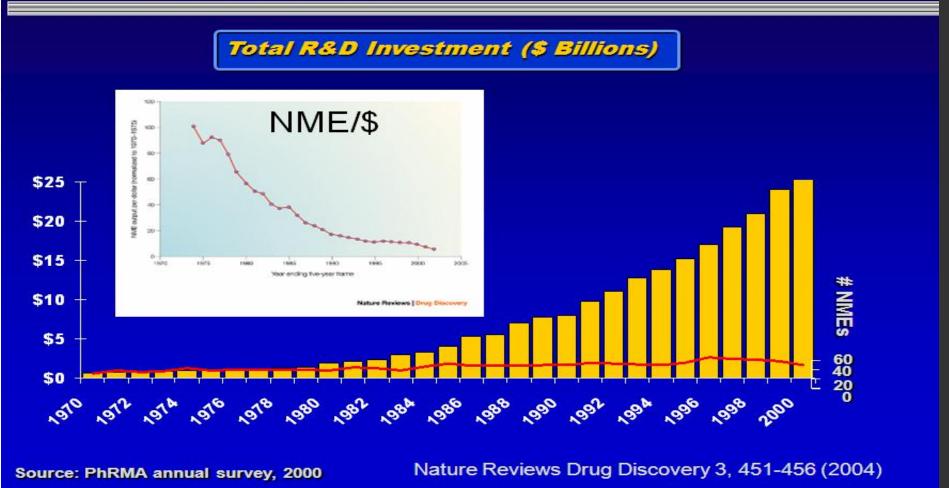


Precompetitive Informatics Initiatives in Drug Discovery

Bryn Williams-Jones

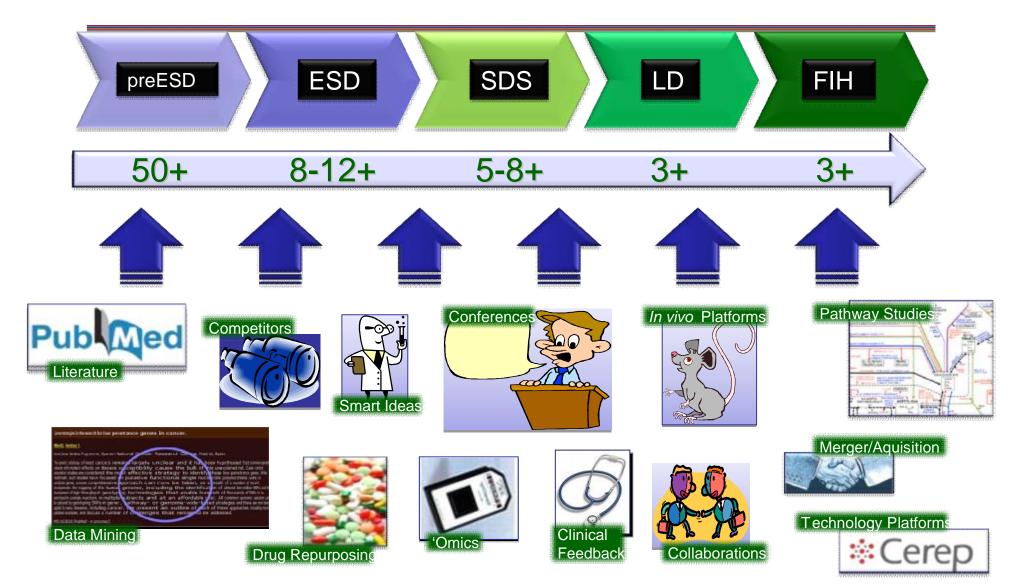
bryn.i.williams-jones@pfizer.com

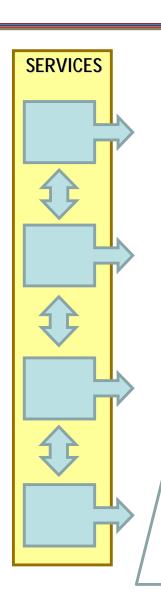
Associate Research Fellow


Head of eBiology

Pfizer Sandwich Research Enabling Group

Why aren't we more productive?




Drug Discovery Processes - The Scale Of The "Portfolio Reload" Need

The Technology Stack for Electronic Biology

Application (Knowledge)
Fact Visualisation
e.g. Target Dossiers;

Define needs; Design algorithms; Develop "plug-in" architectures?

