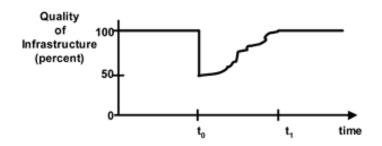
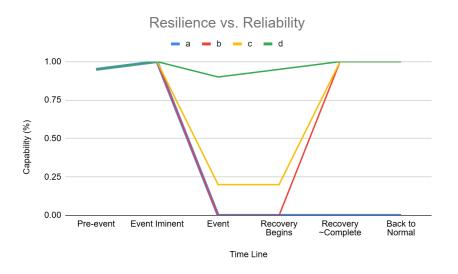
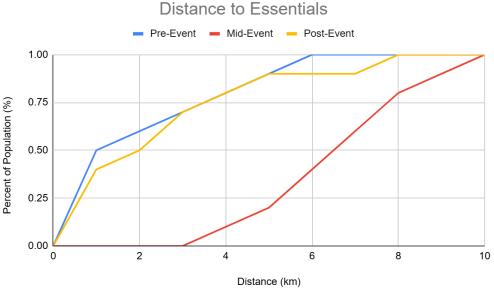
On the Interdependence of Equity & Resilience

NASEM Workshop: Enhancing the Resilience of Healthcare and Public Health Critical Infrastructure


Agenda

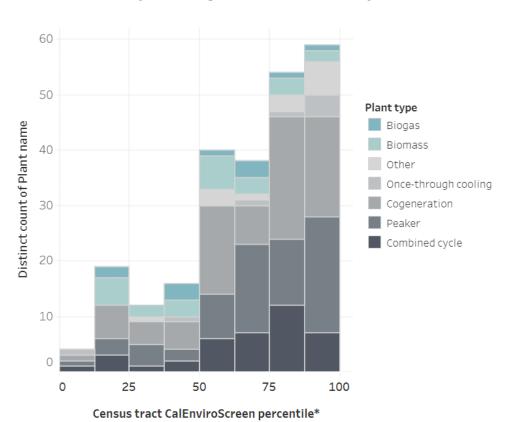
- Introduction
- Vulnerability, Resilience, Equity, and Affordability
 - Definitions, Metrics, and Indicators
 - Geography and Demography
- Critical Infrastructure
 - Interconnected
 - Capacity Shortfalls
 - Access, Affordability, and Equity
 - Potential Impacts on Healthcare Workforce
- Questions & Discussion


Vulnerability, Resilience, Equity, and Affordability

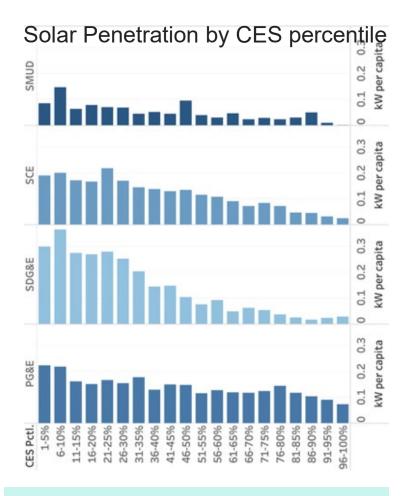

Definitions, metrics, and challenges

Resilience Trapezoid, Reframed

- a: fails ~ not resilient
- b: recovers ~ resilient
- c: critical backup ~ more resilient
- d: minimal impact ~ most resilient


- Different trapezoids could be same event, different communities.
- Is distance correlated with or caused by inequity?
- Before and during disasters?
- Resilience built before disasters.

