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ldeal Therapy

B Precise Targeting (Tissue/Cell/Molecular)

B Precise Action (Maximize therapeutic action
and minimize toxicity and side effects)

®m Precise Timing (On when it is needed, Off
when it is not needed)

Implicit in these design goals is the requirement
for precise control mechanisms that can either
respond to local environments automatically
or respond to signals sent remotely.
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Characteristics of an ideal tumour-
targeted nanomedicine

(1) Increase drug localisation in the tumour through:
(a) Passive targeting
(b) Active targeting
(2) Decrease drug localisation in sensitive, non-target tissues

(3) Ensure minimal drug leakage during transit to target

(4) Protect the drug from degradation and from premature clearance

(5) Retain the drug at the target site for the desired period of time

(6) Facilitate cellular uptake and intracellular trafficking

(7) Biocompatible and biodegradable

Lammers T, et al. British Journal of Cancer 2008;99:392-397.
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Clinically Utilized Drug Targeting Strategies
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Examples of Clinically Used Tumor-targeted Nanomedicines

PEGylated

Polymer—protein

Liposome liposome Lipoplex/Polyplex conjugate
Polymer—drug Protein—drug . Antibody—drug
conjugate conjugate Polymeric micelle conjugate

=

Lammers T, et al. British Journal of Cancer 2008;99:392-397.



Compound
Liposomal doxorubicin

Liposomal daunorubicin

Liposomal vincristine
Liposomal cisplatin
Liposomal lurtotecan
Cationic liposomal c-Raf AON
Cationic liposomal E1A pDNA

Thermosensitive liposomal doxorubicin

Albumin-paclitaxel
Albumin-methotrexate
Dextran-doxorubicin
PEG-L-asparaginase
PEG-IFN2a/-1FN2b
PHPMA-doxorubicin
Galactosamine-targeted PK1

PGA-paclitaxel

Paclitaxel-containing polymeric micelles
Cisplatin-containing polymeric micelles
Doxorubicin-containing polymeric micelles

SN38-containing polymeric micelles

0Yttrium-lbritumomab tiuxetan (alpha-CD20)
DTA-IL2 fusion protein (alpha-CD25)
Ozogamycin-gemtuzumab (alpha-CD33)
Doxorubicin-cBR96 (alpha-CD174)

Name

Myocet, Caelyx (Doxil)

Daunoxome

Onco-TCS
SPI-77
OSI1-221
LErafAON
PLD-E1A

ThermoDox

Abraxane
MTX-HSA
DOX-OXD
Oncaspar
PegAsys/Peglintron
PK1

PK2

Xyotax

Genexol-PM
Nanoplatin
NK911
LE-SN38

Zevalin
Ontak
Mylotarg
SGN-15

Indication
Breast, ovarian, KS
Kaposi sarcoma

Non-hodgkin
lymphoma

Lung

Ovarian
Various
Breast, ovarian

Breast, liver

Breast
Kidney
Various

Leukaemia

Melanoma, leukaemia

Breast, lung, colon
Liver

Lung, ovarian

Breast, lung
Various
Various

Colon, colorectal

Non-hodgkin
lymphoma

T-cell lymphoma

Leukaemia

Lung, prostate, breast

Status
Approved
Approved

Approved
Phase Il
Phase Il
Phase I/11
Phase I/11

Phase |

Approved
Phase Il
Phase |
Approved
Phase I/11
Phase Il
Phase I/11
Phase 111

Phase 11

Phase

Phase

Phase

Approved
Approved
Approved
Phase Il
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Current Opinion in Biotechnology

Special ADME Considerations for
Nanmedicine

One cannot predict in vivo biodistribution
based on nanostructure physical and

chemical properties.

Nanostructures can distribute to various
organs intact, modified or metabolized.

Nanostructures can enter the cells of
various organs (e.g. RES) and reside in
them for an unknown amount of time

before moving to other organs or
excreted.

Unique routes of exposure will dictate
specific fate of the nanostructures (e.g.

inhalation, dermal exposures, etc.)

Binding kinetics between nanostructures
and protein(s) not well known.

How different components of
nanostructures are metabolically
processed and excreted not fully known.

. Opinion in Biotechnology 2007;18:565-571.