Assertions

SAR Visualisation

e.g. Gene-to-Disease;Compound-to-Target;Compound-to-ADR

Define needs; Contribute algorithms & develop tools (e.g. text mining); Enhance existing approaches

Standards

Ontology/taxonomy;
Minimum information guide;
Dictionaries; Interchange mapping

Support existing standards; Drive new DD-relevant ontologies; Work with publishers

Data

Targets; Chemistry; Pharmacology; Literature; Patents

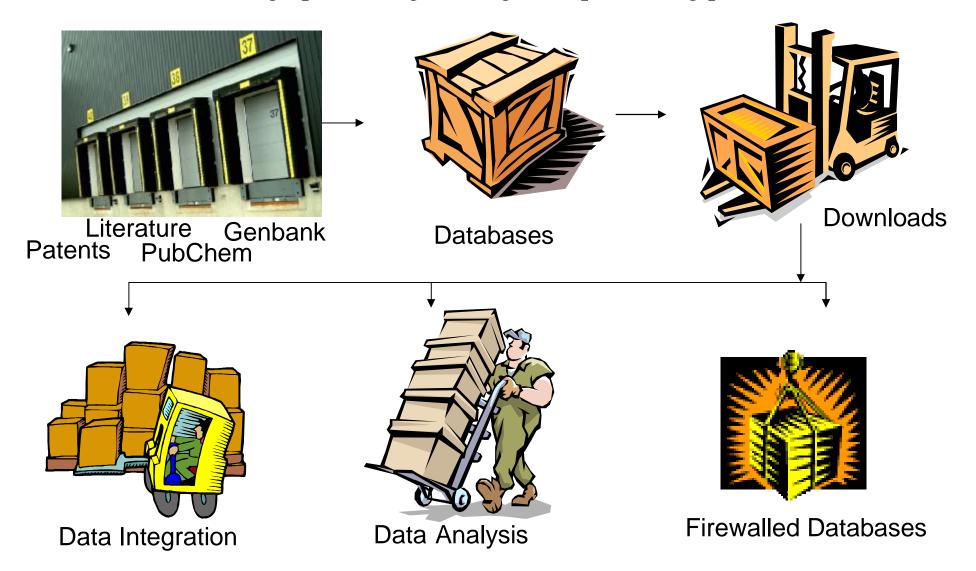
Defining needs; Knowledge; Data Contribution

Data tombs

TARGETS SURROUNDED BY INFORMATION

"Too much data" "Too many applications"

"This doesn't apply to me" "You need a PhD in IT to use this stuff"

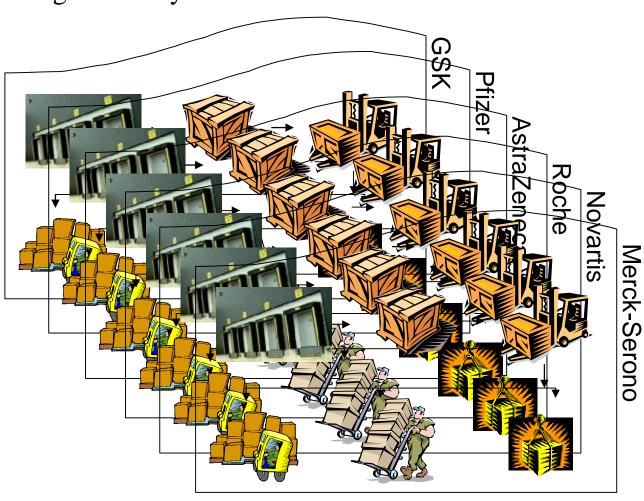

"What does this really mean to my project?"

Public Domain Drug Discovery Data

SandwichResearch

- The Current Situation

Pharma are accessing, processing, storing & re-processing public domain data



Public Domain Drug Discovery Data

SandwichResearch

- The Current Situation

We are all doing this many times.....