Bruneau et. al, (2003),


Equity: Impacts and Infrastructure

Distribution of plants by CalEnviroScreen percentile

Disadvantage correlates with:

- Proximity to fossil energy infrastructure
- A lack of resilient infrastructure

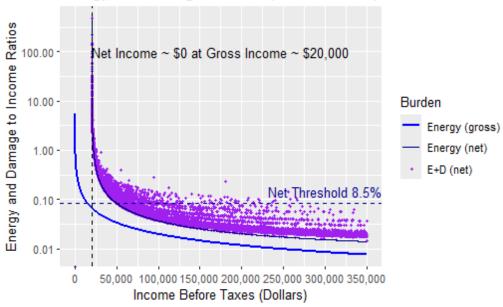
Policy Response:

- Equitable distribution of DER
- It's not just CO₂

Just and Equitable Energy Transition

Energy Justice and Equity: Applying a Critical Perspective to the Electrical Power Grid for a More Just Transition in the United States

Publisher: IEEE Cite This


Benjamin K. Sovacool (10); Sanya Carley; Lynne Kiesling (10); Miguel Heleno (10) All Author

Policy Responses (from Sovacool's Pathways):

- Increase affordability
- Achieve equitable reliability and resilience
- Reduce environmental burdens
- Promote participation in decisionmaking

Energy and Damage Burdens (Gross and Net)

(In)Equitable Energy Resilience

Maps below adapt California Public Utility Commission's Energy Affordability Ratio to account for outage costs:

(energy cost + outage costs)

(income - housing - utilities - other essentials)

Observations:

- DAC, CES, and CVI are poor proxies for resilience impacts
- Policy analysis must include other vulnerabilities (low income, medical needs, climate)
- Energy & housing insecurity are not resilient

Resilient Energy Net Cost Burden (RENCB)

in each census tract

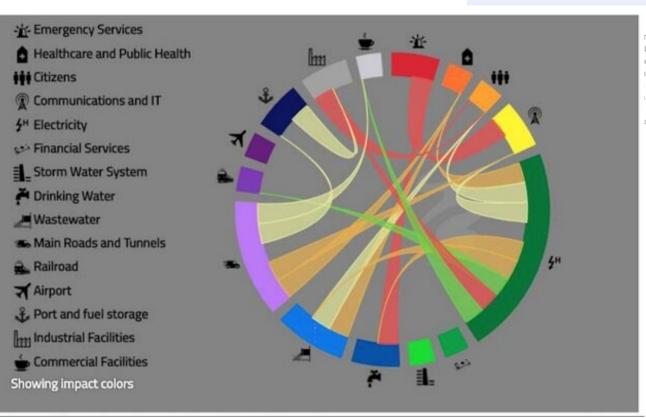
in each census tract

Critical Infrastructure

What is critical depends on perspective

Interconnected Infrastructures

- Everything is connected
- Especially energy
- Failures cascade


NATIONAL Sciences Engineering Medicine

Consensus Study Report Highlights

NATIONAL :

Resilience for Compounding and **Cascading Events**

Resilience for Compounding and Cascading Events

would strike one at recover and rebuild. ing disasters, one in d instead seem to pile tion on a community prior disaster. can compound drought can lead to ntense rain event

Critical Infrastructure: Key Components

The 16 Critical Infrastructure Sectors

Dams

Commercial Communications

manufacturing

industrial base

services

Government facilities services agriculture

and public health

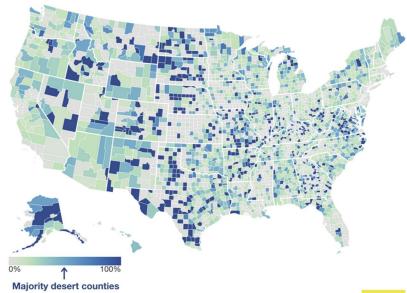
technology

Nuclear reactors, materials. and waste

systems

Transportation wastewater systems

"Given the relatively large number of sector assets, particularly hospitals and clinics, protecting and preventing damage to any one asset is less vital than the ability to continue to deliver care "

