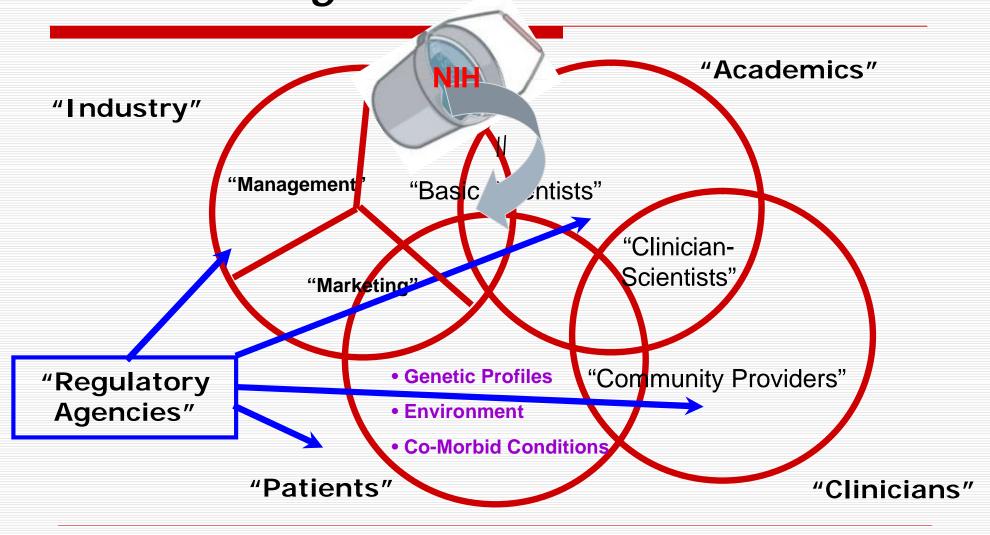
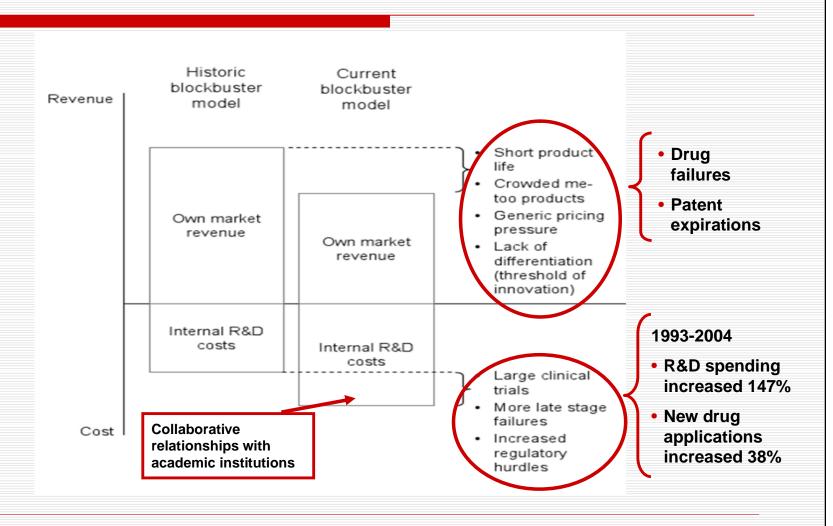

Open Innovation Networks: An Imperative for Breakthrough Therapies

Neal H. Cohen, MD, MPH, MS
Vice Dean
Professor, Anesthesia and Medicine
UCSF School of Medicine


Creating Breakthrough Technologies

- § Why aren't existing models sufficient?
- § What are the barriers that undermine new scientific breakthroughs?
- § How can industry and academia collaborate to more effectively address them?
- § What are "Open Innovation Networks" and "Precompetitive Collaboration" and are they viable alternatives?


