

NATIONAL Sciences ACADEMIES Medicine Medicine

Integrated Surveillance
Human, Animal
and Environmental Surveillance

Rachel Herlihy, MD MPH
Colorado Department of Public Health and Environment

Meghan Davis, DVM MPH PhD

Johns Hopkins Bloomberg School of Public Health

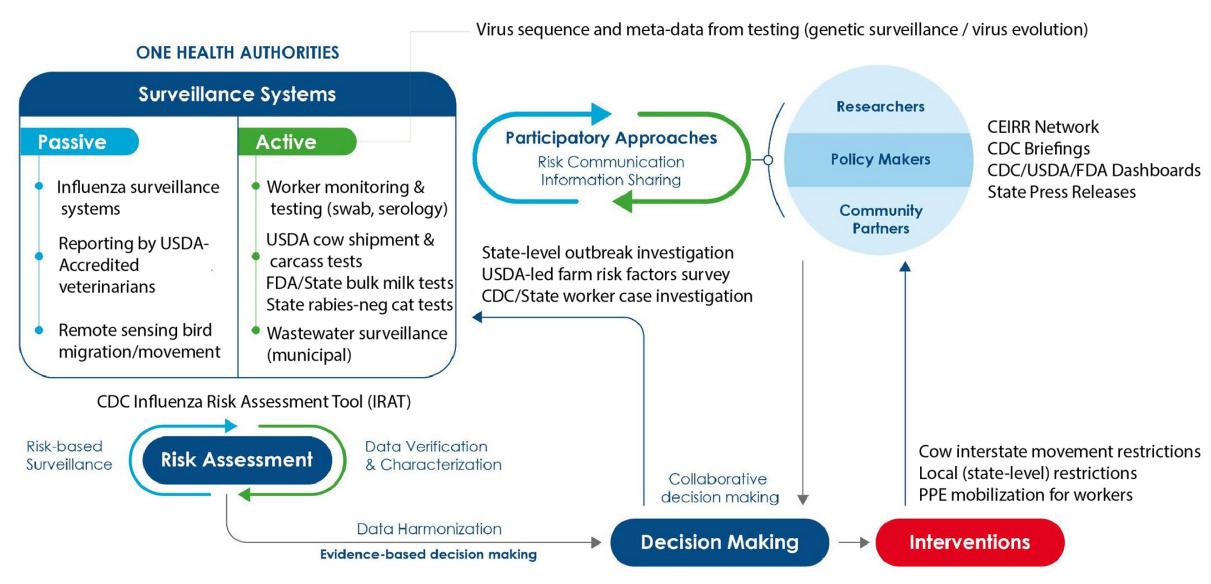


Figure adapted from the International Network for Governmental Science Advice (INGSA)-Asia Guidebook on Countering Zoonotic Spillover in the Southeast Asia Region, in collaboration with the National Academies for Sciences, Engineering and Medicine (NASEM)

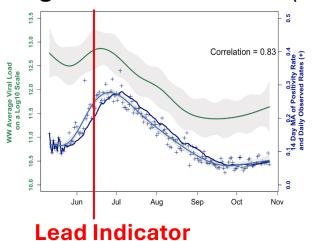
Wastewater-based Detection of H5N1 Avian Influenza

Anthony William Maresso, Ph.D.

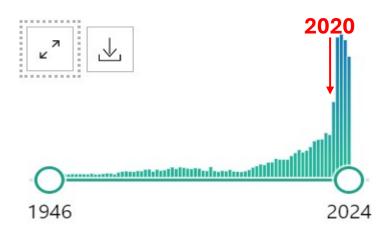
Baylor College of Medicine

Partnerships:

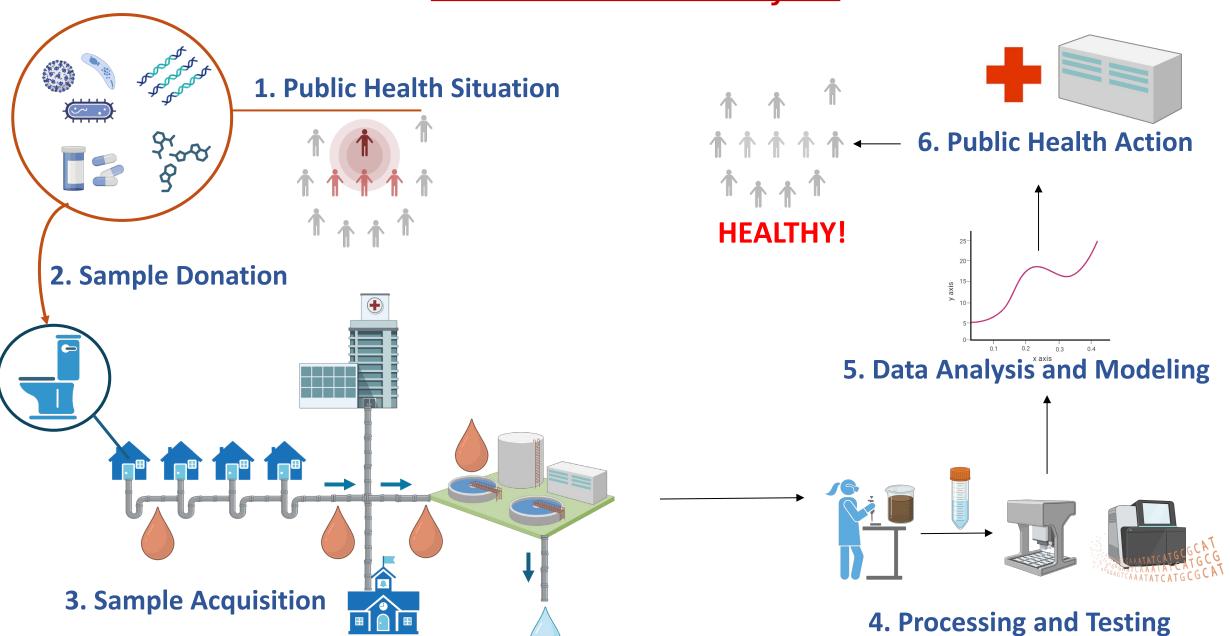
#UTHealth Houston
School of Public Health



Wastewater Viral Detection 101


History: Polio Virus (1930-1960)

Resurgence: Covid Pandemic (2020)


Massive Growth: Public Health Tool

Expansion: Other Viruses

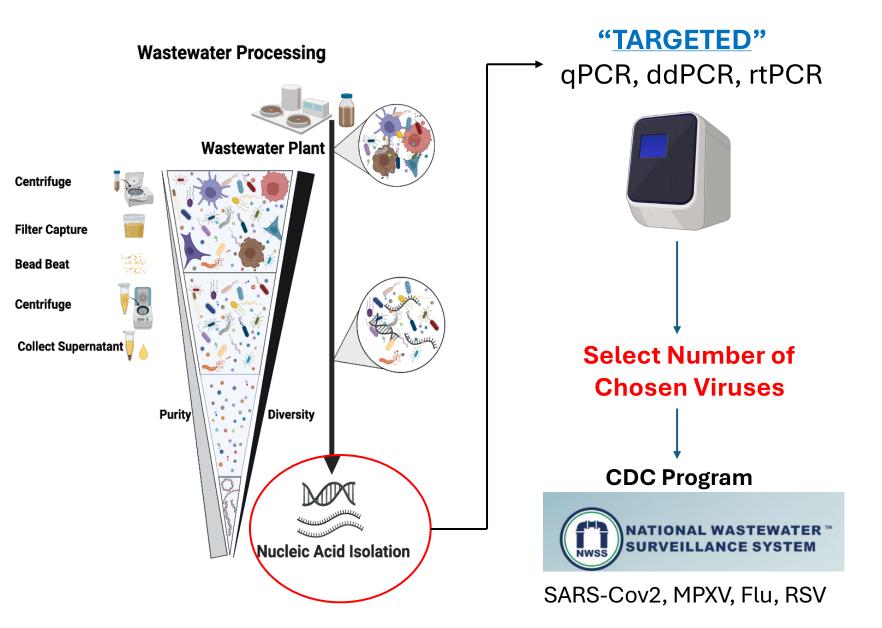
SARS-Cov2 MPXV Flu RSV

Sewer to Solution Cycle

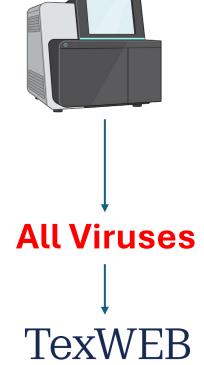
Advantage and Limitations

THE GOOD

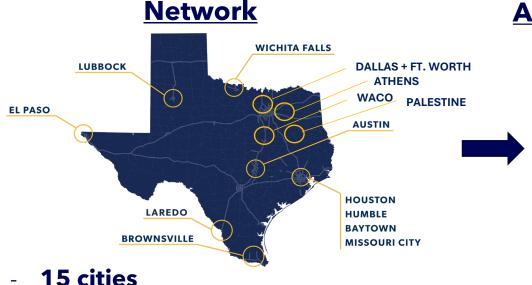
- Population Level Data
- Cost Effective
- Universal Self-Reporting
- Comprehensive Picture
- Trend/Predictive


