

Post Acute Traumatic Brain Injury Rehabilitation

Mark J. Ashley, Sc.D., CCC-SLP, CCM, CBIST Executive Chairman, Centre for Neuro Skills mjashley@neuroskills.com

Field Milestones

- Field begins mid to late '70s.
- Growth through the '80s & '90s.
- Peak ~1,200 post-acute facilities.
- CARF/JCAHO accreditation.
- DoD/VA 5 Polytrauma Transitional Rehabilitation Programs.
 - Palo Alto
 - Minneapolis
 - Richmond
 - San Antonio
 - Tampa

J Head Trauma Rebabil Vol. 19, No. 6, pp. 482-493 © 2004 Lippincott Williams & Wilkins, Inc.

Characteristics of Facility-based Community Integration Programs for People With Brain Injury

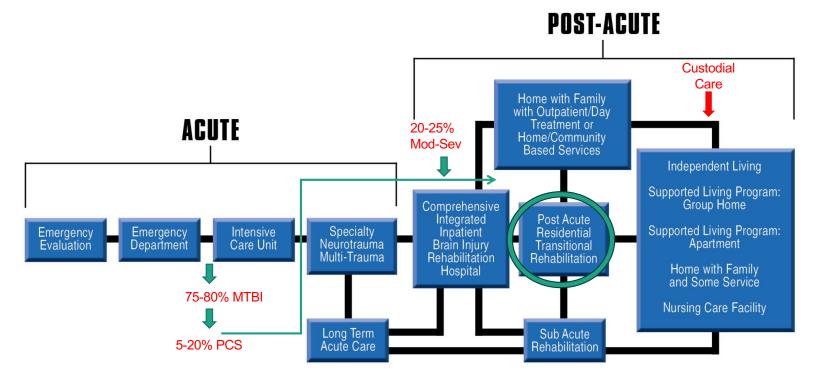
Mel B. Glenn, MD; Richard Goldstein, PhD; Elizabeth A. Selleck, MPH; Michelle Rotman, BS

There is considerable variability among programs with respect to quantifiable characteristics of facility-based community integration programs. Future studies should explore which charateristics affect outcomes. **Key words:** brain injury, community integration, outpatient, postacute rebabilitation

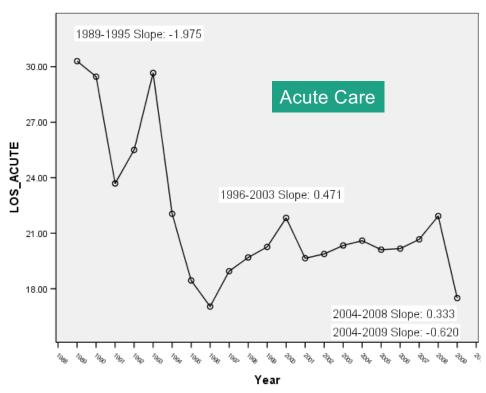
Terminology

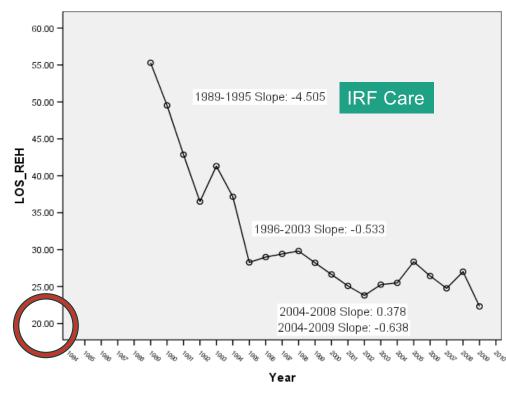
<u>Labels</u>

- Postacute rehabilitation
- Postacute brain injury rehabilitation (PABI)
- Community re-entry
- Community-based rehabilitation
- Residential rehabilitation
- Transitional living