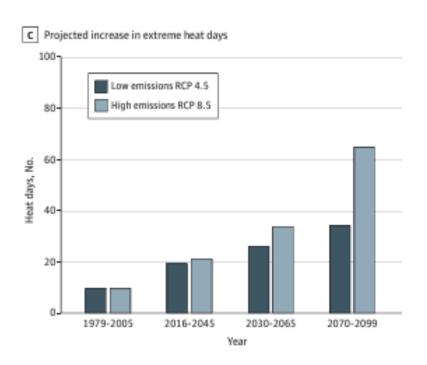

Critical Healthcare Components

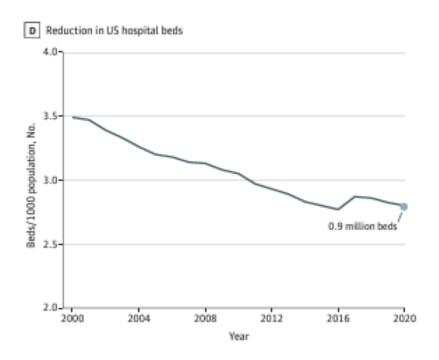
- **Facilities**

 - **Beds**
- Energy
 - UPS
 - **Hybrid long duration backup**
- Information systems
- Healthcare workers

Population Living in a Hospital Desert

Percent of county's population living over 30 minutes from the closest hospital.

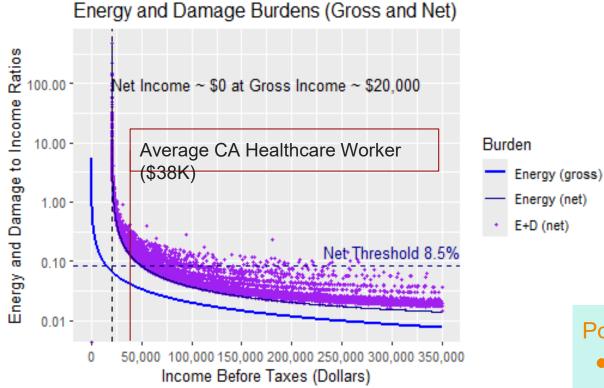

Source: Homeland Infrastructure Foundation-Level Data, Indian Health Service


Good_B

GAO (n.d.)

Increasing Exposure & Decreasing Capacity

From a NASEM New Voices collab:



Increase in extreme heat days

Reduction in the total number of US hospital beds

Who Will Staff Healthcare Infrastructure?

- Resilient energy burdened households tend to lack backup systems.
- When schools and daycares close due to lack of power, do healthcare workers (a) go to work or (b) scramble to care for family members?

Policy Responses:

- Resilient energy for healthcare facilities
- Resilient energy for schools and daycares
- Resilient energy for critical workers
- Resilience hubs

Summary of Policy Responses

- Increase energy affordability
 - Address housing cost crisis
 - Consider optimal DER/grid mix vs. either/or
- Achieve equitable reliability and resilience
 - Equitable resilient energy for all
 - Resilient energy for healthcare facilities
 - Resilient energy for schools and daycares
 - Resilient energy for critical workers
 - Resilience hubs
- Reduce environmental burdens
 - Decarb pathways should also consider cleaner air, not just CO₂
 - Equitable, resilient healthcare
- Promote participation in decision-making
 - Avoid qualification cut-offs
 - Consider populations within geographies
- Environmental justice built on procedural, distributive, recognitional, and restorative justice

Questions & Discussion

About PSE

PSE Healthy Energy is a nonprofit energy science and policy research institute. Our mission is to generate science-based energy and climate solutions that protect public health and the environment.

Patrick Murphy, PhD, is a senior scientist at PSE Healthy Energy, where he researches clean energy transitions with a focus on resilience and energy equity.

patrick@psehealthyenergy.org 510.473.1177

Thank you!