THE BAD

- Expectations
- Invisible Individual
- Embryonic (lot to learn)
- Uniformity (standards)
- Expertise (limited)

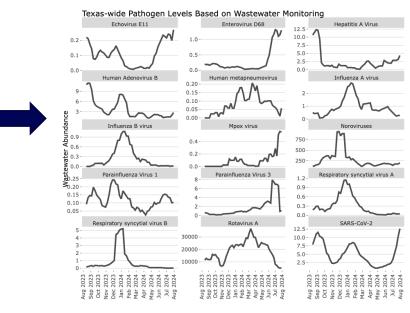

THE UGLY

- Prevalence
- Privacy ("surveillance")
- Politics (control)
- Pipeline (who to who)
- Policy (action?)


State-of-the-Art

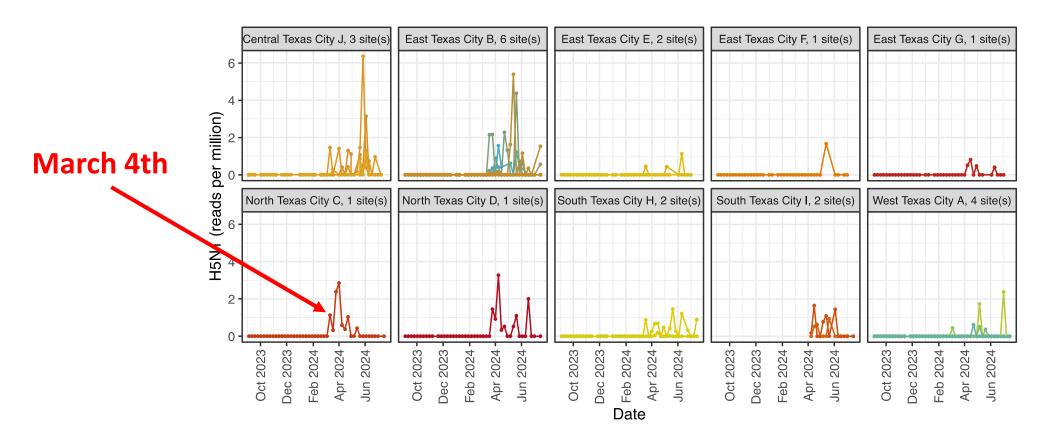
"AGNOSTIC" Sequencing

TexWEB: Texas Wastewater & Environmental Biomonitoring

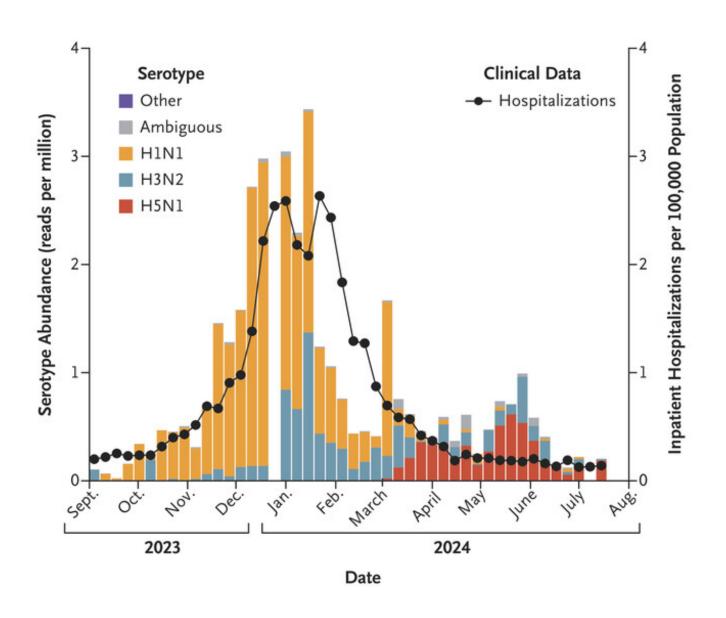


30 sites

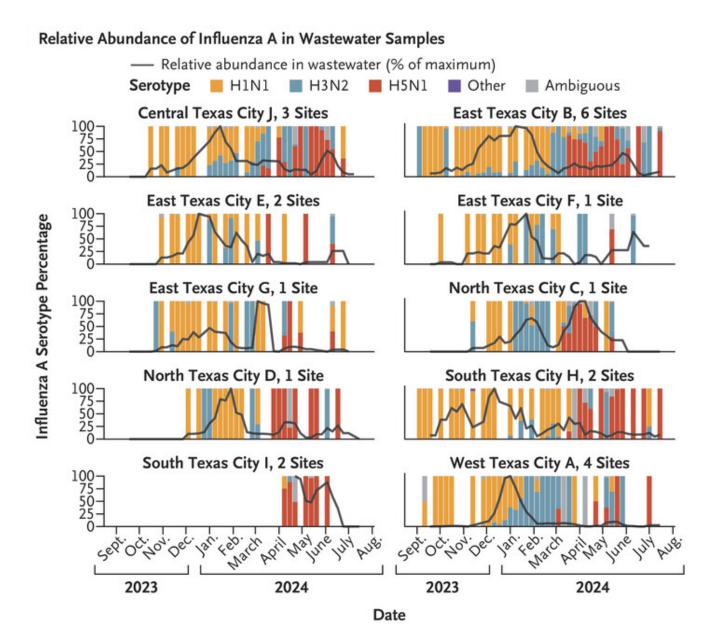
24% population


- **Agnostic Sequencing**
 - **3,153** possible viruses (1 sample)
 - Detect seasonal viruses (flu, sars-cov2)
 - Detect emerging viruses (measles, mpox, west nile

Reporting


- **Program** = ~ **2.5** years
- Reports go to Health Dept.

ALERT! H5N1 Detected in Wastewater Sample


- No detection for nearly two years (0/1337 samples)
- 2. About 6 weeks All cites positive
- 3. Detection events span cities ~ 750 miles (~ distance Washington D.C. to Chicago)

Flu Serotype Prevalence in Wastewater Sept 2023 through July 2024

- 1. "Seasonal" Flu readily detected
- 2. "Avian" Flu TWO PEAKS (April 1/May 21)
- 3. **No Bump** in Flu Hospitalizations

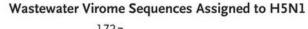
Flu Serotype Prevalence in Wastewater Sept 2023 through July 2024

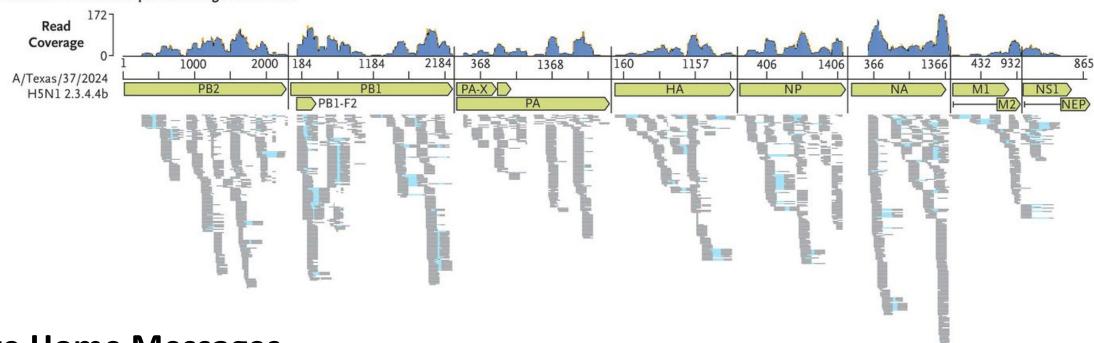
- H5N1 detected in all 10
 Texas cities, 22/23 sites,
 25% of all samples
- 2. Wide geographic distribution