"Advancing Healthcare"

"Advancing Healthcare"

Models for Biopharmaceutical Innovation

Traditional Models No Longer Sufficient

- § Current state of knowledge, skills inadequate to address some of the more complex methodologic and clinically important questions
 - Increasing complexity of research methodology
 - Need for diverse expertise
- § Mandate for more effective research paradigms
 - Evidence-based therapeutic interventions
 - Comparative effectiveness studies to justify new treatments
 - Personalized approaches to clinical management
- § Cost is only one contributing factor
 - On average, 1-in-10 drugs that enter clinical trials will become a marketed product
 - Limitations are not due solely to "commercial" implications

Most Importantly...

Traditional Models Stifle Innovation

- § Most "collaborations" are the result of independent (siloed) collaborations, based on individual academicindustry relationships
- § Each has (appropriate) protections and limits
 - Conflicts of interest, commitment
 - Consulting relationships may preclude other research opportunities
 - For investigators, corporate funding augments Federal grants and contracts – but doesn't necessarily advance science
- § Multi-institutional relationships have been discouraged
- None of these models allow open access or sharing of critical resources and data

...and

Industry Is Recognizing These Realities

- § For many companies, it is now more cost effective to bring promising therapies from the outside their own walls
- § "The days of a monolithic approach to ... research or commercialization are behind us" (Jeffrey Kindler, CEO, Pfizer)
 - Pfizer reducing R&D spending by \$3B by 2012 without sacrificing future drug development
 - Research hasn't been worth the high levels of investment
 - Partnerships (and Wyeth acquisition) are filling the pipeline
 - AstraZeneca cutting research staff by 3500
 - Sanofi-Aventis cutting R&D spending by 20%

"Open Innovation"

- § Economics of innovation is a key driver for companies to open their innovation process
- § "...newly developing technologies and products benefit from integrating knowledge and expertise from multiple sources"

Chesbrough, HW:HBS Press, 2003, 2006

What are the Key Elements of Change?

- § Transformative therapeutics will require "creative" approaches, new rules
 - Large databases including diverse populations required to establish meaningful relationships, associations
 - Diverse scientific expertise
 - Cross-disciplinary skills sets
 - Computational biology tools
 - Cores
 - Clinician-basic science collaborations
 - Clinical correlations
- § Existing barriers to communication, collaboration, cooperation must be understood and "managed", if not overcome
- § There is no single new model that will address all needs

Where are these "barriers"?

- § Industry
- § Academia
- § The Public
- § Government/Regulatory Agencies

Industry-Imposed Constraints

- § "Industry" is diverse
- § Discovery valued based on benefit it brings to real world problem(s) – [commercial value]
- § Scientific "autonomy"
- § Economic realities
- § Regulatory constraints

Academia-Imposed Realities

- § Discovery valued for "advancing knowledge"
- § "Academic freedom"
- § Intellectual autonomy
- § Lack of inventory of research focus, strengths, opportunities
- § "Compartmentalization" of basic scientists and clinicians
- § Merit, promotion, tenure processes
- § University policies and procedures
 - Contract negotiations
 - Technology transfer (royalty stream)
 - Economic autonomy

Other "Hurdles"

- § Potential conflicts between public good and shareholder value
 - Conflict of interest
 - Conflict of commitment
- § Historical "errors in judgment"
 - Scientific misconduct
 - 90% of clinicians believe that ignoring certain entry criteria for a trial is acceptable if a patient might benefit from the trial
 - Lack of critical evaluation
 - Poor research design and execution

The Challenges Provide an Opportunity to Create New Relationships ...

- § Categorize existing research relationships and assess its value
 - Identify opportunities to expand relationship
- § Define the new (broader) strategic vision for collaboration
 - Scientific synergies, internal needs
 - Opportunity to establish relationship in other areas
- § Consider alternatives
 - Precompetitive Collaboration
 - Open Innovation Networks
 - Other "Translational" Opportunities
- § Evaluate strategy and outcomes