Settings

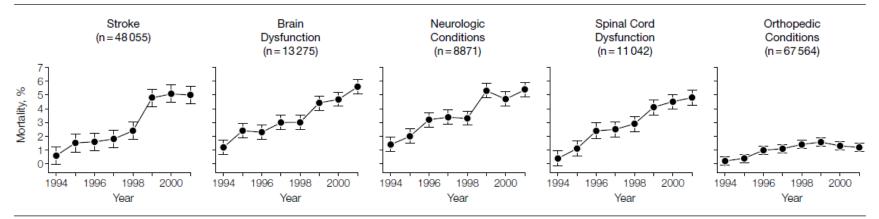
- Inpatient Rehabilitation Facility
- Outpatient clinic
- Residential setting
- In-home mentoring
- Day treatment
- Home & Community
- Ranches
- Skilled nursing
- Home health


CONTINUUM OF CARE


(adapted from the Rocky Mountain Regional Brain Injury Systems)

NIH Consensus Statement Online. Rehabilitation of persons with traumatic brain injury., Oct 26-28, 1998; **16: 1-41.** Ashley, M. J. , *Brain Injury Source* 2010, 7(1): 11-21.

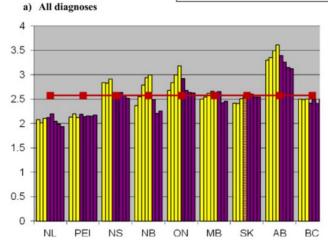
Length of Stay – TBI-Model Systems data



Acute Medical Care 1988 - 2009 Inpatient Rehabilitation Care 1984 - 2009

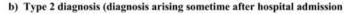
Deaths after Discharge from Medical Rehabilitation

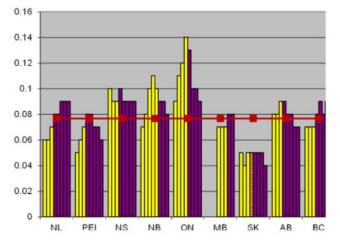
Mortality increased from 0.9% (1994) to 4.7% (2001)


Figure. Changes in Percentage of Persons Who Died After Discharge From Medical Rehabilitation, 1994-2001, in 5 Impairment Groups

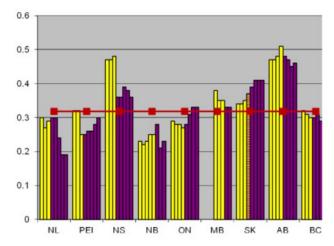
The trend in mortality was statistically significant for all impairment groups after adjustment for the following covariates: age, marital status, sex, race/ethnicity, whom living with, payment source, comorbidities, length of stay, and admission Functional Independence Measure scores: stroke (F = 53.4; P < .001); brain dysfunction (F = 41.6; P < .001); neurologic conditions (F = 35.3; P < .001); spinal cord injury (F = 42.1; P < .001); and orthopedic conditions (F = 17.7; P = .003). Error bars indicate standard error.

Mean ICD 10 Codes per Hospitalization – Non-TBI



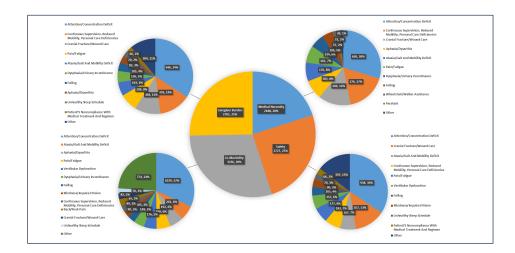


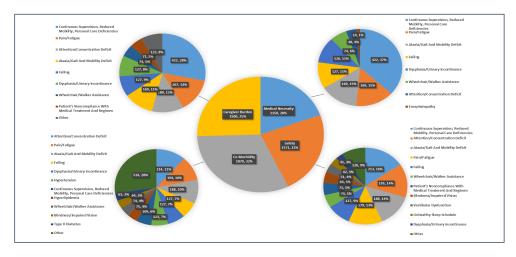
b) Type 2 diagnosis (diagnosis arising sometime after hospital admission)


Walker, RL et al (2012) Implementation of ICD-10 in Canada: how has it impacted coded hospital discharge data? BMC Health Serv Res 12:149.

