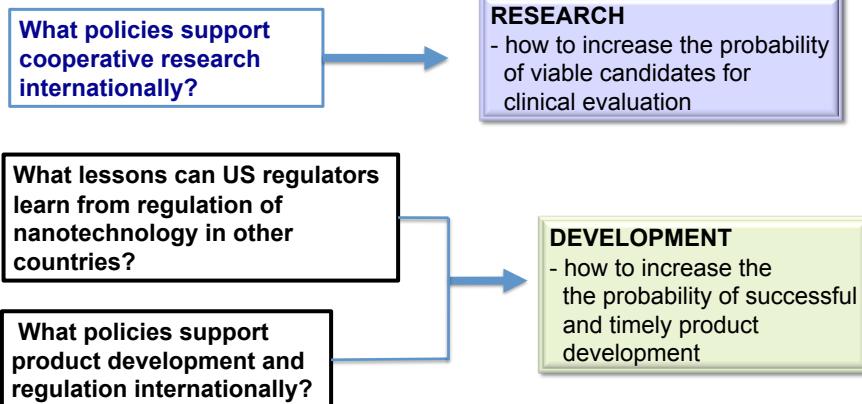


Workshop on Policy Issues in Nanotechnology and Oncology
Washington DC, July 12-13, 2010

Successful Transfer of Innovative Technologies from Lab-Patient-Routine Use
Lessons Learnt and Global Opportunities


Ruth Duncan

Cardiff, UK
profruthduncan@btinternet.com

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 1

International Standards: Cooperative Research and Regulation: Lessons and Challenges

Nanotechnology and Oncology


```
graph LR; A[What policies support cooperative research internationally?] --> B[RESEARCH  
- how to increase the probability of viable candidates for clinical evaluation]; C[What lessons can US regulators learn from regulation of nanotechnology in other countries?] --> D[DEVELOPMENT  
- how to increase the probability of successful and timely product development]; E[What policies support product development and regulation internationally?] --> D
```

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 2

Declaration of Interests comments made are personal opinions

supported by
Cancer Research Campaign
1975-1992

FARMITALIA CARLO ERBA
Pharmacia → **Pfizer**
HPMA copolymer anthracyclines
HPMA copolymer camptothecin and paclitaxel

The School of Pharmacy
University of London
Denitech/Dendritic Nanotechnologies

Cardiff University
HPMA copolymer platinates
PAMAM Dendrimer platinates

Polymer platinates
Access Pharmaceuticals

Vectura
ML LABORATORIES
PELT
Dextrin-drug conjugates

Member Ad-Hoc Advisory Group Nanomedicine
Member WG SCENHIR Nanomaterials Definition
Past member MHRA CPS Sub-committee

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan

For "Effective Policy" there is a need to understand both clinical needs and limitations of technology
Avoidance of 'HYPE'

Even though survival trends in EU are improving the medical needs is evident
~1 death every 4 min in UK
~25 deaths/min Globally

Figure 5.1 Age-standardised (European) incidence rates for all cancers excluding NMSC and mortality rates for all cancers, GB, 1975-2008
— Persons Incidence — Persons Mortality

Rate per 100,000
Year of diagnosis/death

How to harness
i) increased understanding of the molecular basis of cancer(s)
ii) technological opportunities arising from innovation

The 10 most common cancers in males, UK, 2006

Cancer Type	Percentage
prostate	24.1%
lung	15.2%
colon/rectal	13.9%
bladder	5.0%
NHL	3.8%
stomach	3.4%
kidney	3.3%
melanoma	3.3%
leukaemia	2.9%
other	21.7%

The ten most common cancers, females, UK, 2006

Cancer Type	Percentage
Breast	31.1%
Colon/rectal	11.7%
Lung	11.4%
Ovary	5%
Uterus	3.8%
Melanoma	3.4%
NHL	3.4%
Leukaemias	2.1%
Kidney	2.0%
Other	22.6%

Application of Nanotechnology in Cancer

Diagnostic tools
Oncotype DX MammaPrint®
Patient Imaging & Theranostics
Loco-Regional Therapy
Drug Delivery
Drug targeting
Controlled release
Overcoming biological barriers