Simultaneously - WasterScan Group reported PCR detection of H5

Detection of Hemagglutinin H5 Influenza A Virus Sequence in Municipal Wastewater Solids at Wastewater Treatment Plants with Increases in Influenza A in Spring, 2024

Marlene K. Wolfe, Dorothea Duong, Bridgette Shelden, Elana M. G. Chan, Vikram Chan-Herur, Stephen Hilton, Abigail Harvey Paulos, Xiang-Ru S. Xu, Alessandro Zulli, Bradley J. White, and Alexandria B. Boehm*


- "unusual" flu positivity in normal FluA PCR test in wastewater
- Developed H5 specific probe, retrospectively positivity 4 WWTPs
- Same time frame



Wastewater Surveillance for Influenza A Virus and H5 Subtype Concurrent with the Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in Cattle and Poultry and Associated Human Cases — United States, May 12–July 13, 2024

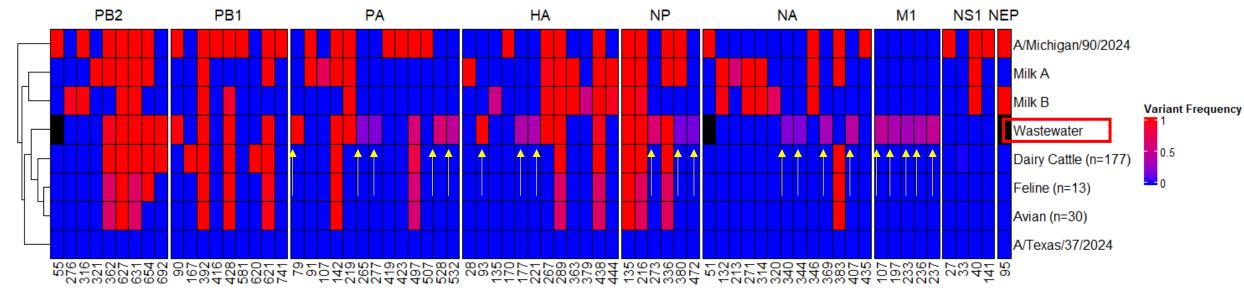
- May 12–July 13, 2024.
- H5 subtype testing was conducted at 203 sites in 41 states, with **H5** detections at **24** sites in nine states. (IE NOT JUST TEXAS WW)

H5N1 reads aligned to March 2024 Human Texas Case

Take Home Messages

- 1. Cover ~ **85%** of the ref genome
- 2. Reads from all **8 gene** segments

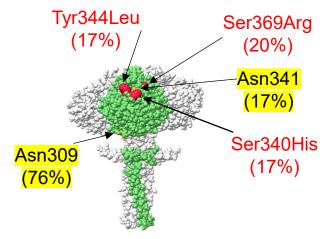
Technical Notes:


- Consensus is GISAID isolate EPI_ISL_19027114
- Read stacks might relate to probe bias

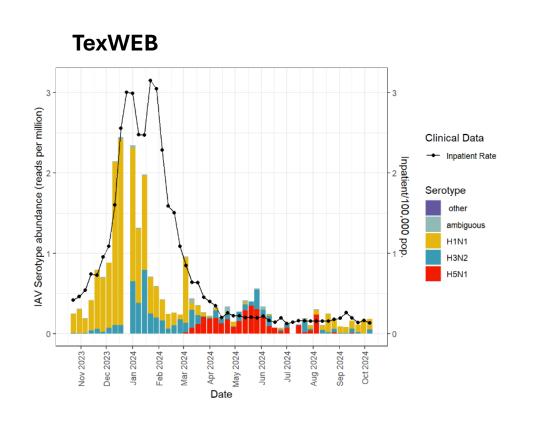
H5N1 SNPs that deviate from the Texas Case consensus

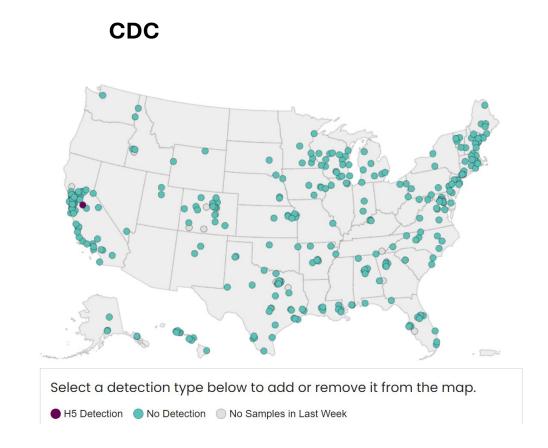
Nucleotide Position	CDS	Polymorphism Type	Change	Variant Frequency	Unique Detections (Reference Allele)	Unique Detections (Variant Allele)	Coverage	Amino Acid Change	CDS Codon Number	Codon Change	Prote in Effect	Variant P-Value
1100	PB2	SNP (transition)	A->G	95.00%	0	4	40	E->G	362	GAG->GGG	Substitution	3.10E-10
1894	PB2	SNP (transition)	A->G	100.00%	0	5	36	K->E	627	AAA->GAA	Substitution	2.50E-13
1906	PB2	SNP (transversion)	A->C	100.00%	0	5	36	M->L	631	AUG->CUG	Substitution	2.50E-13
1977	PB2	SNP (transition)	G->A	100.00%	0	4	48		654	CCG->CCA	None	1.60E-17
2091	PB2	SNP (transition)	A->G	100.00%	0	1	3		692	AGA->AGG	None	7.90E-1
3502	PB1	SNP (transition)	G->A	100.00%	0	1	3	V->I	392	GUA->AUA	Substitution	7.90E-1
3612	PB1	SNP (transition)	G->A	100.00%	0	1	3		428	CAG->CAA	None	7.90E-1
4191	PB1	SNP (transition)	A->G	100.00%	0	6	47		621	CAA->CAG	None	6.30E-17
4881	PA	SNP (transversion)	C->A	100.00%	0	1	5		79	AUC->AUA	None	3.20E-1
4881	PA-X	SNP (transversion)	C->A	100.00%	0	1	5		79	AUC-> AUA	None	3.20E-1
4882	PA	Substitution	GA->UG	100.00%	0	1	5		80		Truncation	3.20E-1
4882	PA-X	Substitution	GA->UG	100.00%	0	1	5		80		Truncation	3.20E-1
5068	PA	SNP (transition)	G->A	100.00%	0	2	15	E->K	142	GAA->AAA	Substitution	3.20E-5
5068	PA-X	SNP (transition)	G->A	100.00%	0	2	15	E->K	142	GAA->AAA	Substitution	3.20E-5
5299	PA	SNP (transversion)	C->A	100.00%	0	1	43	L->I	219	CUU->AUU	Substitution	1.60E-15
5299	PA-X	SNP (transversion)	C->A	100.00%	0	1	43		218	GUC->GUA	None	1.60E-15
5439	PA	SNP (transition)	A->G	17.60%	1	1	17		265	CCA->CCG	None	5.40E-0
5473	PA	SNP (transition)	C->U	15.80%	1	1	19	P->S	277	CCU->UCU	Substitution	7.70E-0
6134	PA	SNP (transition)	A->G	60.00%	1	1	10	K->R	497	AAG->AGG	Substitution	1.30E-1
6226	PA	Substitution	ACUGACCCGAG->GCCUCGGGUCA	60.00%	2	1	10	TDPR->ASGQ	528	ACU,GAC,CCG,AGG->GCC,UCG,GGU,CAG	Substitution	2.10E-1
6238	PA	SNP (transition)	C->U	42.90%	2	1	7		532	CUA->UUA	None	2.80E-1
7135	HA	SNP (transversion)	U->G	100.00%	0	1	12		93	UCU->UCG	None	4.00E-4
7387	HA	SNP (transition)	G->A	35.30%	1	1	17		177	AAG->AAA	None	1.90E-1
7519	HA	SNP (transition)	A->G	32.30%	1	1	31		221	UUA->UUG	None	4.40E-2
7657	HA	SNP (transition)	G->A	100.00%	0	6	23		267	GAG->GAA	None	6.30E-7
7723		SNP (transition)	C->U	100.00%	0	6	31		289	CAC->CAU	None	5.00E-10
8094	HA	Substitution	GGGAGU->UCUGAC	22.9%->24.2%	5	1	33 -> 35		413		Truncation	1.40E-2
8170	HA	SNP (transversion)	C->A	94.10%	1	7	51		438	ACC->ACA	None	3.30E-16
9029	NP	SNP (transition)	U->C	100.00%	0	5	63		135	CAU->CAC	None	1.60E-22
9272	NP	SNP (transition)	A->G	100.00%	0	4	31		216	AGA->AGG	None	2.50E-11
9443	NP	SNP (transition)	G->A	61.90%	3	3	63		273	AAG->AAA	None	6.20E-12
9632	NP	SNP (transition)	G->A	100.00%	0	5	18		336	GCG->GCA	None	2.50E-6
9764	NP	SNP (transition)	A->G	13.00%	2	1	23		380	GAA->GAG	None	1.40E-0
10039	NP	SNP (transition)	C->U	12.70%	1	1	63	T->M	472	ACG->AUG	Substitution	9.60E-2
11065	NA	Deletion (tandem repeat)	(A)4->(A)3	75.60%	4	1	41		309		Frame Shift	1.70E-7
11157	NA	Substitution	UC->CA	16.70%	2	1	24	S->H	340	UCU->CAU	Substitution	1.70E-1
11160	NA	Substitution	AAUG->UAGA	16.70%	2	1	24		341		Truncation	2.70E-1
11170	NA	Substitution	AU->UG	15.4%->16.0%	2	1	25 -> 26	Y->L	344	UAU->UUG	Substitution	2.40E-1
11244	NA	SNP (transversion)	A->C	29.60%	5	1	54	S->R	369	AGC->CGC	Substitution	1.30E-4
11360	NA	SNP (transition)	C->U	39.50%	7	3	43		407	GUC->GUU	None	2.60E-5
11547	NA	SNP (transversion)	U->G	32.60%	2	4	92		470		Extension	1.50E-8
11553		SNP (transversion)	G->U	33.30%	2	4	90					6.60E-7
11556	5	SNP (transversion)	C->G	32.20%	2	4	87					7.80E-7
11559		SNP (transversion)	A->C	54.90%	2	3	51					3.10E-8
11565		Substitution	UAGAUAUUGA->ACUUGUCAAU	77.8%->95.7%	1	4	8->23					4.50E-2
11896	Ml	SNP (transversion)	A->U	42.90%	2	1	7	I->L	107	AUA->UUA	Substitution	2.80E-1
12168	Ml	SNP (transition)	G->A	33.30%	3	1	12		197	GAG->GAA	None	7.80E-1
12274	Ml	Substitution	CUCCUUGA->UCUAACCG	21.1%->28.6%	4	1	19->21	∐E->SNR	233	CUC, CUU, GAA -> UCU, AAC, CGA	Substitution	3.70E-1
12283	Ml	Substitution	AA->GG	33.30%	4	1	21	N->G	236	AAU->GGU	Substitution	1.50E-2
12286	MI	Substitution	UUGCAG->CGAAAC	33.3%->58.3%	4	1	12->21	LQ -> RN	237	UUG,CAG->CGA,AAC	Substitution	1.50E-2