Average < 3

c) Type 3 diagnosis (secondary diagnosis, present at hospital admission)




Average number of diagnosis codes per hospital visit by province and diagnosis type: fiscal years 1998 to 2005.

Stroke & TBI Patient – ICD-10 Codes at Post-Acute Admission

Total Stroke Patients	Avg. # of Codes/Patient
156	28.3

Total TBI Patients	Avg # of Codes/Patient
206	24.6

EFFICACY & OUTCOMES

PABI Community-Based & Outpatient Treatment

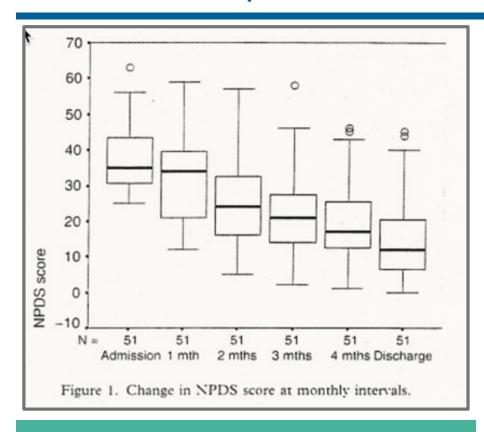
Cochrane Review RCT-Based Evidence &
NSF Typology Non-RCT-Based Evidence

- There is <u>strong evidence</u> that community-based rehabilitation (transitional living units, day treatment, outpatient, home and community) improves productivity (employment) and reduces long-term supervision requirements.
- There is <u>moderate evidence</u> that community-based rehabilitation (transitional living units, day treatment, outpatient, home and community) reduces institutionalization.
- There is <u>moderate evidence</u> that outpatient treatment sustains gains made in inpatient rehabilitation.
- There is <u>strong evidence</u> that late rehabilitation can result is significant functional gains 5 to 10 years post injury.
- There is <u>indicative evidence</u> that late outpatient rehabilitation can be effective at least one year post stroke.

PABI Specialist Rehabilitation

- There is <u>strong evidence</u> that intensive rehabilitation leads to earlier functional gains.
- There is <u>strong evidence</u> that intensive rehabilitation leads to reduced LOS in hospital and improved outcomes.
- There is <u>strong evidence</u> that specialist rehabilitation requires longer LOS, provides more intensive rehabilitation and results in more significant functional gains.
- There is <u>moderate evidence</u> that specialist rehabilitation reduces need for long-term support and increases longterm savings.
- There is <u>limited evidence</u> that specialist rehabilitation results in improved functional outcome, independence, and reduces caregiver stress.

PABI Neurobehavioral Rehabilitation


- There is <u>strong evidence</u> that specialized neurobehavioral rehabilitation results in improved social behavior.
- There is <u>moderate evidence</u> that specialized neurobehavioral rehabilitation reduces needs for longterm support and increases long-term cost savings.
- There is <u>moderate evidence</u> that community-based rehabilitation (transitional living units, day treatment, outpatient, home and community) improves functional outcome after <u>stroke</u>.
- There is <u>limited evidence</u> that more intensive communitybased rehabilitation (transitional living units, day treatment, outpatient, home and community) are more effective.

PABI Specialized Vocational Rehabilitation

- There is <u>strong evidence</u> that specialized vocational rehabilitation /work support programs increase rate of return to work.
- There is <u>strong evidence</u> that specialized vocational rehabilitation/work support programs are cost-effective to taxpayers.
- There is <u>strong evidence</u> that employment rates fall between 2 – 5 years post injury and that patients require long-term support to maintain gains in productivity (employment).
- There is <u>strong evidence</u> that patients continue to make gains in independence over the long-term following rehabilitation.

Relationship between PABI LOS & Cost of Care

- 51 individuals with TBI
- Mean LOS ~ 6 months

 Cost of rehabilitation was offset by savings in care costs in 14 months.

Turner-Stokes, L. (2007) Cost-efficiency of longer-stay rehabilitation programmes: Can they provide value for money?

