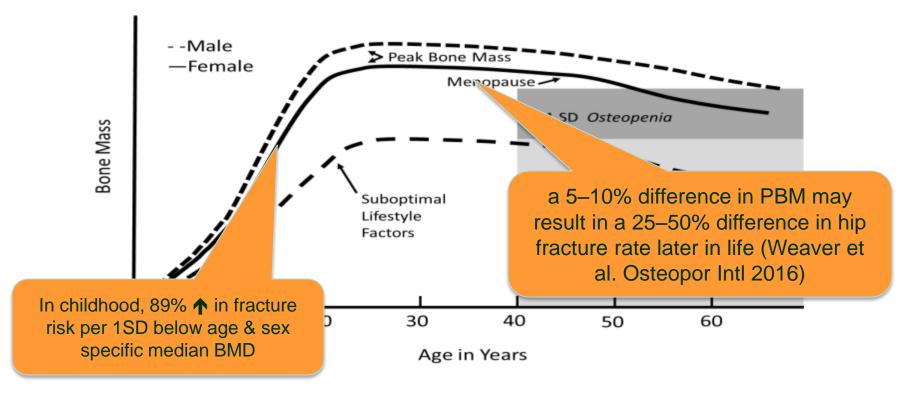

Changes in Skeletal Systems over the Lifespan

Connie M. Weaver, Ph.D. Purdue University

Disclosures

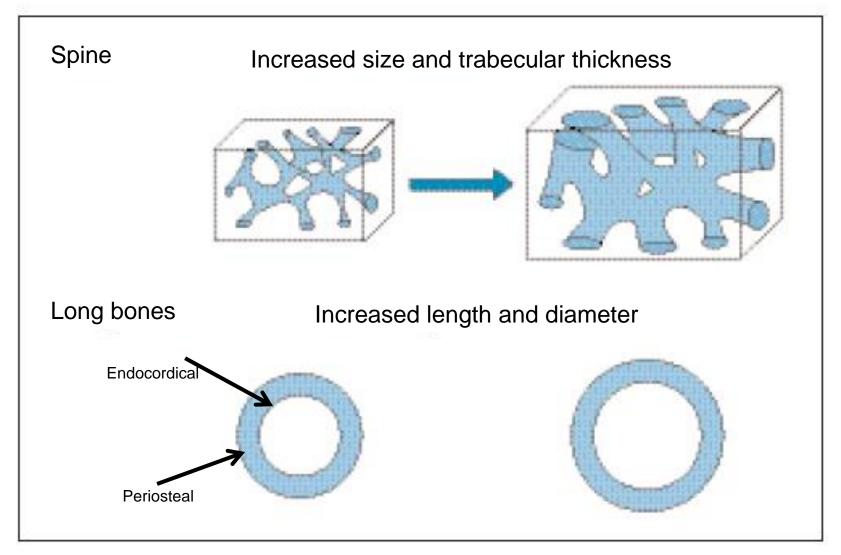
```
Boards/Scientific Advisory Committees –
      ILSI
      Showalter
       Pharmavite
Grants -
      NIH
      Dairy Research Institute
       Nestle
      Tate and Lyle
       Fonterra
       Kraft
       Dairy Australia
       Pharmavite
```