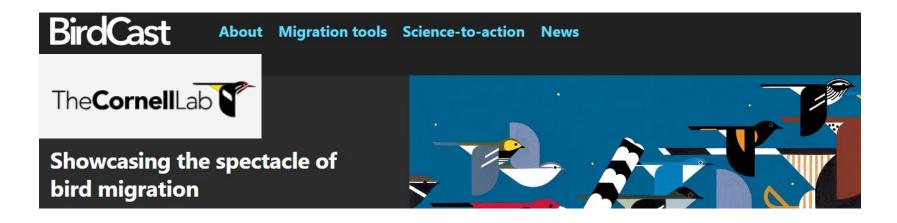
- 1. > 50 SNPs
- 2. Some SNPs are **unique** to wastewater samples
- 3. Inputs from cow, feline, bird, milk and unidentified source (s)

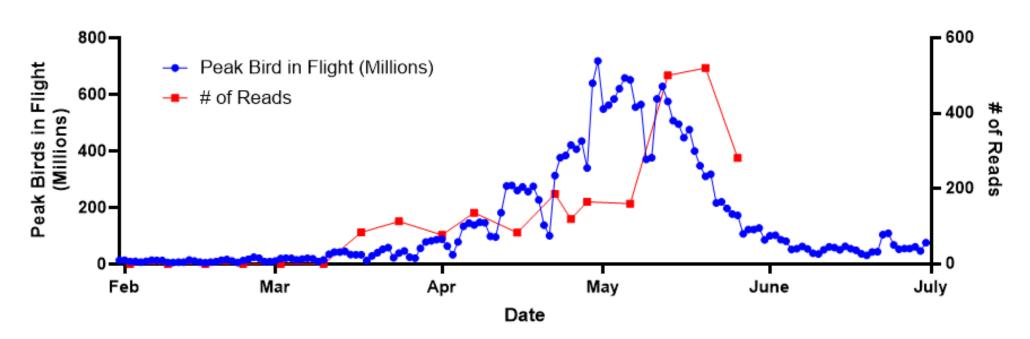

Wastewater Sequence is Similar but DISTINCT

Take Home Messages


- 1. Wastewater has **Novel Mutations**
- 2. Do not know the origin of these **Mutations**
- 3. There are other **Cryptic Hosts** out there


Neuraminidase


Justin Clark
James Chang


Partial Good News – Detections in WW now Low

Interesting Correlation

Major Take Home Lessons

- 1. H5N1 can be **readily tracked** in human wastewater
 - If starts to spread in people, confident spread can be followed
- 2. Wastewater-based Agnostic Sequencing brings new capabilities
 - follow evolution and changes in near real-time
 - **Fingerprint** the source
 - Correlate to **functionally meaningful** mutations/assortment in the virus
 - Future of all testing (now cost effective)
- 3. Favor model (Texas): Migrating Birds > Cattle > Wastewater Urge Caution: We cannot rule out human (cryptic inputs)

ACKNOWLEDGEMENTS

LAB

Anthony Maresso, Ph.D

James Chang, Ph.D

Paul Nicholls, M.D.

Justin R. Clark, Ph.D

Austen L. Terwilliger, Ph.D

Keiko C. Salazar, Ph.D

Felipe Piedra, Ph.D.

John Taylor, Ph.D.

Brianna Thompson

Ellen E. Vaughan

Haroldo Hernandez Santos

Yikun Xing

Jacob Zulk

Camilla Do

Dylan Chirman

Ling Qiu

Rachel Lahowetz

Alex Cervantes

Pauline J. Kim

Soufiane Bel Rhahi

Marian Fabian

Stephanie Omagari

Sam Roberts

FUNDING SOURCES

R01AI097167

R01 Al154597

R01 NS102594

U19AI144297

U19AI116497

U19AI157981

R21AI151259

R21AI146481

VA I01-RX002595

MacDonald Foundation

Mike Hogg Foundation

Kleberg Foundation

BCM Center Funds (TAILOR)