Brain Injury 21(10) 1015-1021

PABI Rehabilitation Effects on Outcome and Costs

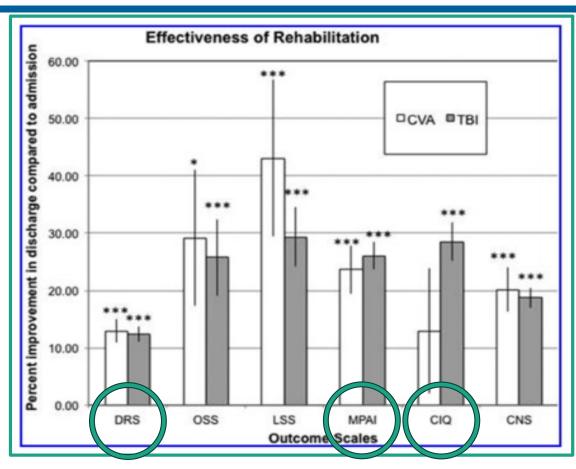
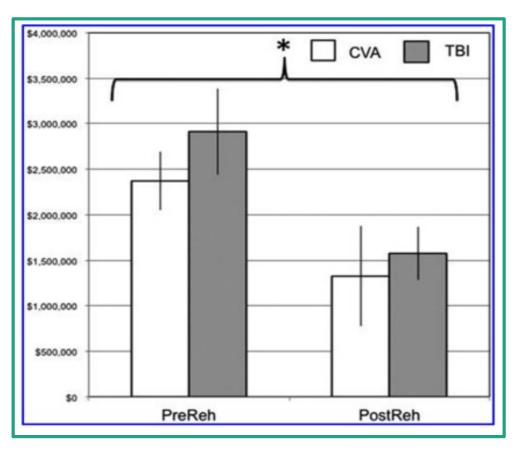

- 36 TBI subjects; 8 stroke subjects
- No benefit limitations from payer
- 3 blinded life care planners calculating comprehensive life care costs at admission and discharge.

TABLE 3. CRITERIA USED BY LIFE CARE PLANNERS TO DETERMINE PROJECTED COSTS		
Categories		
Nursing and attendant		
Medical/allied health s	services (consultations)	
Emergency services		
Medical procedures (d	liagnostic, laboratory and corrective)	
Medications (current a		
Hospitalization (anticipation)	pated)	
Bed and accessories		
Durable medical equip		
Bathing/hygiene needs		
Incontinence managem	nent	
Transportation		
Housing (room and bo		
Home care feeding sup	pplies	
Miscellaneous		
One-time expenses		
Indemnity		

TABLE 1. OUTCOME MEASURE SCORES OBTAINED DURING THE TIME OF ADMISSION			
Admission Scores	TBI	CVA	
DRS	8.14±0.78	7.88±0.93	
OSS	13.69 ± 0.65	14.75 ± 0.16	
LSS	5.19 ± 0.48	6 ± 1.02	
MPAI-4	64.03 ± 2.86	58.38 ± 4.56	
CIQ	11.09 ± 0.93	13.5 ± 2.98	
CNS	47.08 ± 1.94	44.75 ± 2.86	

Table 2. Patient Demographic Data			
Demographics	TBI	CVA	
Age at injury (years)	Mean: 40.1±11.8 SD Median: 40.0	Mean: 52.0±14.5 SD Median: 56.0	
Sex (male)	33 (91.7%)	5 (62.5%)	
Housing (% inpatient)	30 (83.3%)	7 (87.5%)	
Days of rehabilitation (days)	Mean: 227±141.0 SD Median: 197.0	Mean: 203.9±97.9 SD Median: 196.5 interva	
Interval between injury and rehabilitation (days)	Mean: 285±556.2 SD Median: 97.5	Mean: 135.1±192.9 SD Median: 52.5	
Previous acute rehabilitation	24 (66.7%)	7 (87.5%)	
Mechanism of injury			
Motor vehicle accident	10 (27.8%)		
Pedestrian motor vehicle accident	2 (5.6%)		
Fall	20 (55.6%)		
Assault	1 (2.8%)		
Motor-bicycle accident	1 (2.8%)		
Blast (nonmilitary)	2 (5.6%)		