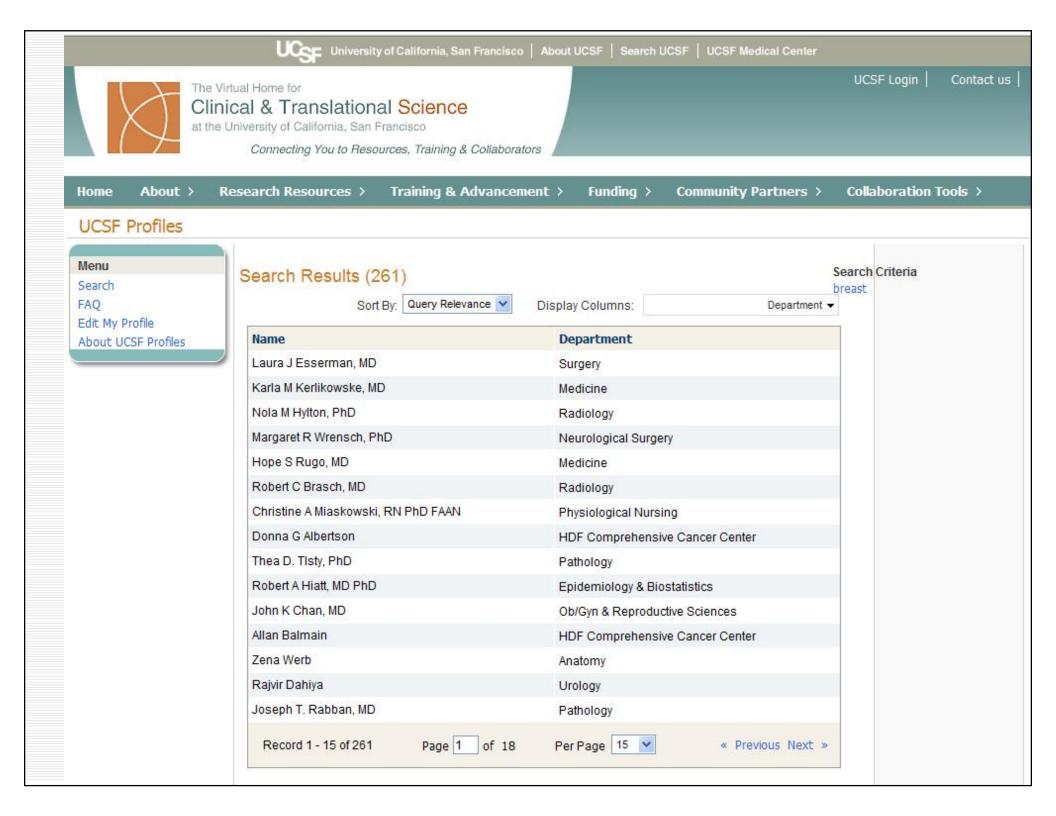
Some Critical Elements

- § Recognize the Value Proposition of each collaboration
- § Manage the industry-academic collaboration as an Investment Portfolio
- § Adopt new approaches to Information Sharing
- § Then define the most appropriate Innovative Models that will foster collaboration and overcome barriers

Value Proposition

- § All participants bring something of value to the collaboration
 - Valuation of assets of collaborators must be "equitable" and "flexible"
- § Goals are more aligned than not and are compatible
 - Academia values discovery that increases knowledge
 - Corporation values discovery that solves a real world problem

Manage Collaboration as an "Enterprise-Wide" Investment Portfolio


- § Manage projects as a portfolio to capitalize on synergies and eliminate redundancies
- § Identify partner(s) that provide the synergies
 - Clarify the roles and responsibilities of each partner
 - Be sure each partner values the relationship
- § Negotiate master agreements that define goals and scope of collaborations
 - Predefine terms and conditions
 - Optimize "contractual" negotiations, minimize delays

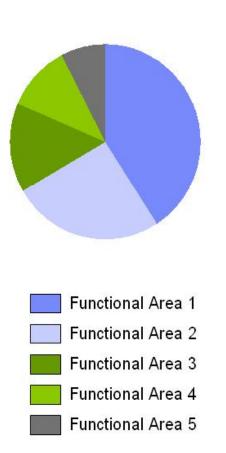
Acknowledge the AHS as a critical link to fostering innovation