The changing landscape Changes in R&D Information Strategies

<u>Then</u>

- Internalisation of external content
- Extensive Internal software build
- Vertical Application Development
- Internal application management
- End-to-end Ix service delivery internally
- Inflationary Budgets
- Limited assay types & content volume
- Little Collaboration

Now

- Increased push for services
- Reduced capability for Internal software build
- Externalisation of application management
- Increasingly reliant on sourcing external lx services
- Flat Budgets
- Huge data/content volumes
- Increasing collaboration

Lowering the firewalls

PERSPECTIVES

OPINIO

Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery

Michael R. Barnes, Lee Harland, Steven M. Foord, Matthew D. Hall, Ian Dix, Scott Thomas, Bryn I. Williams Jones and Cory R. Brouwer

Abstract | Phermaceutical research and development is facing substantial challenges that have prompted the industry to shift funding from early- to late-stage projects. Among the effects is a major change in the attitude of many companies to their internal bioinformatics resources: the focus has moved from the vigorous pursuit of intellectual property towards exploration of pre-competitive cross-industry collaborations and engagement with the public domain. High-quality, open and accessible data are the foundation of pre-competitive research, and strong public-private partnerships have considerable potential to enhance public data resources, which would benefit everyone engaged in dud discovery, in this article, we discuss the background to these changes and propose new areas of collaboration in computational biology and chemistry between the public domain and the pharmaceutical industry.

Challenges such as declaring productivity, patent expiries and a document furnd in drug prixing require the plurmounted in dustry to rapidly adopt to survive¹⁻¹. Moreover, while revenues are declaring the contributed interesting the sufety and efficacy requirements of regulatory agencies are its allly increasing. Against the backdoop, industry in also exponding to the governey need for new drugs to treat raw diseases and diseases of developing countries¹⁻¹. These factors are causing plurmountied companies to continually re-means ways of managing costs to direct the accountsy investment towards little-stage typelines while improving confidence in target and candidate throug election.

Both internal and customal influences are driving this change. Beduced internal funding it leading to an incremed focus on data exploitation either than that generation. With a goowing body of high-quality data in the public domain, it is now excegation that the show volume of data or the computational platform and the present it cannot in themselves transform drug discovery catpost.

Instead, methods of data exploitation are crucial, leading to a shift from acquisition of taisersal platforms to investment its analysis and exploitation of data. Furthermore, over the past several years, understanding of how genome and related bissuany data can be used to inform target and compound choice has increased. This is leading to more selective investments in data and information platforms to ensure mandrants large-ct. Technology developments (such as seet-generation arequencing and high-content acreening) have desembled by increased the supplished on feither and platforms required for managing public data. These costs are increasingly difficult to manage, and have hard a competitive banefit.— a two d that is set to conditive.

act to continua. The external fictors behind these changes in the approach of the phaemaceutical industry to data include in novation with, and observable attention with, and observable attention of, data platforms in the public decreasis. These public data, encourses offer also matrives to internal data management and integration, and failure to adopt them

could present as opportunity cost. In addition, over the past five years, thrue has been a notarration of services in the public domain. Elistockally, insees of sobratness of yeals its domain, systems—including stability, accessfully and bedwards computating, and a lack of structured release updates—has prevented the adoption of external tools within industry. However, as the public domain has natured and user been have been firmly established, more stable and reliable services that meet all the needs of industry have become verifield.

As industrial drug discovery re-appealses its business model, the public-domain rements community has become increas ingly engaged in drug discovery efforts.
This has been supported at the level of regulators and governments by the Critical regulators and g Path Initiative of the US Food and Drug Administration (FDA), and the UK gov-erament's Cookey Review of UK health research fundings. Both agencies recommended an increase in public-private partnerships as an alternative drug devel-coment model. Publicly funded nesearch organizations such as the US Nationa nativates of Beakh (NIH) are already enthusiastically pursuing this route with their Roudrany Initiative and the establishment of the Molecular Library Screening Center Network (see Purther informs A central component of this strategy has been the development of PubChern®, a data-base of known small-molecule drugs that includes structure, bioassay and bioactivity data. Other public-domain drug discovery focused systems are energing, including DrugBank¹³, ChEBI (Chemical Entities of Biological Interest)(1 and ChemBank(1)

puble-domain drug discovery, although most are chemistry-focused and are not well integrated with puble-domain tenged biology resources. However, much of the tactif biology and chemistry howeledge concerning best pencific for drug discovery— — the complexities of target tractability, valdition, milty-efficacy, and drug formulation and delivery— will make primarily within turbury, and the swithfirity of information of this nature through public distabases in limited at prosent.