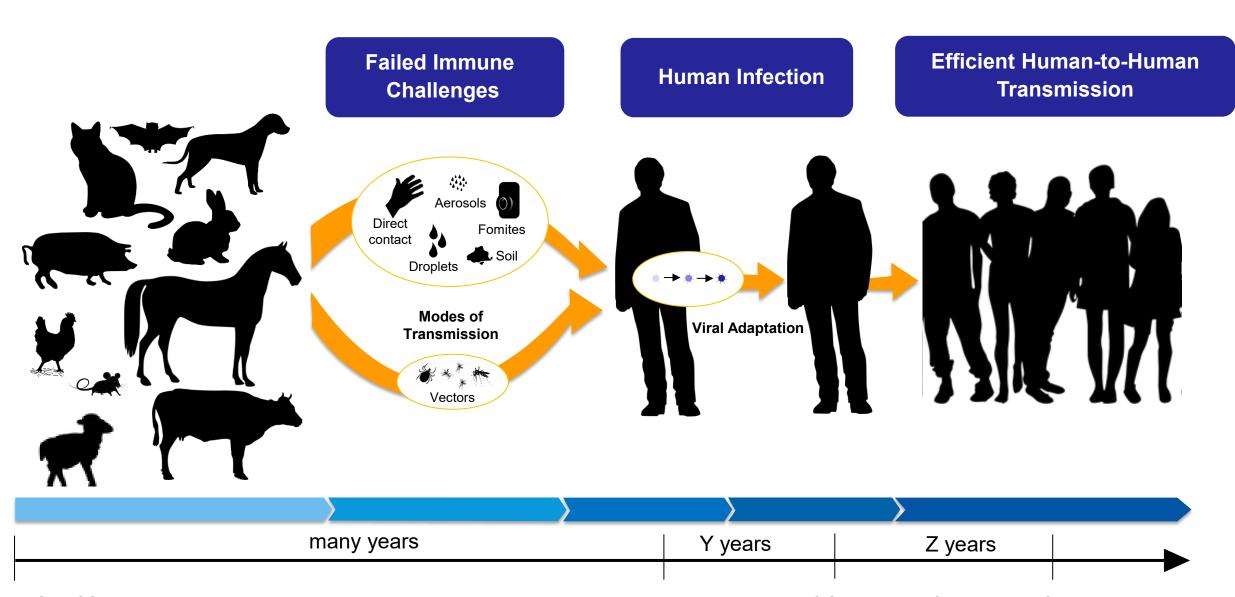
CARES Act

Neilson Foundation

87th Legislature TEXAS

Tulin Ayvaz
Ping Zhang
Li Wang
Katelyn Payne
Hannah
Moreno

A Practical One Health Strategy to Detect Pre-Pandemic Zoonotic Respiratory Virus Threats



Working together to work wonders.

A Model for Zoonotic Pathogen Genesis

Viral evolutionary studies suggest this progression may take many years

nature

|--|

nature > news > article

NEWS 10 November 2022

Chances of finding COVID-virus ancestor 'almost nil', say virologists

Genome analysis finds SARS-CoV-2 and bat coronaviruses shared an ancestor just a few years ago, but extensive recombination has muddled the picture.

Evolutionary clock ticks slowly

...More than a dozen viruses closely related to SARS-CoV-2 have been isolated from bats and pangolins so far. ...SARS-CoV-2's closest known relatives are a bat virus found in Laos called BANAL-52, whose genome is 96.8% identical to that of SARS-CoV-2, and a virus called RaTG13, found in Yunnan, southern China, which is 96.1% identical. The 3–4% difference between their genomes and that of SARS-CoV-2 suggests that there has been about 40–70 years of evolution since these viruses shared a common ancestor.

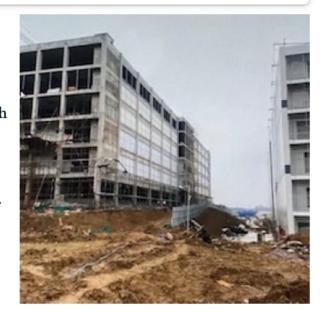
Megafarms

105,000 SOWS STACKED SIX STORIES HIGH

THE MEGA FARM IN CHINA HAS 21 BUILDINGS WITH 5,000 SOWS EACH, FARROW TO FINISH.

By Betsy Freese

4/28/2021



Listen to article 3 minutes

Construction of the Muyuan Meat and Food Industry complex in China, with 105,000 sows in 21 six-story buildings, is progressing steadily, reports Michael Ellermann, a swine consultant with Danish company Aspire Agritech Consulting. Ellermann is based in China, where he works with clients on training, farm management, and new farm development.

The site covers 450 acres, with another 500 acres in a logistics park with railway and highway ports. The feed mill on the site will produce 720,000 tons of feed annually.

China's mega-farm... for 100,000 cows: World's biggest dairy being built to supply Russian demand after **Moscow boycotted EU exports**

- Farm in Mudanjiang City will have 60,000 more cows than current biggest
- Russia wants milk as it's boycotting EU countries' milk and dairy exports
- It will be 50 times bigger than the UK's biggest, which has 2,000 cows

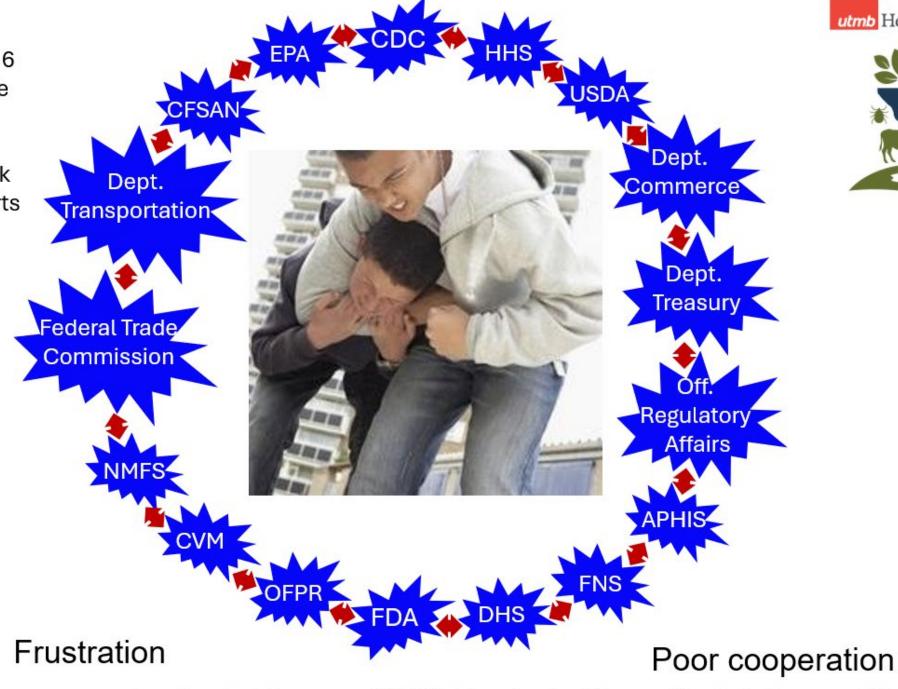
By DAILY MAIL REPORTER

PUBLISHED: 21:05 EDT, 10 July 2015 | **UPDATED:** 21:30 EDT, 10 July 2015

China is building the biggest dairy farm in the world with 100,000 cows to supply Russia.

The enormous farm in Mudanjiang City will have 60,000 more cows than the current biggest farm, also in China.

Russia wants the milk as it is boycotting EU countries' milk and dairy exports after Brussels imposed economic sanctions after the Ukraine crisis.


Problems

- •Little trust between livestock farms and government institutions
- No effective surveillance for novel pathogen emergence on livestock farms
- •While we have theoretically have time to detect and respond to spillover threats, in truth we currently have a "whack a mole" mentality that is very ineffective

Image taken from https://www.youtube.com/watch?v=VoP1E9J4jpg&feature=youtu.
be

Food Security - It has been estimated that 16 federal agencies share food safety responsibilities and they don't always work well together. This hurts consumers and food industries

utmb Health

One Health

THELANCETID-D-17-01758 Pii: S1473-3099(18)30158-0

Pigs, pathogens, and public health

On Nov 8, 2017, Presidents Donald Trump and Xi Jinping transport on the number of novel swine influenza A and people, and often weak farm and animal market biosecurity,3 it is little wonder that novel influenza A viruses, resulting in increased morbidity and mortality among both livestock and human populations, have emerged in China. China is also recognised as the site of emergent novel pig-only pathogens, such as the strains of porcine reproductive and respiratory syndrome virus (2006)4 and porcine epidemic diarrhoea virus (2014),5 which have resulted in hundreds of millions of dollars of agricultural losses in China and the USA.

at an annual rate of about 0.45%, translating to an annual increase of more than 6 million additional citizens.6 Even with moderate growth, China's pork production and consumption-now over half of the world's-will be enormous. Pork is so important to China that in 2007 it established a national pork reserve.7 While China's Ministry of Agriculture currently seeks to transform domestic pork production by constructing large US-style industrial animal facilities, it has increasingly turned to cheap, nutritious, and safe imported pork. Indeed, a Chinese holding company is now the largest US pork producer but the center of US pork production remains in the state of Iowa, which now has more than 14000 animal feeding operations (AFOs). With growth of these operations almost unchecked, new Iowa AFO permits are projected to exceed 500 this year, while two huge pork processing facilities are under construction to meet demand driven by China's imports, with trade being facilitated by Iowa's former five-term governor, Terry Branstad, now US Ambassador to China.