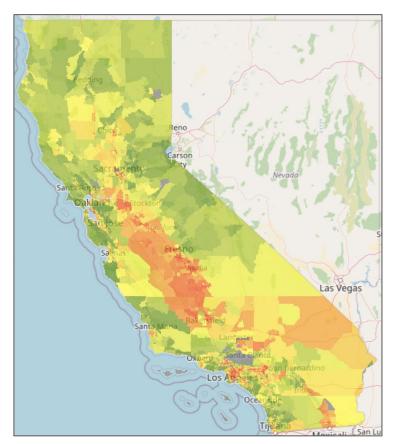
www.psehealthyenergy.org

References

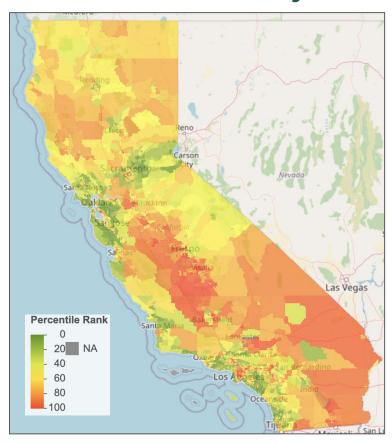
- Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C.,
 O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K.,
 Wallace, W. A., & von Winterfeldt, D. (2003). A Framework to
 Quantitatively Assess and Enhance the Seismic Resilience of
 Communities. *Earthquake Spectra*, 19(4), 733–752.
 https://doi.org/10.1193/1.1623497
- Logan, T. M., & Guikema, S. D. (2020). Reframing Resilience: Equitable Access to Essential Services. *Risk Analysis*, 40(8), 1538–1553. https://doi.org/10.1111/risa.13492
- PSE. (2024, October 23). PSE Healthy Energy—California Power Map. PSE Healthy Energy. https://www.psehealthyenergy.org/work/california-power-map/
- Lukanov, B. R., & Krieger, E. M. (2019). Distributed solar and environmental justice: Exploring the demographic and socio-economic trends of residential PV adoption in California. *Energy Policy*, 134, 110935. https://doi.org/10.1016/j.enpol.2019.110935
- HHS ASPR (n.d.) Addressing the Access and Functional Needs of At-Risk Individuals, https://aspr.hhs.gov/at-risk/Pages/default.aspx
- Sovacool, B. K., Carley, S., Kiesling, L., & Heleno, M. (2024). Energy Justice and Equity: Applying a Critical Perspective to the Electrical Power Grid for a More Just Transition in the United States. *IEEE Power and Energy Magazine*, 22(4), 18– 25. IEEE Power and Energy Magazine. https://doi.org/10.1109/MPE.2024.3393942
- Murphy, P.M., Kwoka, B. (2024) Incorporating Equity in Energy Resilience, https://www.psehealthyenergy.org/work/incorporating-equity-in-energy-resilience/
- Schweikert, A., Nield, L., Otto, E., Klemun, M., Ojanpera, S.,
 & Deinert, M. (2019). Vulnerabilities of Networked Energy Infrastructure: A Primer. World Bank Working Paper, 8901.

- Moddemeyer, S., Sobhani, N., & Oztekin-Gunaydin, B. (Eds.).
 (2022). Resilience for Compounding and Cascading Events.
 National Academies Press. https://doi.org/10.17226/26659
- GAO (Office, U. S. G. A.) (n.d.). Critical Infrastructure Protection: Time Frames to Complete DHS Efforts Would Help Sector Risk Management Agencies Implement Statutory Responsibilities | U.S. GAO. Retrieved December 1, 2024, from https://www.gao.gov/products/gao-23-105806
- CISA. (n.d.). National Infrastructure Protection Plan Healthcare and Public Health Sector. https://www.dhs.gov/xlibrary/assets/nipp_health.pdf
- Nguyen, A., van Meijgaard, J., Kim, S., & Marsh, T. (2021, September). Mapping Healthcare Deserts. https://assets.ctfassets.net/4f3rgqwzdznj/1XSI43I40KXMQiJUt l0ilq/ad0070ad4534f9b5776bc2c41091c321/GoodRx_Healthcare Deserts White Paper.pdf
- Mahmoud, H., Gadgil, M., Hassan, E. M., Martin, M., Castillo, E. G., Diem, S., & Krieger, E. (2024). Hospital Capacity Data and Extreme Heat Event Vulnerability. *JAMA Network Open*, 7(9), e2432578.
 - https://doi.org/10.1001/jamanetworkopen.2024.32578
- Brockway, A. M., Conde, J., & Callaway, D. (2021). Inequitable access to distributed energy resources due to grid infrastructure limits in California. *Nature Energy*, 6(9), Article 9. https://doi.org/10.1038/s41560-021-00887-6
- US EPA. (2024). EJScreen. EPA EJScreen. https://ejscreen.epa.gov/mapper/