Bone Mass throughout the LifeSpan

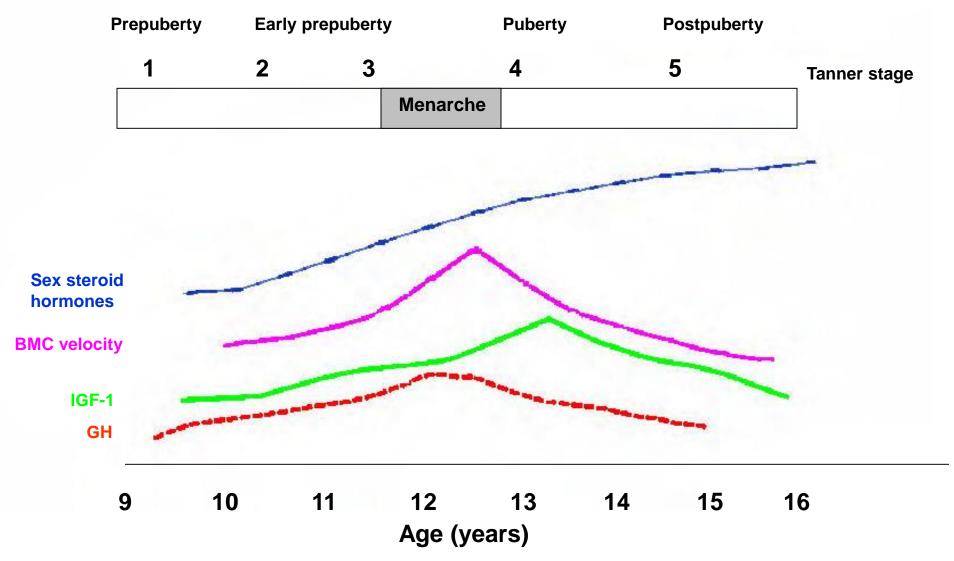


 Strategies to prevent fracture are to build peak bone mass early in life and to reduce bone loss later in life

Why is peak bone mass important?

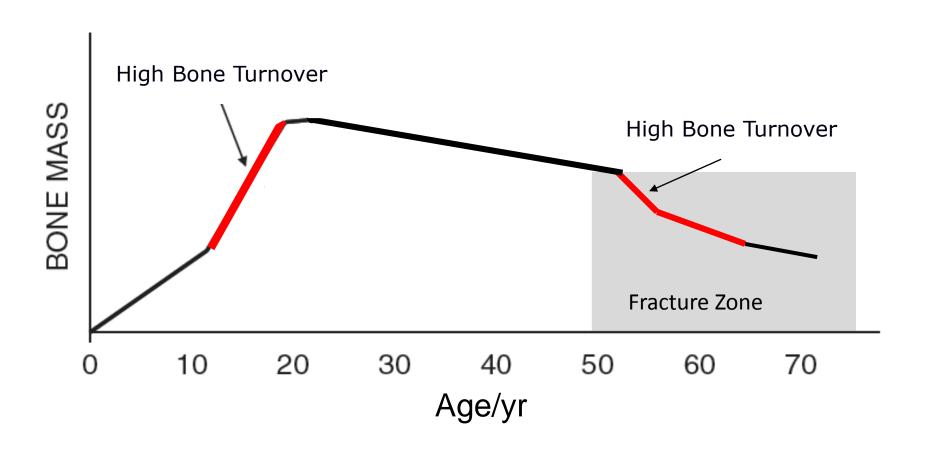

- 30 to 50% of children have at least one fracture by the end of teenage years
- 50% of women and 20% of men over 50y will experience an osteoporotic fracture
- Estimated annual costs exceed \$18 billion

Bone Mass Across the Lifespan



Adapted from Heaney et al. Osteoporos Int (2000) 11:985–1009

How Bones Grow



- 1st year of life-birth weight triples

- Increases in sex-steroid hormones triggers growth hormone and IGF-1 production to initiate the growth spurt
- IGF-1 predicts skeletal calcium accretion
- When estrogen levels rise in late puberty, epiphases close and linear growth ceases
- Testosterone stimulates periosteal expansion at cortical sites → large bone size in males
- Estrogen limits periosteal expansion in females

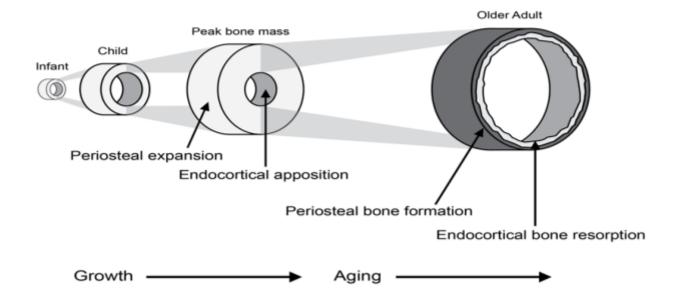
Interventions may by more effective when Bone Turnover is Rapid