Studies in the USA and China have documented the effect of industrial swine production and animal

announced a US\$8 billion trade agreement, part of viruses in swine herds. Most recently, these novel or which will further increase US pork and animal feed variant, swine-reservoired influenza A viruses have been exports to China. Given this expansion of global pork increasingly infecting swine workers, most likely their trade, now seems an appropriate time to consider family members and individuals without previous pig emerging pathogen threats that accompany modern exposures attending agricultural fairs.8 Studies have pork production, particularly in China. China has also documented introduction of human-reservoired been implicated as the site of origin of the 1957 and influenza A viruses into pig herds, increasing the variety 1968 influenza pandemics¹ and is thought to be an of novel viruses found in pigs from which yet more epicentre for future novel influenza virus emergence.² novel viruses could arise. Also, we have found that living With increasingly dense populations of pigs, poultry, in close proximity to US swine farms could increase the risk of an influenza-like illness possibly from influenza viruses that are amplified in pigs.9

An intensive study of swine and swine workers has documented strong evidence of influenza A virus mixing, likely reassorting, and cross-species infections on Chinese farms.¹⁰ This study also documented sparse use of personal protective gear among workers, poor biosecurity (frequent mixing of animal species, figure), and essentially no monitoring for novel virus emergence. Far from adequate in the USA, there is now an China's 2017 population of 1.41 billion is growing opportunity—indeed, an imperative need—for bilateral

Figure: Mixing of poultry and pigs in Chinese pig farms In Chinese pig farms it is not uncommon to see other species of animals (poultry, passerine birds, dogs, or rodents) freely mixing with pigs. These other animals can introduce new strains of influenza A virus to the pigs, increasing the variety of influenza A viruses circulating in farms. Continual introduction of new piglets in large farms maintains virus replication and supports the mixing of viral genes, which could generate novel progeny viruses. These progeny viruses could cause epidemics in pigs or human beings. Photo credit: Greg Gray, China;

To Succeed, One Health Must Win Animal Agriculture's Stronger Collaboration

Gregory C. Gray^{1,2,3,4} and Jonna A. K. Mazet⁵

Clinical Infectious Diseases

VIEWPOINTS

Division of Infectious Diseases, Global Health Institute, and ²Duke One Health Network, Duke University, Durham, North Carolina; ²Emerging Infectious Disease Program, Duke-National University Singapore Medical School; 4Global Health Research Center, Duke-Kunshan University, Jiangsu, China; and 5One Health Institute, School of Veterinary Medicine, University of California, Davis

The One Health approach has received widespread international endorsements from professional, academic, and governmental organizations as the way forward in tackling complex interdisciplinary problems, such as emerging zoonotic diseases, antimicrobial resistance, and food safety. Yet conspicuously absent from US One Health training or research activities are the animal agricultural industries. Their absence is likely due to multiple factors, including the lack of appreciation for their potential problem-solving roles, as well as the industries' business-oriented fears that such engagement could cause them to suffer economic damage. As demands on the swine, poultry, egg, beef, and dairy production industries are closely linked to the above-mentioned complex problems, we must find new, nonthreatening ways to better engage and win animal agriculture's collaboration into One Health training and research partnerships for successful health problem solving. Without animal agricultural industries' improved cooperation, One Health's efforts to control these complex problems are not likely to succeed.

Keywords. biosecurity; One Health; zoonotic diseases; antimicrobial resistance, animal agriculture.

The One Health approach [1], a strategy where professionals from multiple and often disparate disciplines work together to solve complex health problems, has gained much notoriety in recent years. It has been endorsed by many professional organizations [2, 3], academia [4], governments [5, 6], and multinational institutions [7] as the best way forward in responding to the very complex issues, such as antimicrobial resistance (AMR) [3], emerging pathogens [8], and food safety [9]. Each of these complex problems requires and has the enthusiastic engagement of professionals from human health, animal health, and environmental health [10]. However, despite improvements in agricultural industries' engagement in One Health policy in recent years, applied consortia that target these complex problems through training and research frequently lack the enthusiastic participation of modern animal agriculture industries. without which they are not likely to succeed. For instance, how can we know which AMR genes or emerging pathogens are circulating in modern farms and design effective interventions to counteract them unless we aggressively surveil and share the data with collaborating problem-solving stakeholders? Despite observations that large pig farms were involved in the evolution of the 2009 pandemic influenza A virus [11, 12], routine

Received 16 May 2019; editorial decision 23 July 2019; accepted 30 July 2019; published online September 06, 2019.

Correspondence: G. C. Gray, Duke University, DUMC Box 102359, Durham, NC 27710 (gregory.gray@duke.edu).

Clinical Infectious Diseases® 2019;XX(XX):1-3

© The Author(s) 2019. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

surveillance data for the next pandemic influenza A virus circulating among pigs are remarkably sparse [13]. Unfortunately, AMR and emerging pathogen research efforts in academia are often not inclusive of animal agriculture industries. This omission could be due to a lack of established and ongoing collaborations—and, thus, professional trust—across these sectors, as well as other practical challenges, especially with data sharing. Although there have been great strides in addressing AMR in animal agriculture, some industries may still not wish to engage in AMR and emerging pathogens research, as it is reasonable to perceive that the work could be a threat to industries' profit generation if not closely managed. Unfortunately, the limited surveillance that is openly reported is most often released in response to overt animal illnesses or to concerns raised by others about human health issues, such as food contamination [14]. While proactive assessments and interventions for AMR and emerging pathogens may be occurring, only limited AMR and emerging pathogens surveillance data that animal agriculture industries collect are released for broad-scale analyses, unlike the commitment seen to open data sharing in other realms.

While international and national organizations are engaging animal agriculture in One Health discussions, animal industries' sparse engagement in One Health (ie, collaborative) research becomes very apparent when attending national or international One Health conferences, reading the One Health scientific literature, or discussing human health biosecurity. Industries are not commonly invited to the table and, therefore, may be blamed in absentia, often inappropriately, for abetting the complex problems. Animal agriculture's absence is not from a lack of awareness, as evidenced by separate,

One Health Studies for Novel Respiratory Viruses on Farms

A Follow this preprint

Avian Influenza A(H5N1) Virus among Dairy Cattle, Texas, USA

Judith U. Oguzie, Lyudmyla V. Marushchak, Ismaila Shittu, John A. Lednicky, Aaron L. Miller, Haiping Hao, Martha I. Nelson, Gregory C. Gray

During March and April 2024, we studied dairy cattle specimens from a single farm in Texas, USA, using multiple molecular, cell culture, and next-generation sequencing pathogen detection techniques. Here, we report evidence that highly pathogenic avian influenza A(H5N1) virus strains of clade 2.3.4.4b were the sole cause of this epizootic.

had transient respiratory and gastrointestinal signs (5). Veterinary diagnostic laboratory results were largely unremarkable except for rumors among cattle veterinarians of possible influenza A virus detection among cattle and conjunctivitis among dairy farm workers. The University of Texas Medical Branch (UTMB) research team offered diagnostic support owing to the team's novel pathogen

- •7 (29%) of 24 nasal swab samples from sick cows had molecular evidence of highly-pathogenic H5N1 influenza A (HPAIV).
- •Sick cattle had no evidence of co-infecting viruses such as influenza D, adenoviruses, coronaviruses, enteroviruses, paramyxoviruses, or pneumoviruses

A One Health Investigation into H5N1 Avian Influenza Virus Epizootics on Two Dairy Farms

Ismaila Shittu, Diego Silva, Judith U. Oguzie, Lyudmyla V. Marushchak, Gene G. Olinger, John A. Lednicky, Claudia M. Trujillo-Vargas, Nicholas E. Schneider, Haiping Hao, (1) Gregory C. Gray doi: https://doi.org/10.1101/2024.07.27.24310982

- •During April 3rd & 4th 2024, we enrolled two Texas dairy farms (Farm A & B) in our USDA-sponsored One Health study....The farms were recovering from the cattle HPAIV H5N1 epizootic
- •We detected H5N1 HPAIV in 64% (9/14) of milk specimens, and 2.6% (1/39) of cattle nasal swab specimens.
- •14.3% (2/14) of the farm workers (all on farm A) who donated sera were recently symptomatic and had elevated neutralizing antibodies against a related H5N1 strain.