Extras



www.psehealthyenergy.org


Who Will Need Healthcare Infrastructure?

CalEnviroScreen 4.0

- Demographic screens: not an either or, but understand the differences in various metrics or indices;
- and what using those mean for policy outcomes

Climate Vulnerability Index

- CVI captures some characteristics not in CES 4.0
 - wildfire smoke
 - healthcare worker shortages
- 365 additional disadvantaged census tracts

Other Vulnerabilities: At Risk Populations

At-Risk Populations

Children

People who live in institutional settings

Older Adults

Pregnant Women

People with Disabilities

People with Chronic Conditions

People with Pharmacological Dependency

People with Limited Access to Transportation

Limited English Proficiency and Non-English Speakers

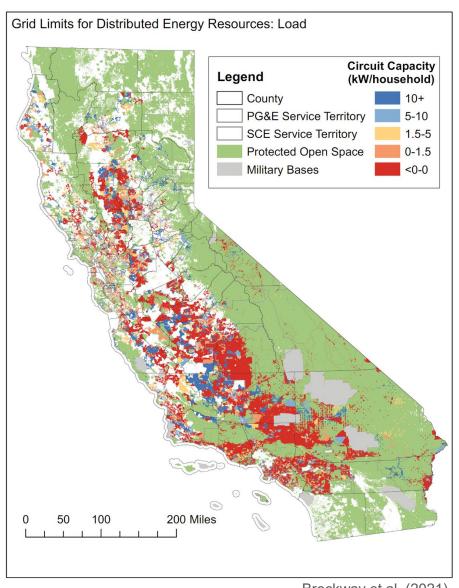
People of Low Socioeconomic Status

Individuals Experiencing Homelessness

- Not typically visible in census tract scale analysis
- Populations can be difficult to reach with information and/or countermeasures

Policy Responses:

- Avoid qualification cut-offs
- Consider populations within geographies

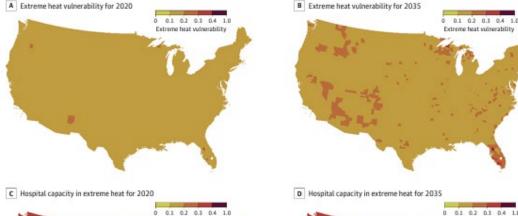

Redlining: ↑ Exposure, ↓ Infrastructure

E.g. circuit hosting capacity in DACs may limit EJ communities' access to:

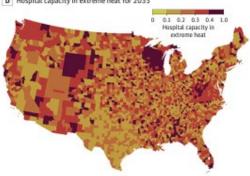
- Decarbonized heating, water heating and cooking
- Air Conditioning
- DER for affordability and resilience

Policy Responses:


- Improve infrastructure
- Consider optimal DER/grid vs. either/or


Brockway et al. (2021)

Affordability & Capacity Lacking Nationwide


iospital capacity in

- Note, even in upper-middle income quintiles, especially:
 - o ME
 - Appalachia
 - o MI
 - o AZ, NM
 - CA Sierras

- Equitable resilient energy
- Equitable resilient healthcare
- Address housing costs