NOF Position Statement on Peak Bone Mass Development and Lifestyle Factors

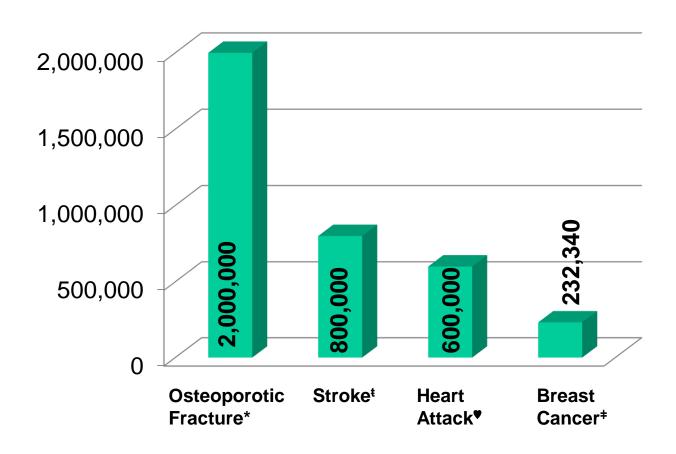
Writing Team

Connie M. Weaver, lead; Catherine Gordon, Kathleen Janz, Heidi Kalkwarf, Joan Lappe, Richard Lewis, Megan O'Karma, Taylor Wallace, Babette Zemel

Osteoporosis International 27:1281-1386, 2016


Search Results

Term	#RCTs	#Prospective	#Observational	Grade
Macronutrients				
Fat	1	1	1	D
Protein	1	5	6	С
Micronutrients				
Calcium	16	4	4	А
Vitamin D	7	1	4	В
Vitamin C			2	D
Magnesium	1			D
Zinc			1	D
Iron			1	D
Sodium (-)			1	D
Phosphorus (-)			1	D
Vitamin K			1	D
Fluoride		2	3	D


Search Results

Term	#RCTs	#Prospective	#Observational	Grade
Food Pattern				
Dairy	3		1	В
Fibers	1			С
Selected Cola/Caffeine/ Carbonated beverage			11	С
Infant Nutrition – source/duration	1		11	D
Alcohol (adverse)		3	5	D
Smoking (adverse)			11	С
Physical Activity				
Bone mass and density	38	19		А
Bone structure	18	8		В

Structural Strength Across the Life Span

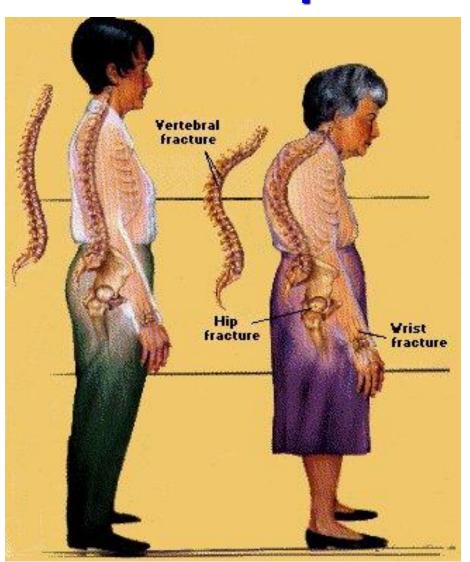
Annual Incidence of Common Diseases

^{*}National Osteoporosis Foundation (2013)

thttp://www.cdc.gov/stroke/ (2013)

http://www.cdc.gov/heartdisease/facts.htm/ (2010)

^{*}http://www.breastcancer.org/symptoms/understand_bc/statistics (2013)


What is Osteoporosis?

Normal Bone Osteoporotic Bone

Reproduced from *J Bone Miner Res.* 1986;1:15-21 with permission of the American Society for Bone and Mineral Research

Consequences of Osteoporosis

Women may lose 15% of bone mass in first 5 years after menopause (Hansen et al. 1991), with osteoporosis affecting 1 in 3 postmenopausal women.

Proportion of population > 80 years is increasing rapidly and is projected to triple between now and the year 2050.

Overall prevalence of osteoporosis and related fractures will likewise increase.