Fischer HC, Chan WCW. Curren



Survey of prevalent nanostructure classes, applications, concerns and areas of interest

Mechanistic areas of

therapeutics

Nanostructure Application (example) Concerns interest

Metal nanoparticles Coptrast agents; drug Elem_ent specific toxplty; Excretion
delivery reactive oxygen species

Nanoshells Hyperthermia therapy None demonstrated Excretion

Fullerenes vaccine adj_uncts; Antibody generation Immunotoxicity
hyperthermia therapy

Quantum dots Fluorescent contrast Metabolism Intrchllulgrl grgan _
agent redistribution; excretion
Drug delivery; Metabolism;

Polymer nanoparticles g Y Unknown immunotoxicity;

complement activation

Guest delivery of

Surface chemistry and

Dendrimer : Metabolic path elemental effects;
drug/radiolabel dose L
complement activation
Liposome Drug dellv_ery; contrast Hype_rsen5|t|V|ty Complement activation
agent vehicle reactions

Fischer HC, Chan WCW. Current Opinion in Biotechnology 2007;18:565-571.
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Molecular Imaging of

Angiogenesis

LM609-PV Isotype Ab-PV

Tlw MRl images: Vx2 carcinoma rabbit model

Sipkins DA, et al. Nature Medicine 1998;4:623-626.



Vascular Targeted Gene

. Apoptosis
Couzin J. Science 2002;296:2314-2315.



Vascular-targeted Gene

Therapy
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Accumulation of LM609-PV

INn the Vx2 Carcinoma Rabbit

Untargeted PV (1in)
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Multistage Drug Delivery

Lipid-Mediated
Poration

/
siRNA %\—* Intracellular

Tﬂkg
Cell Membra \ \
Protein ~— mRNA
Ed m
Cytoplas mm %""@ on/Disruption

Riehemann K, Scheider SW, et al. Angnhew Chem Int Ed 2009;48:872-897.




Bringing the Image to the Patient Cost-effectively

Emerging Technologies
Will Add Value

* Automation

* Navigation

* Visualization

e Multimodality

* Fusion

* Drug / Device combo




Multi-modality
Infrastructure

Registration “layers” images: . A

CT + US + Rotational Flat detector Angio
+ y-imaging + HIFU + Robotics
+ EM Tracking




“Remote Controlled Drugs”

m Indentify target tissue

m Change biodistribution to increase
concentration of drugs In targeted tissue

B Release or activate drug when needed

B Turn drug effect off when not needed
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Use Fusion Imaging to




Using External Energy such as FUS to change
biodistribution of Therapeutic Agents

Yuh EL, et al. Radiology 2005;234:431-7. Unger EC, et al. Progress in Cardiovasc Dis 2001;44:45-54.
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Pulsed-HIFU Facilitated Gene Delivery to Mouse
SCC VII Tumors Using 1.V. Injected Naked GFP Plasmid
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Dittmar K, et al. Radiology 2005;235:541-6.



Pulsed HIFU Facilitated Bortezomib treatment

In SCCVII tumors
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External Energy triggered

drug release

Triggered drug release

-~ O/

Tumour
Mormal
tissue ' I IE

Microbubble Drug
Formulations

Heat Sensitive
Liposomes

Lammers T, et al. British Journal of Cancer 2008;99:392-397.



Low Temperature Heat Sensitive liposomes
(Thermodox™)
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Dromi et al. 2007 Clin. Cancer Res.
The Methodist Hospital Research Institute



Gold Labeled Partially

Polymerized Liposomes
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Laser triggered Au-Dox-PPLs

Influence on Pharmacodynamics
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Points to consider for Clinical
Translation of Cancer Nanomedicine

B Pharmacokinetcs and Pharmacodynamics (Special ADME
considerations and difficulty in tracking multiple components in vivo
over time)

B Biocompatible vs. non-biocompatible components
B Passive vs. Active Targeting

m Multi-stage nanoparticles vs. different strategies for different stages
(leveraging other delivery strategies to make nanoparticle design
simpler?)

B Activatable vs. Always On

Sensitive to local environment vs. external stimulation vs.
combination
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Targeted Drug Delivery

Material
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