NGS Sequencing Results from Recent Sick Beef Cattle Nasal Swabs Collected from Indiana, Kentucky, and Mexico, Feb to Aug in 2024

	Estimated percent of the viral genome			
Virus Identified	assembled	Farm Where Detected		
Bovine rhinitis A virus	100%	Mexico farms; Kentucky farm 1, 2, 3; Indiana farm 1		
Bovine coronavirus	99.90%	Mexico farms; Kentucky farm 1, 2, 3; Indiana farm 1		
Bovine astrovirus	98.80%	Mexico farms		
Bovine nidovirus	98.40%	Mexico farms; Indiana farm 1		
Enterovirus E virus	97.30%	Mexico farms; Kentucky farm 2		
Nodaviridae spp	96.30%	Mexico farms		
Bovine picobirnavirus	92%	Mexico farms		
Praha dicistro-like virus 2	90.90%	Kentucky farm 1		
Bovine rotavirus	88.90%	Kentucky farm 1; Indiana farm 1		
Bovine rhinitis B virus	82.90%	Mexico farms; Indiana farm 1		
Bovine respiratory syncytial virus	80.60%	Mexico farms		
Flumine dicistrovirus 40	72.70%	Kentucky farm 1		
Rodent coronavirus/Lucheng Rn rat coronavirus from bioaerosol and nasal swabs of cows	33.00%	Mexico farms		

"International Symposium on One Health Research: Improving Food Security and Resilience." Galveston, Texas - April 21-23, 2024

REGISTER HERE

Location: Moody Gardens Resort and Convention Center, One Hope Boulevard, Galveston, Texas 77554

Supporters: UTMB Chief Research Office, UTMB One Health, Galveston National Lab and Institute for Human Infections and Immunity

Email <u>UTMBOneHealth@utmb.edu</u> for registration information.

Veterinarians - The Symposium is now approved through the AAVSB for 5 CE credits!

Symposium Sponsor -Platinum Level

USDA National Institute of Food and Agriculture

USDA & NIFA

United States Department of Agriculture & National Institute of Food and Agriculture

Symposium Sponsor -Bronze Level

International Symposium on One Health Research: Improving Food Security and Resilience

April 21st – 23rd, 2024, Galveston, TX

- 124 science attendees from 10 countries
- 30 oral presentations from research leaders in agriculture, academia, and government
- 44 poster presentations with 16 awards (10 best abstract, 6 best poster)
- Special issue of the One Health journal – all abstracts and ~10 manuscripts from the best presentations

Health Topics >

Countries ~

Newsroom >

Emergencies >

Data ~

About WHO >

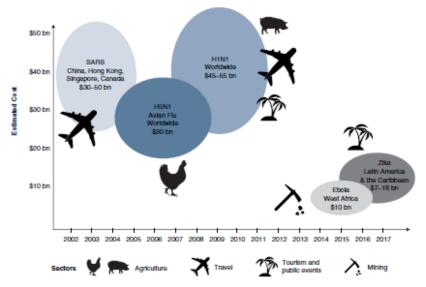
Home / News / Leaders call for scale-up in implementing One Health approach

Leaders call for scale-up in implementing One Health approach

Español

ONE ** HEALTH

OPERATIONAL FRAMEWORK FOR STRENGTHENING HUMAN, ANIMAL, AND ENVIRONMENTAL PUBLIC HEALTH SYSTEMS AT THEIR INTERFACE


CHAPTER

2

Value of Investing in One Health

Given the high cost of emerging diseases as well as the persistent burden of endemic diseases (see Figure 2.1 and Table 2.1), One Health should be considered to assist client countries in strengthening their ability to address known and potential disease threats at the human-animal-environment interface. For a One Health approach to be warranted, it must provide added value. Fundamentally, strong sectoral health systems (e.g., human health, animal health, environmental health) must be in place—or existing systems strengthened—to support effective coordination and collaboration. Relevant metrics for value generation depend on the goal of an investment or client country, but in general, One Health offers synergies among these sectoral systems, providing expanded capacity and effectiveness in prevention of damages and/or control of disease, efficiency, and ultimately financial savings.

Figure 2.1: Examples of economic impacts of disease outbreaks (see also Table 2.1); icons represent examples of highly-affected sectors.

Figures are estimates and are presented as relative size. Based upon BioEra, World Bank, and UNDP data. Chart updated by EcoHealth Alliance.

We Have Multiple Government Agencies Calling for One Health Research Approaches

US Government					
Agency	One Health Program/web page				
CDC	https://www.cdc.gov/one-health/about/				
DoD	https://wrair.health.mil/Biomedical-Research/Center-for-Infectious-Disease-Research/One-Health/				
Department of	https://www.dhs.gov/nbic				
Homeland Security					
FDA	https://www.fda.gov/animal-veterinary/animal-health-literacy/one-health-its-all-us				
HHS	https://www.hhs.gov/sites/default/files/day2-05-behravesh.pdf				
Institute of Medicine	https://www.ncbi.nlm.nih.gov/books/NBK100665/				
NASA	https://appliedsciences.nasa.gov/sites/default/files/NASA_OneHealth.pdf				
National Park	https://www.nps.gov/orgs/1632/index.htm				
Service					
NOAA	https://cpo.noaa.gov/noaa-one-health/				
The White House	https://www.whitehouse.gov/wp-content/uploads/2022/10/National-Biodefense-Strategy-and- Implementation-Plan-Final.pdf				
USAID	https://www.usaid.gov/biodiversity/stories/human-health-environment				
US Department of State	https://www.state.gov/dipnote-u-s-department-of-state-official-blog/science-speaks-one-health/				
US EPA	https://www.epa.gov/one-health				
USDS	https://www.usgs.gov/mission-areas/ecosystems/news/usgs-one-health-approach-infectious- diseases-wildlife-and				
USDA APHIS	https://www.aphis.usda.gov/one-health				
USDA	https://www.usda.gov/topics/animals/one-health				
US Fish & Wild-Life Service	https://www.fws.gov/story/2023-06/international-affairs-and-one-health				

The Problem in a Nutshell

- No one discipline is trained to engage such complex infectious disease problems
- No one agency or organization can control such complex infectious disease problems

Register

Centers of Excellence for Influenza Research and Response (CEIRR)

A NIAID funded international research network created to study influenza and combat influenza outbreaks.

About CEIRR

The Centers of Excellence for Influenza Research and Response (CEIRR) Network is a multidisciplinary and collaborative research network funded by the National Institute of Allergy and Infectious Diseases (NIAID) to study the natural history, transmission, and pathogenesis of influenza and provide an international research infrastructure to address influenza outbreaks.

CEIRR Centers conduct studies to study key influenza research areas and provide pandemic response. CEIRR projects aim to better understand the immune response to influenza vaccination and infection, and identify immunological factors that contribute to disease severity. Surveillance projects investigate how influenza viruses infect, evolve, and transmit in both human and animal infections. Although CEIRR is primarily focused on influenza, the Network also studies severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, as well as other emerging viruses of pandemic potential.

LEARN MORE

LOG IN

Responding to Emerging Infectious Diseases

The Centers for Research in Emerging Infectious Diseases (CREID) Network is a coordinated group of emerging infectious disease research centers situated in regions around the globe where emerging and re-emerging infectious disease outbreaks are likely to occur. Multidisciplinary teams of investigators conduct pathogen/host surveillance, study pathogen transmission, pathogenesis and immunologic responses in the host, and develop reagents and diagnostic assays for improved detection for important emerging pathogens and their vectors. The CREID Network is developing a framework and the infrastructure necessary to respond quickly and effectively to future outbreaks.