~ 20% of cancers are induced by infectious agents
- cervical
- certain Lymphomas
- stomach cancer
- chronic infection with hepatitis B and C causes 75-80% of liver cancers diagnosed

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 4

Nanomedicine in Oncology

EACH AREA REQUIRES A DIFFERENT PRODUCT DEVELOPMENT PATHWAY

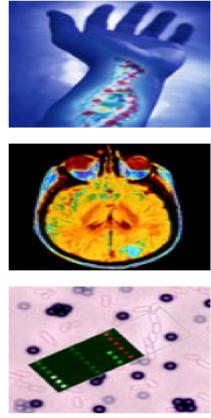
Diagnostic Tools

– FOR USE OUTSIDE THE PATIENT

- identification of new targets for therapeutic intervention
- improved detection of predisposition
- characterisation of disease (choice of therapy)
- monitoring disease progression (response to treatment)

Diagnostic, Surgical and Theranostic Tools

– FOR PATIENT ADMINISTRATION


- monitoring of disease/aiding treatment regime/localised treatment
- improved surgical tools
- one shot combinations

Improved Treatments

– FOR PATIENT ADMINISTRATION

- improved tumour drug targeting and delivery
- delivery of drug combinations
- locally activated therapy

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 5

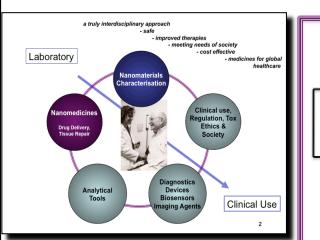
RESEARCH - Build on the Established State of Art for Development of Improved, Innovative Anti-Cancer Therapeutics, Diagnostics and Combinations to Benchmark improvements

Lessons that can be learnt from the last three decades

Lead Candidate Optimisation

- robust methodology
- an early understanding of Regulatory needs

DISEASE FOCUS - THEN DESIGN
not random screening


Local delivery

- implant
- injection into tumour
- phototherapy

Nanomedicines for cancer

Controlled Release

TARGETING METASTATIC CANCER

IMPROVED FORMULATIONS

- hydrophobic drugs
- oral bioavailability

MULTIMODAL THERAPY Theranostics

- improved efficacy
- reduced toxicity

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 17

Understanding the Industrial and Regulatory Development Requirements

The Regulatory Process

Agencies make an integrated assessment

The risk-benefit balance

Carry out rigorous post-market surveillance ('pharmacovigilance')

'quality'

There is an awareness of the need to be proactive
In identifying any gaps before new, innovative, technologies
emerge

safety

efficacy

Gaspar, R. and Duncan, R. (2009) Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics. In: Vicent, M. J. and Duncan R. (Eds. Theme Issue: Polymer Therapeutics: Clinical Applications and Challenges for Development. *Adv. Drug Del. Rev.* 61, 1220-1231.

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan 7

The Presentation will Include Specific Examples to Guide the Discussion

**How to Evolve Best Practice (Globally)
to Incorporate Advances in Nanoscience and Nanotechnologies ?**

**'The Case by Case
Needs**

How to avoid Gaps

Standards

Written - For Communication ?

the public; scientists


- For Legislation ?

**Experimental materials
and protocols**

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan 8

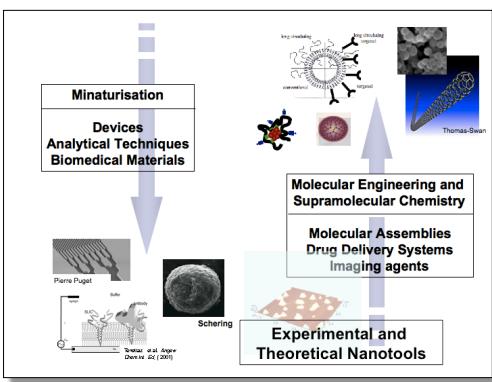
**Nanotechnology in Medicine
Global Opportunities/Challenge(s)**

Terminology
definitions and effective communication

Good Science
robust methods and **avoiding hype**

Translation
from lab to patient

Fragmentation


- avoid regional/discipline ambition
- focus on technical competence and past experience
- bring all stakeholders together from the start