Osteoporosis

Costs

- \$22 billion in 2008(National Osteoporosis Foundation)
- 2 Million fractures/yr

Risk factors

- Modifiable: low physical activity, low calcium intake, vitamin D deficiency
- Non-modifiable: genetics, female, advanced age, Caucasian

Incidence

- 15.8% white female, 3.9% white male
- 7.7% African American female, 1.3% African American male
- 20.4% Mexican American female, 5.9% Mexican American male
- ½ hip fracture patients → long term care, 20% die within 1 yr

Prevalence of Osteoporosis and Low Bone Mass (spine and femoral neck) in US NHANES 2005-2010

Overall:

10.3% prevalence of osteoporosis

10.2 M have osteoporosis

43.9% prevalence low bone mass

43.4 M have low bone mass

Total 53.6 M

Predictors of BMD

- Genetics
- Diet
- Exercise
- Hormones

Clinical Risk Factors for Osteoporosis Independent of BMD

- Age>65
- Low body weight
- Family history of fracture
- History of postmenopausal fracture (including vertebral fracture)
- Genetic factors

10 yr probability of hip fracture in women ≥65 y with prior fracture and DXA T-score ≤-2.5 SD at femoral neck by country

10 year probability (%) Female aged 65 years, prior fragility fracture, T-score -2.5 SD 6 Sweden Austria Belgium Finland Mexico Taiwan Italy France Japan Jordan **US** Caucasiar Hong Kong Spain US Black Denmark S'pore Chinese Switzerland S'pore Indian Argentina Hungary Germany Canada Netherlands New Zealand Australia Colombia Lebanon Philippines

Current Treatment Options

- Hormone replacement therapy increased risk of coronary heart disease, stroke, breast cancer (Rossouw et al., JAMA. 2002)
- Bisphosphonates
 - Linked to atypical fractures (Russell et al., Osteoporos. 2008)
 - Osteonecrosis of the jaw (Arrain et al., Dent Update. 2008)
- Lifestyle choices Ca, vitamin D, weight bearing exericse
- Increased interest in botanicals

Bone Building Nutrient – Calcium

- Constant uptake and release = bone turnover
- Only 10 30% of calcium is actually absorbed
- Absorption is best in <500 mg doses

NEW – Estimated Average Requirement

- 4-8 year olds 800 mg/day
- 9-18 year olds 1100 mg/day
- Adults <51 800 mg/day
- Males 51-70 800 mg/day
- Females 51-70 1,000 mg/day
- All adults >70 1,000 mg/day

Sources

- Dairy products
- Fortified foods
- Broccoli, kale

Bone Building Nutrient – Vitamin D

- Cholecalciferol (D3) & ergocalciferol (D2) are both bioactive
- Enhances absorption of calcium and phosphorous
- Found naturally in very few foods
 - Fortified foods provide ~70% of Vit D in the diet

NEW – Estimated Average Requirement

All ages – 400 IU/day

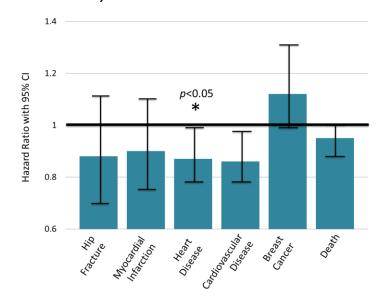
Sources

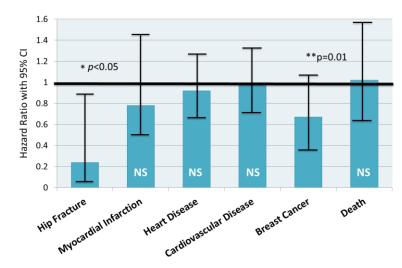
- Fortified dairy products
- Fortified cereal and juice
- Fatty fish

There is much confusion in the literature about calcium, dairy and bone

- Poor compliance and baseline status in RCTs
- Methods for assessing intake weak
- Life stage, sex, genetic dependent

What is the relationship between calcium and vitamin D and hip fracture?