Centers for One Health Research, Training, and Response

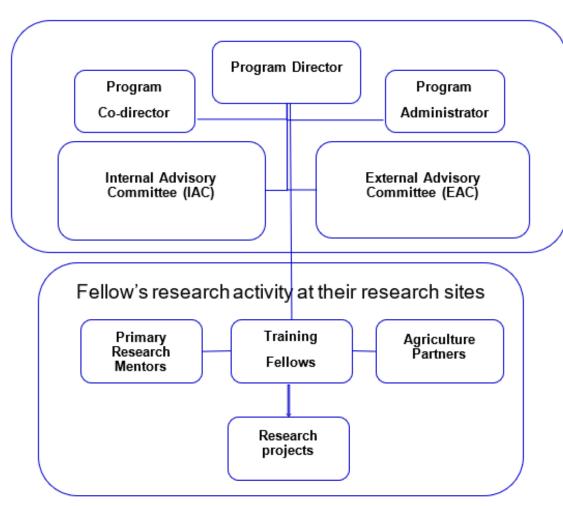
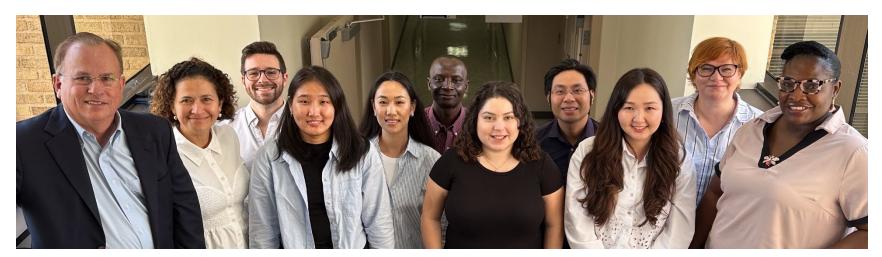


Fig. 1. Organization for the UTMB One Health Research, Training, and Response Hub

The ultimate goal of this program would be to develop independent, interdisciplinary, OH-oriented biomedical researchers.


Each Center must have the ability to offer a Master's degree in OH research and the interdisciplinary faculty (human health, veterinary health, and environmental health) to train the fellow. In addition to a Master's degree OH fellows must spend at least one year conducting a capstone research project.

Staffing - Minimum of six faculty teaching and mentoring trainees in OH with faculty in each of three disciplines: human health, animal health, and environmental health

Evidence of strong partnerships with agriculture industries

Acknowledgements

University of Texas Medical Branch One Health Laboratory Team Aug 2024 (L-to R) Gregory C. Gray, MD, MPH, FIDSA; Claudia M. Trujillo-Vargas, MSc, PhD; Austin J. Weynand, MPH; Namuun Dorjsurenkhor; Bolor Munkhbayarlakh; Ismaila Shittu, MSc, PhD; Jessica Rodriguez, MPH; Thang Nguyen, PhD; Oyu Tsogtbayar, MSc; Lyudmyla "Myla" Marushchak, PhD; and Judith U. Oguzie, DVM, MSc, PhD

University of Florida Kansas State University St. Jude Children's Res. Hospital John Lednicky, PhD Juergen Richt, DVM, PhD Richard J. Webby, PhD

Bovine Veterinarians

Robert H. Carpenter, DVM, MS
Dan Cummings, DVM, DABVP
Tim Dickerson, DVM, MS, DABVP
Alex Hagan, DVM
John Groves, DVM
Barbara A. Peterson, DVM
Kay Russo, DVM, MAHM, DACPV
Nicholas E. Schneider, DVM

University of Texas Medical Branch

Thomas G. Ksiasek, DVM, PhD, MS Haiping Hao, PhD Gene G. Olinger, PhD Diego Silva, MD

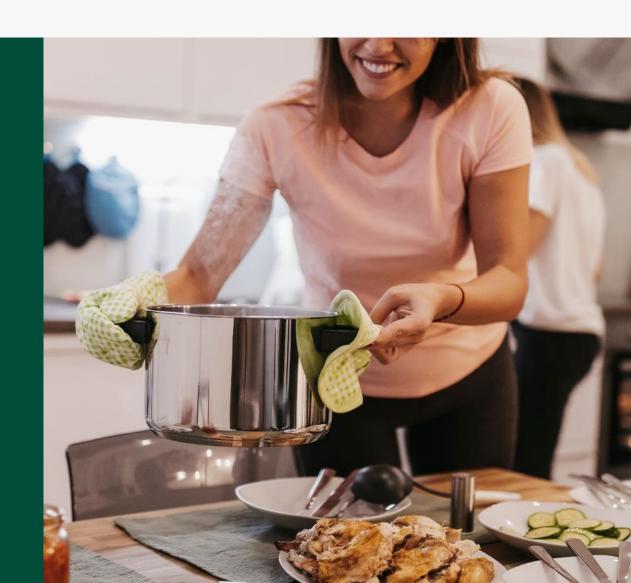
Research: H5N1 Beef Safety Studies

Potential Research Priorities to Inform Readiness and Response to H5N1: A Workshop National Academies of Sciences, Engineering, and Medicine October 23, 2024

Our Mission

Protect public health by preventing illness from meat, poultry, and egg products.

Our Vision


Everyone's food is safe.

Food Safety and H5N1 Influenza A

• USDA is confident that the meat and poultry supply are safe.

• FSIS veterinarians are available at all federal livestock slaughter facilities to ensure that animals that are unfit for human food are prevented from entering the food supply.

Beef Safety Studies

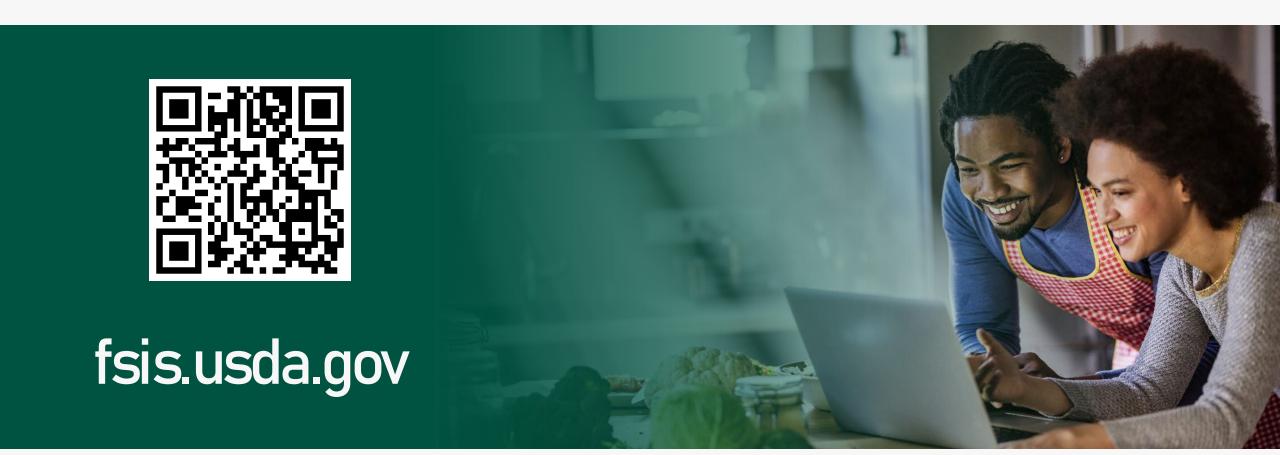
Ground Beef Sampling from Retail

• Beef Muscle Sample Collection

Beef Patty Cooking Study

H5N1 Influenza A Dairy Cow Testing Program

- On September 16, 2024, FSIS implemented an H5N1 Influenza A monitoring program for dairy cows at slaughter.
- This new program will use muscle samples already collected from dairy cow carcasses under FSIS' National Residue Program (NRP).
- As of October 17, 2024, FSIS had results from 50 muscle samples. No Influenza A has been detected in any of the samples.


FSIS Personnel

Food Safety and Inspection Service

U.S. DEPARTMENT OF AGRICULTURE