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 9

Nano – Clear Terminology- Avoiding Hype; **CASE BY CASE BASIS IS IMPORTANT**

From Metric Units of Measure Nanoscale is 1 - 999 nm
Irrelevant and Unjustified Thresholds a Hindrance not a Help

Top Down and Bottom-Up Technologies have equal Importance

Don't Call everything a Plane
Deciding to call everything a 'nanoparticle' at best is non-sense and worst unhelpful

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 10

Wise Words – Avoidance of Unsubstantiated Boundaries that create Gaps

FDA expects many nanotechnology products that we regulate to span the regulatory boundaries between pharmaceuticals, medical devices and biologicals. These will be regulated as "**Combination Products**" for which the regulatory pathway has been established by statute.

It is valuable to repeat here that FDA has traditionally regulated many products with particulate materials in this size range. FDA believes that the existing battery of pharmacotoxicity tests is probably adequate for most nanotechnology products that we will regulate. Particle size is not the issue. As new toxicological risks that derive from the new materials and/or new conformations of existing materials are identified, new tests will be required.

It is quite likely that new therapeutic benefits are being derived from products that are smaller than their traditional form but fall above the 100 nm size-range limit of nanotechnology.

www.nanopharmaceuticals.org/FDA.html

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan 11

Terminology: A Strategic Research Agenda Needs to Know What's New and Define the Boundaries – Sound Scientific Basis not just \$

Nanomedicine

"Nanomedicine uses nano-sized tools for the diagnosis, prevention and treatment of disease and to gain increased understanding of the complex underlying pathophysiology of disease"

"The ultimate goal is improved quality of life"

"Nanoscale includes 1 - 100s nm..... Also of relevance are nano-interactions within the framework of a larger device"

1-1000 nm covers many nano-sized products already in the market each was designed for their unique properties

" Nanomedicine(s) or Nanopharmaceuticals"

" Nanopharmaceuticals can be developed either as drug delivery systems or biologically active drug products."

This sub-discipline was defined as the science and technology of nanometre size scale complex systems, consisting of at *least two components*, one of which being the active ingredient. In this field the concept of nanoscale was seen to range from 1 to 1000 nm."

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan

12

Designing Nanopharmaceuticals and Imaging Agents for Oncology Applications

**Genomics and proteomics research is identifying
Novel tumor-specific molecular targets**

Chabner, B. A. & Roberts (2005)
Nature Rev. Cancer 5 65-72

**Innovative Drug Delivery Systems
Nanomedicines**

Duncan, R. (2006) *Nature Reviews Cancer*, 6, 688-701

In Cancer > 95 % of drugs entering clinical trial fail in clinical development

Collins and Workman *Nature Chemical Biology* 2, 689-700 Dec 2006

Harnessing the state of the art in all scientific disciplines and stakeholders from the start

M. C. Escher (Dutch, 1898-1972)
Three Spheres (1946)

For Translation the Importance of an integrated approach to research and development

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 13

Importance of Research Conferences, Workshops and Training incl. World Leading Experts in all fields and with equal participation of *ALL* stakeholders

Willingness to listen to others - **must avoid the "in and out" syndrome**
- education early for clinical fellows (scientific basis)
for scientists (medical reality)

Series of Interdisciplinary Nanomedicine Research Conferences and Summer Schools
- with all stakeholders including ethics, social scientists and patient representatives

~220 Delegates from >30 countries >15% young medics

ESF SUMMER SCHOOL NANOMEDICINE HALLE JUNE 2011
Professor Karsten Maeder info- karsten.maeder@pharmazie.uni-halle.de

SINGAPORE NANOMEDICINE SCHOOL OCT 2008
MOSCOW NANO SUMMER SCHOOL JULY 2009

**• Scientists -Academia
-Industry**
• Clinicians
• Policy Makers
• Regulators
• Patient Representatives
• Ethics/Social Sciences

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 12

The Gordon Research Conference is a very Important Forum

(SINCE 1978)

GRC Drug Carriers In Medicine & Biology (SINCE 1978)
 August 15-20, 2010 Waterville Valley Resort Waterville Valley, NH
Chairs: Patrick S. Stayton & Philip S. Low
Vice Chairs: Vladimir R. Muzykantov & Joseph M. Desimone
 Applications for this meeting must be submitted by **July 25, 2010**.