- § Identify potential collaborators throughout the academic community
 - Basic and clinician scientist relationships longstanding
 - Clinicians also provide keys to breakthrough technologies
 - Understand mechanisms of disease
 - Monitor individual response to and compliance with therapies
 - Source for patient cohorts, biological specimen banks
 - AHCs train future generations of health care professionals
- § Clinical and translational science initiatives (CTSA) are facilitating translation of bench science to the "bedside"

Share Information

- § Develop "open" standards to allow validation, comparative analysis
- § Create "Open Innovation" Research Networks to foster collaboration and innovation through shared resources (compound libraries, screening facilities, personnel sharing)
- § Create non-exclusive consortia, alliances, networks, particularly in *precompetitive* areas of research
 - Examples
 - RNAi Consortium
 - Biomarkers Consortium
 - Diabetes Genetic Initiative
- § Identify Collaborators within the Academic Community

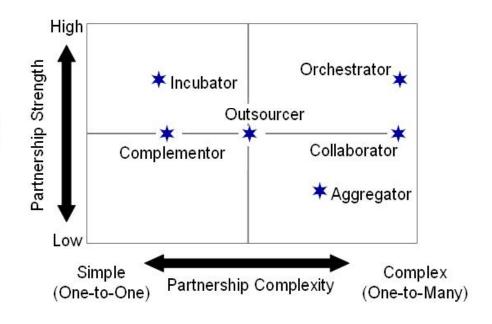
Potential Models for Collaboration


- § One company/one academic institution
- § One company/several academic sites
- § Consortium of industry and academic "members"
- § Open access platforms

Define Scope of Relationship(s)

- § "Consultancy Phase"
 - Define potential targets, drug candidates
 - Provide "due diligence"
- § Pre-Clinical Collaboration
 - Pre-competitive
- § Clinical Trials

Current Collaboration Management


Allocation by functional area with each responsible for managing its own collaborations

Future Collaboration Management

Enterprise-wide portfolio management, utilizing diverse partnership models

Partnering Business Models

What Do"Open Innovation Networks" Provide?

- § Create coherent datasets that capture the inherent complexity of human physiology
- Sevelop robust representations of biology and disease to more completely reflect the underlying complexity of physiologic systems
- § Harness the creativity of the community of scientists
- § Enable *more rapid progress* in refining the representations of biology and disease

Open Innovation Models

- § InnoCentive (e.Lilly Division)
 - Designed to foster innovation and efficiencies in research and development
- § Open Access Drug Companies
 - Sector of corporate R&D designated for collaborative partnerships to focus on rare diseases
- § Sage Bionetworks
 - Open access platform for sharing and disseminating complex data

Open Innovation Models

- § Each of these approaches has a different structure, different goals, different financial expectations
- § Multiple approaches
 - Information Sharing
 - "Matchmaking"
 - Venture Capital
 - Incubators
 - Identify Potential Multi-institutional Collaboration Opportunities

How Can We Optimize Chances for Success for These Collaborations?

- § Define a oversight structure that promotes exchange of knowledge and collaborative development of milestones
- § Prospectively acknowledge potential sources of conflict
 - Organizational Issues
 - Culture
 - Funding challenges
- § Address key sources of controversy
 - Confidentiality
 - Ownership and commercialization of jointly developed biologics
 - Publication "delays" (patent filing)
 - Intellectual property rights
 - Budgeting to support the research collaboration
- § Appoint "advisory board" to address COI issues

Model for Industry-Academic Collaboration

Strategic Planning Board

- Defines strategic goals
- Identifies potential collaborative partnerships, opportunities

Coordinating Committee

- Coordinate collaborative activities
- Identifies and leverages campus, investigator expertise
- Manage database(s)

Advisory Board

- External review body to evaluate strategies and provide oversight
- Manage COI issues

Outstanding Questions

- § What will be the measures of success for these models?
- § Is "precompetitive" collaboration sufficient to generate breakthrough technologies?
- § Are "open innovation networks" and consortia the best models?
- § Finally, are there other ways to create "out of the box" alternatives?

"Leap... and the net will appear"

Zen Proverb