Pre-competitive collaboration

- Must change the way we do things
- Complexity is increasing, budgets are decreasing
- We can't afford to try to invent better wheels
- Quality of public sources increasing
- Even with one of the worlds largest R&D budgets, >95% of science research done outside

Nature Reviews Drug Discovery 8, 701-708 (September 2009) | doi:10.1038/nrd2944

Computational Chemistry and Biology are not the same!

- Drivers for change are universal but domain needs differ
- Compare the desktops of comp chemists to comp biologists
 - CompChem: Commercial or proprietary in-house data and tools
 - CompBiol: commercial and in-house tools sit alongside (and in many cases are based upon) a vast selection of public domain resources.
- Consider the nature of the data which they analyse
 - CompChem: highly competitive data (e.g. novel small molecules).
 - CompBiol: largely public data much earlier in the discovery pipeline
- Distinctions present different challenges
 - CompChem: need to foster development of public domain tools
 - Chemistry resources need security and client-side interfaces
 - CompBiol: Almost the extreme opposite large numbers of public domain resources that companies are struggling to utilise for DD
 - Biological resources need re-focusing for DD

What is pre-competitive?

 In simple terms – activities that don't offer a significant competitive advantage

Competitive

- Candidate compound
- First crystal structure
- Omics data from difficult to obtain clinical samples

Pre - Competitive

- •10th crystal structure in a family
- 3 year old molecular profiling data
- A gene dictionary built from public resources

Internalisation Vs "Virtualisation"

- Gene reference databases: a pre-competitive paradigm?
 - In most pharma, no public gene index has been "quite right" for internal use due to issues such as:
 - accessibility, stability, integration rules, comprehensiveness or scope
 - Ironically, pharma have each (re)created individual views of gene information using public data
 - Ultimately this is self-perpetuating; continually requiring maintenance and development to meet the perceived "unique needs" of Pharma
- What do Pharma really need?
 - Can we do this once, 'properly', somewhere that everyone can access?
 - Can we use services from a public resource?

The Data Standards & Analysis Challenge

- In many areas of science our ability to generate data is outstripping our ability to curate, analyse and understand the data
- We are all now generating data on a truly industrial scale
- The analysis of scientific data also needs to become as industrialised
- In order to accomplish this will require data standards

Where are pre-competitive activities taking place?

EBI Industry Programme

 The EBI industry programme hosts pre-competitive quarterly meetings with 16 member companies working in the field of pharmaceutical and biotechnology R&D informatics. Members co-organize intensive workshops that focus on key informatics issues encountered during drug discovery and development.

Pistoia

 Pistoia is an initiative to streamline non-competitive elements of the pharmaceutical drug discovery workflow (chemistry, biological screening and logistics) by developing open standards for common business terms, relationships and processes.

Innovative Medicines Initiative

 IMI is a public-private partnership between the European Federation of Pharmaceutical Industries and Associations, and the EU. The goal of IMI is to share knowledge from biopharmaceutical sector by pooling competencies and resources to forge public-private collaborations.

EBI Industry Programme

SCOPE: The Industry Programme:

- provides a forum for interaction between the EBI and our users in industry
- provides training for our commercial users
- informs 'industrial users' of EBI's plans
- feeds industry requirements into the EBI's planning
- provides a neutral meeting place for inter-company interactions on bioinformatics
- coordinates workshops on topics decided by programme – gathering expert speakers (industrial and academic)
- initiates 'special projects' at the EBI with targeted collaborative funding
- liaises as appropriate with other industry initiatives

Member Companies

AstraZeneca

Bayer Schering

Pharma

Boehringer Ingelheim

Galderma

GlaxoSmithKline

Eli Lilly and Company

F. Hoffmann-La Roche

J & J Pharmaceutical

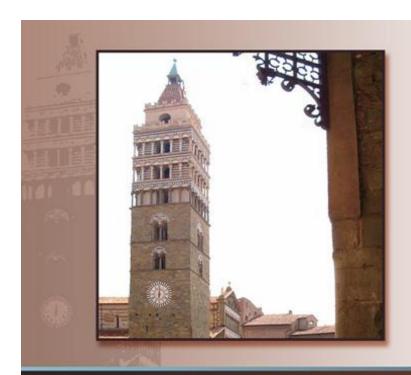
R&D

Merck Serono S.A.