TBI and CVA Post-Acute Rehabilitation Outcomes


DRS – Disability Rating Scale

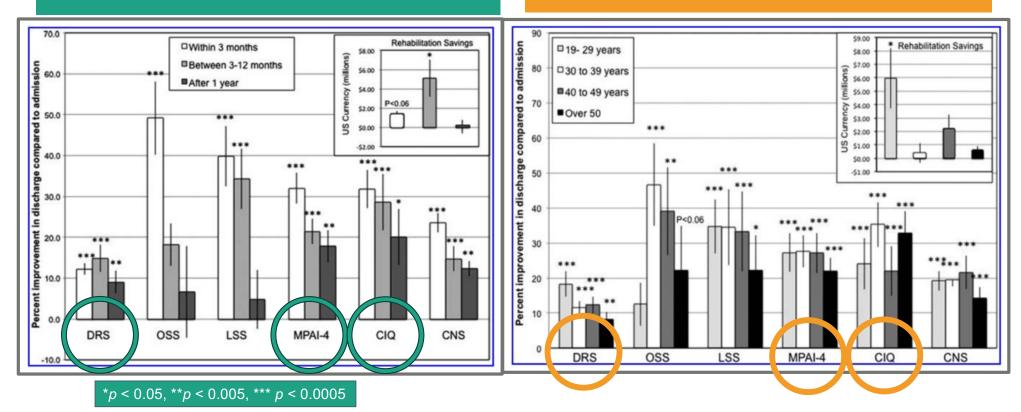
MPAI – Mayo-Portland Adaptability Inventory

CIQ – Community Integration Questionnaire

****p* < 0.0005

Projected Life Care Costs Pre- & Post PABI Rehabilitation

Average reduction in life care cost:

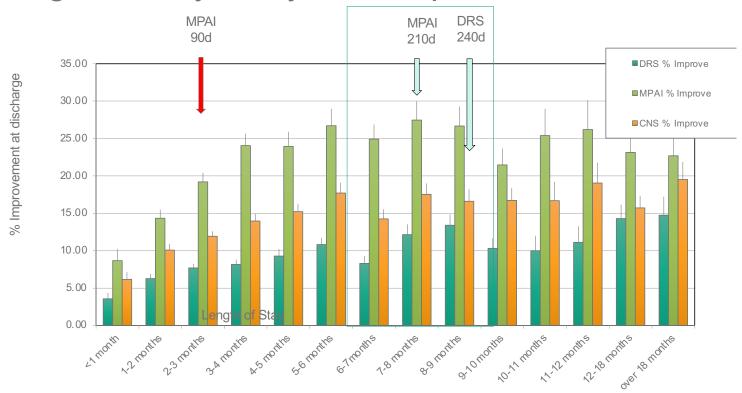

\$1,500,000

*p > 0.05

Effects of Latency & Age on TBI Rehabilitation Outcome

Injury to Admission Chronicity

Age: 19 years to over 50 years

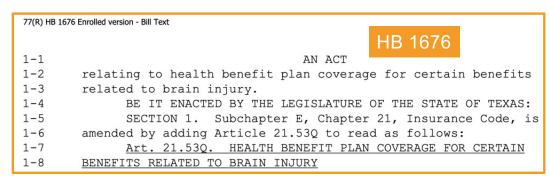

Admission Disability Level, LOS & Outcome

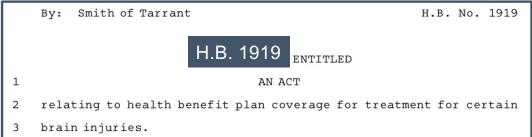
- 1,105 patient records, treated between 2006 & 2015.
- 1. Degree of functional improvement varied with level of disability at admission, chronicity, and length of stay.
- 2. Those with mild to moderate disability at admission and over 1 year chronicity showed improvement after 90 days.
- 3. Moderately and severely disabled individuals admitted between 3 months and 1 year chronicity showed improvements after 90 days.
- 4. Individuals with severe disability and over 1 year chronicity required at least 180 days of treatment.
- 5. Severely disabled individuals showed continued improvements after 180 days.

