riley Bove (®°, Atul J. Butte**, and Sergio E. Baranzini (»'*>



OK, but what about real world
implementation in TBI?



e a

THIEME

OPEN
ACCESS

Research Article 693

Applying the RE-AIM Framework for the Evaluation of a
Clinical Decision Support Tool for Pediatric Head
Trauma: A Mixed-Methods Study

Ruth M. Masterson Creber! Peter S. Dayan? Nathan Kuppermann? Dustin W. Ballard*>

Leah Tzimenatos® Evaline Alessandrini® Rakesh D. Mistry’ |effrey Hoffman® David R. Vinson>*?
Suzanne Bakken'%11  for the Pediatric Emergency Care Applied Research Network (PECARN) and the
Clinical Research on Emergency Services and Treatments (CREST) Network




'THIEME |

OPEN
ACCESS)

Applying the RE-A
Clinical Decision S
Trauma: A Mixed- e

ikt Survey P— hospital
Ruth M. Masterson Creber! Peter Clinical trial
Leah Tzimenatos® Evaline Alessan

Suzanne Bakken1%11  for the Pedi Data sources Stakeholders Sites and Settings

Academic

i hospital

Clinical Research on Emergency Se E

Predisposing Enabling

Match B W Benchmarking tool Institutional culture
with 5 :
mission X ampion g _ Usefulness Informational tool

Education tool




Quality Improvement in Pediatric Head Trauma Pediatric Quality and Safety

Issue 3 e Volume 2

Individual QI projects from single institutions

[ OPEN _
Quality Improvement in Pediatric Head Trauma
with PECARN Rules Implementation as

Computerized Decision Support

Shireen M. Atabaki, MD, MPH *1; Brian R. Jacobs, MD *t; Kathleen M. Brown, MD *{;
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Quality Improvement in Pediatric Head Trauma
with PECARN Rules Implementation as

Computerized Decision Support

Shireen M. Atabaki, MD, MPH *1; Brian R. Jacobs, MD *t; Kathleen M. Brown, MD *{;
Samira Shahzeidi, BS*; Nia J. Heard-Garris, MD*}; Meghan B. Chamberlain*; Robert M. Grell, BS*7;

and James M. Chamberlain, MD *t

-Fewer CTs Ordered

-No significant change in the rate of return visits to the ED within 7 days.

-None of these returns was associated with a missed diagnosis



Key Takeaways

-Statistical models for predicting TBIl outcomes are being developed
using large datasets.

-Machine learning approaches can integrate various data sources to
improve TBI prediction.

-The implementation of these technologies in electronic health
records (EHRSs) is key for clinical translation.

- The EHR may be used to educate physicians about TBIl and guide
their decision-making through clinical decision support pathways
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