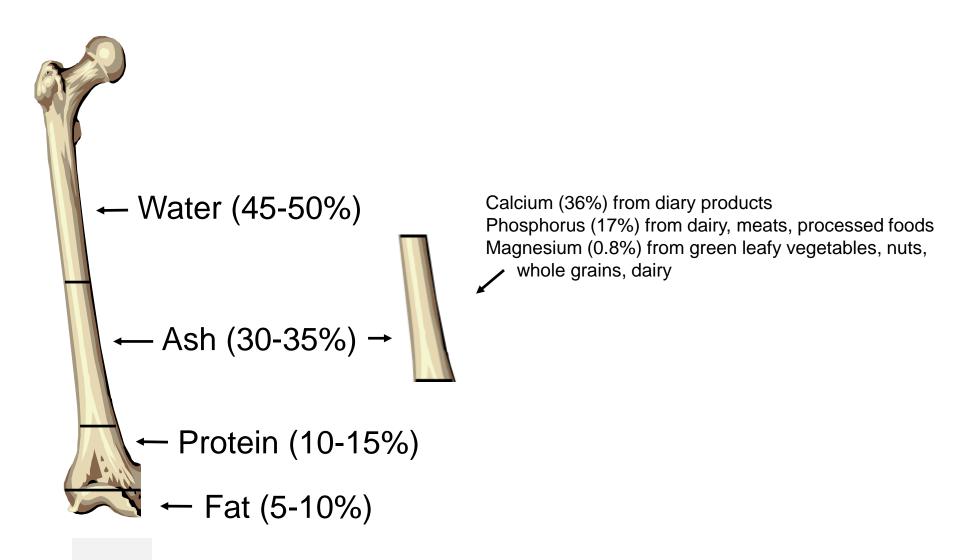

Women's Health Initiative RCT of CaD (n=68,719 postmenopausal women)


 All subjects including those taking own supplements

No relationship

 >5 Year CaD Intervention-related Health Outcomes in Subjects Adherent & Not Taking Baseline Supplements

Large benefit


Meta analysis shows Calcium plus vitamin D reduces risk of hip fractures by 30%

a Study Name Rate Ratio and 95% CI Chapuy, 1992 [20] Chapuy, 2002 [21] Dawson-Hughes, 1997 [22] Porthouse, 2005 [23] Salovaara, 2010 [24] Prentice, 2013 [10]3 SRRE = 0.70 (0.56-0.87) P-heterogeneity = 0.74 0.1 0.2 1.0 0.5 10 $f^2 = 0.00$

Decreased Risk

Increased Risk

Figure 1. Composition by weight of bone and dietary sources

Milk Provides Essential Nutrients

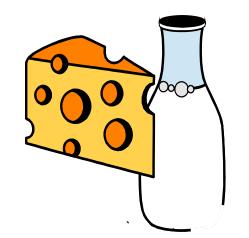
3 cups low-fat milk provide about:				
Calcium	>100%			
Phosphorus	99%			
Vitamin D	86%			
Protein	54%			
Riboflavin	32%			
Potassium	28%			
Magnesium	25%			
Vit B, Vit A, Zinc, and more				

Conclusion

The source matters but intake matters more!

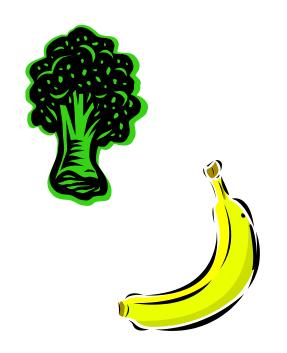
Prudent Recommendations

 3 cups of low-fat dairy product equivalents/day


 300mg calcium supplement for each serving missed

Overall Conclusions

- Building peak bone mass and reducing bone loss later in life are two strategies to reduce osteoporosis
- Increasing peak bone mass by 5-10% can reduce fracture risk substantially
- Lifestyle choices can modify both peak bone mass and bone loss
- Several of the essential nutrients important to bone are shortfall nutrients as identified by the Dietary Guidelines for Americans, i.e., calcium, vitamin D, magnesium


Bone healthy diet:

Calcium rich foods, dairy Fruits/Vegetables Whole grains

Benefits of Diet:

Maximize peak bone mass Minimize bone loss Promote overall health