GRC Cancer Nanotechnology (Starting 2011)
 July 17-22, 2011 Colby College
Chair: Piotr Grodzinski
 Vice Chair: James R. Baker

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 15

In The Research Phase There are Specific challenges for the Converging Disciplines

YES Working in Teams with sound core technical competences in all fields together from day 1

NO

Knowing where you are on the road from lab to clinic

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 16

Established Technologies: carefully optimised, complex multicomponent structures

Nanomedicine(s) – Nanopharmaceuticals are not new !!

First products approved ~1990

Liposomal - lipidic

- 1 drug: Unilamellar liposome
- 2 drugs: Unilamellar zones, Multilamellar vesicles
- lipidic drug mixtures

Nanoparticles

- lipidic, protein or polymeric, inorganic
- Long circulating, Conventional, Targeted: Nanosphere, Nanocapsule, nanoshell
- drug non covalently or covalent bound

Technology Classes in clinical trial or the market

- Polymer Conjugates: polymer-drug conjugates ± targeting/imaging agents
- Protein/Ab Conjugates: PEG (polymer) -protein -oligonucleotide conjugates
- Block copolymer micelles: drug maybe entrapped or covalently bound ± targeting groups
- Crosslinked (Nano) Gels
- Bioactive Synthetic Polymers/Vesicles

Nano-sized drug crystals

nm: 1-100 nm

(NB many nanoparticles are not round)

	<h2>The Starting Point: Antibodies Carrying Therapeutic Isotopes</h2>	
	2002	^{90}Y -ibritumomab tiuxetan used to treat the indolent form of NHL (based on Rituximab)
	2003	^{131}I -tositumomab for the treatment of NHL
CURRENT STATUS OF TARGETING	PROBLEMS Only 0.001-0.01% dose localises to tumour Labelled antibodies show a significant improvement in shrinking tumors but significantly increased survival is lacking Difficult to treat solid tumours	Issues - undesirable pharmacokinetics, - poor tumor uptake, - long circulation times delivering radioactivity to non target tissues - high immunogenicity - heterogeneous vascularisation of tumours - heterogeneous receptor distribution and/or saturation

Choosing the right materials for proposed use/route of administration

- Reproducible Preparation
- Sufficient therapeutic carrying capacity
- For meaningful bioassay, need a well characterised material
 - with well defined impurities
- Need Relevant and Quantitative Assays
- For further development, need early safety information relevant to proposed use
- Keep it simple!!

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 19

Biological Rationale for Design

- INTERDISCIPLINARY TEAM FROM DAY ONE
- Agree target disease
- Select most appropriate 'Nanotech'
- Quantitative and Pharmacokinetically-Guided Design
 - e.g. - stability - drug release rate (and site)
 - intracellular fate
 - biodistribution in vivo
- BENCH MARK OUTCOMES AGAINST EXISTING APPROACHES – pharmacological/imaging

Potential for new mechanisms of resistance

- poor EPR – clinical importance in all tumours ??
- shut down of endocytosis
- wrong intracellular trafficking
- variations in activating enzyme level, pH etc

New PATIENT BIOMARKERS – PATIENT SELECTION FOR CLINICAL TRIAL

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 20

For Preclinical Safety, the 'product' must be considered in its entirety

HPMA Copolymer Anticancer Conjugates and Imaging agents

Understanding the stability of ALL covalent and non covalent associations (including imaging probes and targeting residues)

Understanding the fate of Primary Metabolites

SPION

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan 21

There is Need for Greater Appreciation of Polymer Science and more generally the key factors (due to heterogeneity) in a Specification that impact Quality/Safety/Efficacy

Manufacture, characterisation and control of 'Quality'