Disability Level	MPAI	CIQ
Mild LOS: 11-420 days	R Square: 0.10 F(2,76) = 4.88 , $p < 0.05$)	R Square: 0.06
Moderate LOS: 11-365 days	R Square: 0.05 F(2,366) = 9.41, p < 0.0001)	R Square: 0.02 F(2,364) = 4.21, p < 0.005)
Moderate LOS: 11-3,046 days	R Square: 0.06	R Square: 0.02 F(2,395) = 3.22, p < 0.05)
Severe LOS: 38-1,320 days	R Square: 0.17 F(2,82) = 8.29, p < 0.005)	R Square: 0.034

Ashley, J.G. et al. (2018) The influence of post-acute rehabilitation length of stay on traumatic brain injury outcome: a retrospective exploratory study. Brain Injury 38(5) 600-607

Length of Stay Analysis of Improvement for TBI Patients


Brain Injury Rehabilitation Legislation & Policy


2001 - Texas HB 1676

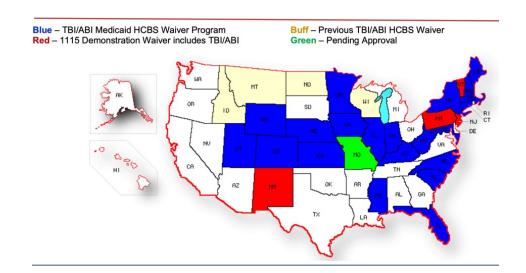
2008 - Texas HB 1919

2013 - Texas HB 2929

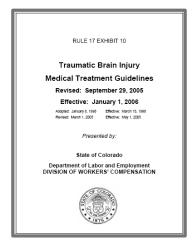
Two states have specialty license provisions for non-hospital post-acute brain injury treatment facilities (AR, LA).

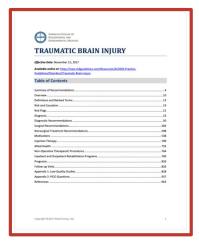

```
By: Sheets

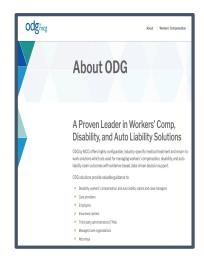
A BILL TO BE ENTITLED

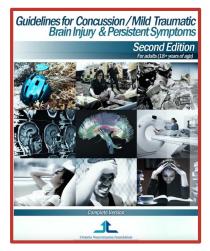

AN ACT

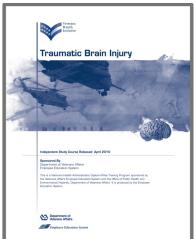
2 relating to health benefit plan coverage for brain injury.
```


Medicaid 1915 HCBS Waiver Programs


- 2002 5,400 individuals received waiver funded services.
 - \$115 million.
- 2006 11,214 individuals received waiver funded services.
 - \$327 million.
- Medicaid brain injury waivers are intended to be used to maintain patients with brain injury in noninstitutional community settings.


 States reported waiver programming was less expensive than institutionalization by almost \$273 million.




Post-Acute Rehabilitation in Payor Guidelines

Potential of Post-Acute Rehabilitation

- Participate in research delineating:
 - Identify different recovery trajectories for different diseases and disease severities.
 - Determination of individual terminal rehabilitation potential.
 - Disease differentiation and specification.
 - Neurodegenerative disease mitigation.
 - Pharmacological interventions.
 - Lifelong disease management strategies.

ΝΛΤΙΟΝΛΙ ΛCΛDEMIES Medicine

Sciences Engineering

Post Acute Traumatic Brain Injury Rehabilitation

National Academies of Science, Engineering, and Medicine March 11-12, 2025

Thank You!