Nestlé Research

Centre

Orion Pharma


Philips Research

Pfizer Ltd

Syngenta

Sanofi-Aventis

http://www.ebi.ac.uk/industry/ind-prog-jadex.html

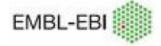
An Emerging Cross Pharma Collaboration:

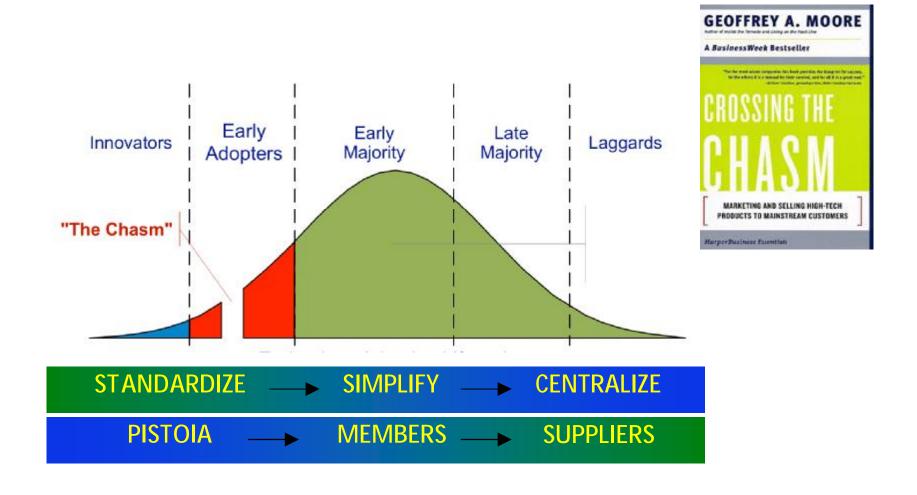
The Pistoia Alliance

http://pistoiaalliance.org

Pistoia Membership

updated: Jan 22, 2010





Mission of Pistoia

 Pistoia is the BRIDGE to cross the chasm to a more agile precompetitive environment

The Pistoia Path Forward: Standardize, Simplify, Centralize Sandwich Research

- Standardize our interfaces & messages
- Simplify our cross-industry architectures & support models
- Centralize services to reap economies of scale & scope

Mission

To streamline pre-competitive workflow elements of Pharmaceutical R&D by specifying common business terms, relationships & processes

Focused on business workflows/supply chains

Enabling

Vocabulary

Visualisation

Workflow

Others

Knowledge and Information Services

Application Integration

Biology Data Services

Chemistry
Data Services

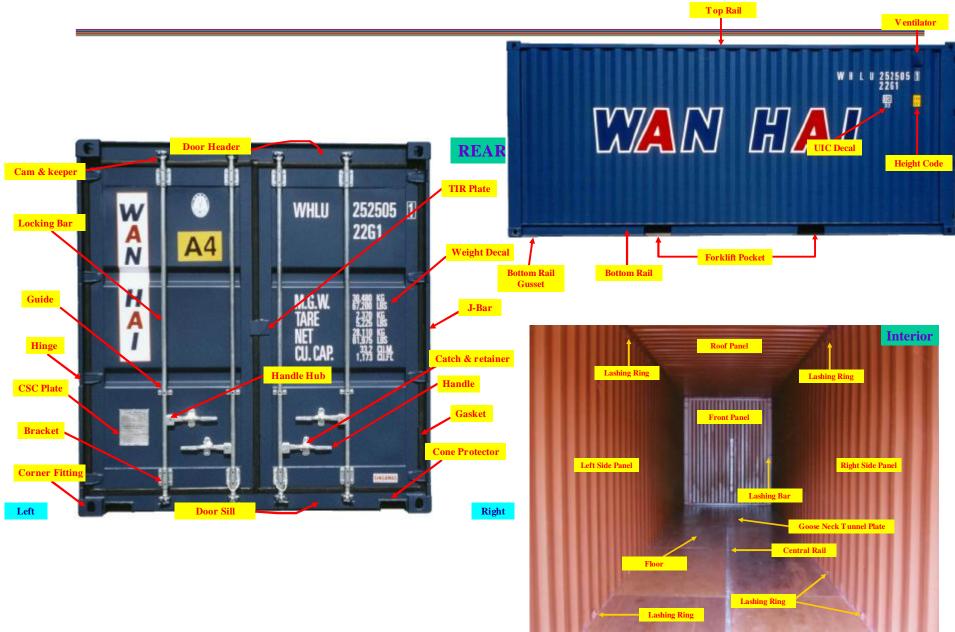
Translational Data Services

Innovative Medicines Initiative

The Innovative Medicines Initiative is a unique Public-Private Partnership (PPP) between the pharmaceutical industry represented by the European Federation of Pharmaceutical Industries and Associations (EFPIA) and the European Communities represented by the European Commission.