Challenges for reproducible manufacture on large scale

Validated techniques for determination of

- product identity
- impurities
- strength
- Mw and polydispersity

New types of impurities

2D NOESY/TOCSY NMR

GPC + Universal Calibration

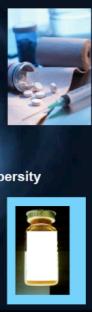
RESULTS FROM HYDROLYSIS

RESULTS FROM AMINOLYSIS

Heterogeneity
-need for specification relevant to Safety/Efficacy

Polydispersity

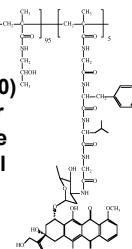
Heterogeneity
-drug
-targeting residues


12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

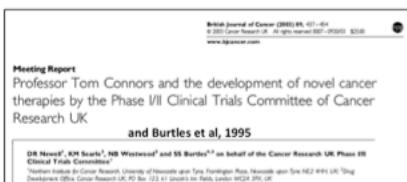
Ruth Duncan 22

Need for a Greater understanding that Formulations and not the active (nanopharmaceutical) will be given to patients -IMPLICATIONS FORQS/E

Challenges for development of polymer conjugates


- Terminology for description of polymer conjugates
- Manufacture of reproducible chemistry on large scale
- Validated techniques for determination of
 - product identity
 - strength
 - Mw and polydispersity
- Setting an appropriate specification -safety/efficacy
- Formulation development
- Preclinical toxicology - safety studies
- Clinical protocol design

Pharmaceutical Formulation(s)

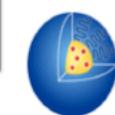
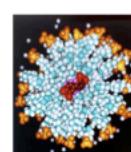
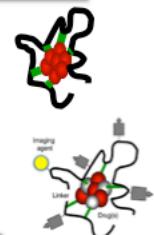

Formulations containing

- surfactant (polysorbate 80) as a dissolution enhancer
- a soluble filler like lactose
- a small amount of ethanol
- filter sterilised
- freeze dried

- Lyophilised cake reconstituted with water for injection or NaCl dissolution ~ 2 min.

Personal CRC Experience - Important Lessons for Translational Research

- The Committee identified four key needs
 - To stimulate the submission of compounds for Phase I testing.
 - To simplify and provide access to preclinical toxicology.
 - To develop clinically tractable formulations for new drugs that complied with regulatory requirements.
 - To open a dialogue with the Committee on Safety of Medicines in order to establish a legal framework within which clinical trials with academic drugs could be undertaken.




This approach, coupled with innovative clinical trial designs that promote patient enrolment to doses that are likely to be effective, and the use of clinical centres with proven expertise in early clinical trials, ensures that the need to select a safe starting dose and animal welfare issues are appropriately balanced.

1980
The first meeting of the Phase I/II Committee

1992
The Drug Development Office (DDO) internationally accepted quality standards to ensure that the data produced be acceptable to the pharmaceutical industry.

- the use of rodent-only toxicology studies for first-in-human trials with direct acting anticancer agents
- compound-orientated protocols - the intended clinical route and schedule of administration is mirrored as closely as possible in the preclinical safety studies

- best endeavours GMP Manufacturing (min. 2 batches)
- GLP Validation of Characterisation Techniques
- Formulation Development
- Accelerated Stability

Regulation : Not too loose but not too tight

- getting the right balance; a global discussion; must ensure advances reach patients quickly with careful reflection on risk:benefit

From The Times **TIMESONLINE** 2009

UK research trials are on verge of extinction

Clinical research in the UK is a great achievement and it is disturbing that many biotech companies face extinction

"European directives introduced to "harmonise" clinical research have led, in the UK, to an explosion of agencies that add months or even years to the simplest and safest pieces of clinical research, and millions of pounds to the cost — for those few investigators with the patience to persist.

The pharmaceutical industry now recruits only one third the number of patients to clinical trials in the UK compared with the period before the EU clinical trials directive, the number of studies seeking ethical approval has fallen by 30 per cent; and the Government's regulatory agency has logged a 50 per cent reduction in non-commercial trial authorisations."

"People of all ages benefit from ethical pharmaceutical and clinical advances used to treat disease. The waste of taxpayers' and charitable money on red tape has managed to reduce productivity but not enhance safety"

Over the same period, since 2004, other European agencies have logged a stable or increased number of trials.

Ruth Duncan 38

NEXT STEPS ?

2010

EUROPEAN SCIENCE FOUNDATION **FORWARD-LOOK** **Investigator-Driven Clinical Trials**

The top five recommendations to strengthen IDCT in Europe as ranked by the consensus conference were as follows:

1. To improve the education, training and career structure and opportunities for scientists involved in patient-oriented clinical research.
2. To increase levels of funding for IDCT.
3. To adopt a 'risk-based' approach to the regulation of IDCT.
4. To streamline procedures for obtaining authorisation for IDCT.
5. To ensure that IDCT are carried out with an appropriate number of patients to produce statistically reliable results so that the trials are 'correctly powered'.

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 25

Choosing technologies with potential for adequate Quality, Safety and Efficacy

Regulatory Considerations: GLP-GMP-GCP
From active substance and to the finished product

Gaspar & Duncan Adv Drug Del Rev 2009

Consideration on a case by case basis

- Non-clinical safety**
 - toxicokinetics
 - pharmacokinetics
 - toxicology
 - single dose
 - repeated dose
 - genotoxicity
 - carcinogenicity
 - reproductive and developmental toxicity
 - local tolerance
 - immunotoxicity
- Non-clinical safety**
 - toxicokinetics
 - pharmacokinetics
 - toxicology
 - single dose
 - repeated dose
 - genotoxicity
 - carcinogenicity
 - reproductive and developmental toxicity
 - local tolerance
 - immunotoxicity
- Manufacture, characterisation and control of the 'Drug Substance'**
 - active substance
 - impurities
 - specifications
 - analytical procedures
 - analytical validation
- Pharmaceutical Development**
 - excipients
 - sterilisation
 - stability
 - radiopharmaceuticals
- Packaging**
- Fixed Combination Medicinal products**
- Clinical pharmacology**
 - clinical trial design (small patient populations)
 - specific considerations for target disease/patient population
 - drug interactions
- Environmental Risk Assessment**
- Pharmacovigilance**
- Pharmacoeconomics**

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology Ruth Duncan 31

Some General Conclusions

- Pharmacokinetically-Guided Design
- Using Materials that are fit for "purpose"
- Greater Quantitation and comparison with existing technologies (PK/PD)
- Careful design of appropriate models bearing in mind PK
- Keep it simple
- Choose technologies with greatest possibility to translate to clinical trial

Benchmark against existing technologies Forty Years of Advanced Drug Delivery, Clinical and Regulatory Experience should guidewhat to do and even more what not to do

NEED A DISEASE AND PRODUCT FOCUS AS FIRST GOAL

COMMENTARY

Seven challenges for nanomedicine

WENDY R. SAKAMOTO, JASON H. SAKAMOTO, RICHARD CANADY AND MAURIZIO FERRARI^{1,2,3}

nature nanotechnology | VOL. 3 | MAY 2008 | www.nature.com/naturenanotechnology

7. 1. Analytical tool kit for manufacturing, accompanied by specification sheet of toxicological, safety, and biodistribution properties obtained through standardized, validated methods.

1. Determination of the distribution of nanoparticulate carriers in the body

2. Development of imaging modalities for visualizing the biodistribution - with quantitative mass-balance information

3. Quantitation of compartmental transport across boundaries in the body.

4./5. Need for new mathematical and computer models

6. Establishment of reference materials and consensus testing

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan 27

Some Specific Questions

– What is Nanomedicine ? HOW TO AVOID HYPE ?

- Is it possible to deliver the promise of "Nanotechnology" in Oncology?

can inter-disciplinarity triumph?
the role of the coach

- Will we ever have a terminology that suits all ?

that avoids hype?
that is embraced by all scientific disciplines?
top down and bottom up?
that can meet legislative Regulatory needs
- for first generation technologies/ for first generation similars
- for new technologies; materials and formulations
- that public and politicians understand

- We must promote robust methodologies

for choice of lead candidates; in vitro in vivo PK/PD
for GMP manufacturing validated characterisation, formulation
and GLP toxicology
for clinical trial design-appropriate biomarkers

- How to continue evolution of the Regulatory System?

avoid gaps arising from new materials; new technologies; combinations

12/7/2010 Workshop on Policy Issues in Nanotechnology and Oncology

Ruth Duncan 28