IMI's overall goal is to make Europe again the world leader in pharmaceutical research for the benefit of the economy and society, by removing research bottlenecks in the current drug development process.

The world's largest public private partnership

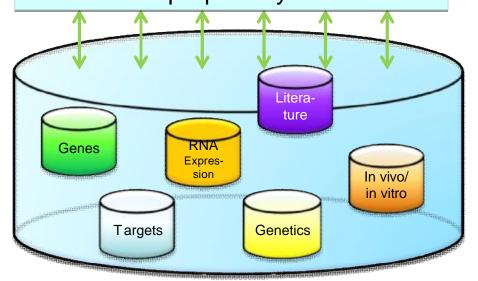

€2 Billion, multiple pillars, average project €20 million

Time for Change: Public Domain drivers

- Vers SandwichResearch
- Public Domain are engaging in Drug Discovery (DD)
- Public Domain Chemistry Resources are improving
 - NIH Roadmap Initiative
 - Molecular Library Screening Center Network (MLSCN)
 - PubChem (structure, bioassay and bioactivity data).
 - DrugBank, ChEBI, ChemBank and ChEMBL
- Databases supporting biology-based DD are less apparent
 - Rich public domain resources for biology are not DD-centric
- Pharma spends over \$50 billion p.a. on R&D
 - How much of this knowledge/information is in the public domain?
 - How much knowledge is tacit? e.g. druggability?
 - How much is truly competitive?

"Virtualisation" needs standards

Why Standardise?



Future Architecture in Pre-competitive World

Applications mixing public and proprietary data sources

Integration Layer – mixing of public and proprietary data

- Pfizer Data Workbenches **Proprietary Public Domain Plugins** Services Services Services (Proprietary) (Public Domain) New RNA **Proprietary** Expres-Litera-**Targets Data Store** sion ture Genes In vivo/ logical Genetics data
- Historical resource costly bespoke solution mirroring and integrating public data with proprietary
- Resource focussed on integration with less available for innovation
- Most Pharma companies replicate this pipeline

- Future stable high quality public resources can be taken directly, proprietary data and services being overlaid
- Substantially less resource needed on integration if common standards are implemented
- · Pharma and public share higher quality stable resources

Benefits for Everyone

Academics

- More powerful and integrative access to more data
- Making own data more accessible
- Potential for innovative discovery
- A framework to spinout Academic SMEs

SME

- A mandated standard that will make tools/systems immediately usable by any customer (the raison d'etre for Pistoia I think?)
- Potential to leverage public domain data more easily
- An opportunity to become "VHS compatible" rather than betamax (maybe that's a bit too controversial)

Pharma

- More powerful and integrative access to more data
- Opportunity to switch off internal systems
- Potential for Innovative Discovery
- Secure client-side access to public data

Some questions particular to today...

- Connections with other organisations
 - CDISC, W3C
 - How open are others prepared to be?
- Science is global
 - Pre-competitive work is not geographically limited
 - How do we better influence US funders, Institutions, Consortia, Disease Societies etc?
- Working in disease areas that are not oncology
 - How can we develop generically applicable workflows that can be pressure tested in data rich areas?

Acknowledgements

Pfizer

 Lee Harland, Cory Brouwer, Ian Harrow, Enoch Huang, Rob Hernandez, Stephen Campbell, Phil Verdemato, Markella Skempri, Chris Waller, Kevin Hebbel, Ted Slater, Cathy Marshall, Dave Burrows, Nigel Wilkinson, Jerry Lanfear

External

- Ian Dix (AZ), Niklas Blomberg (AZ), Nick Lynch (AZ)
- Mike Barnes (GSK), Matt Hall (GSK), Chris Larminie (GSK), Ashley George (GSK), Steven Foord (GSK), Malcolm Skingle (GSK)
- Members of the Pistoia Alliance
- EFPIA IMI collaborators
- Members of the EBI Industry Programme