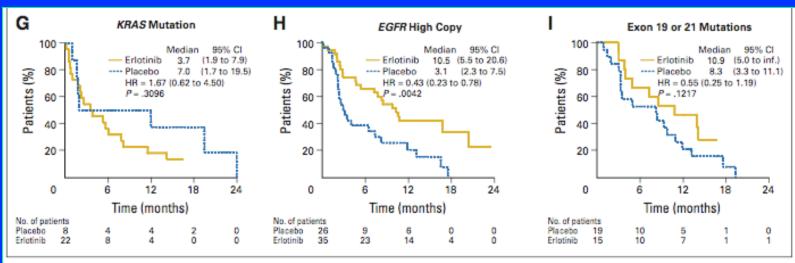
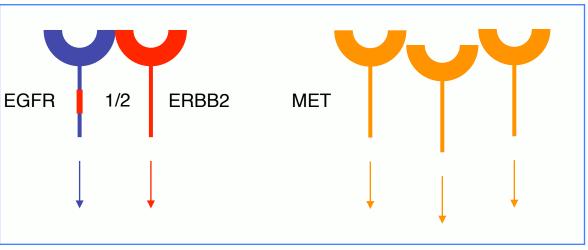
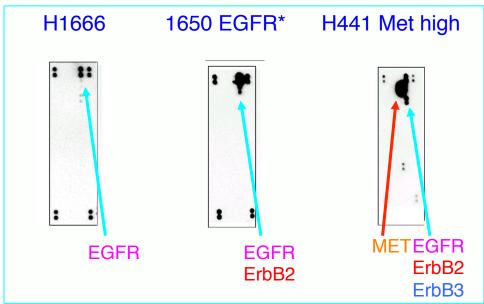
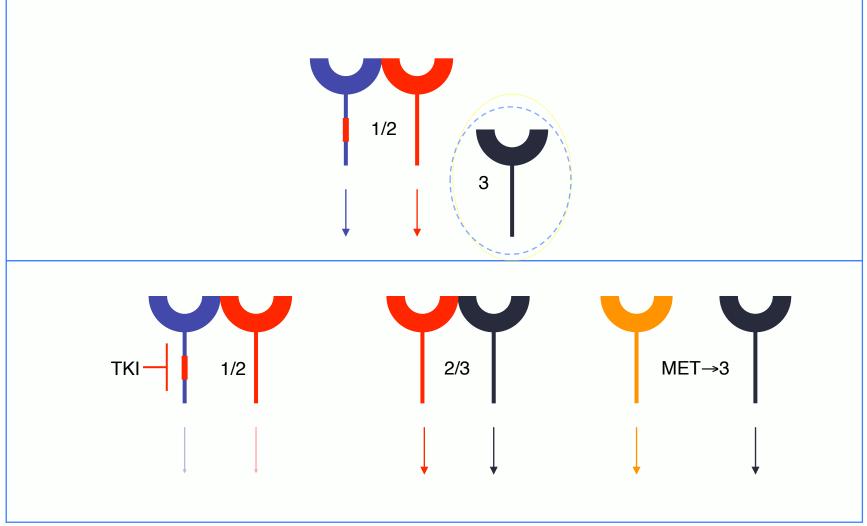


signaling and other "targeted" drugs work

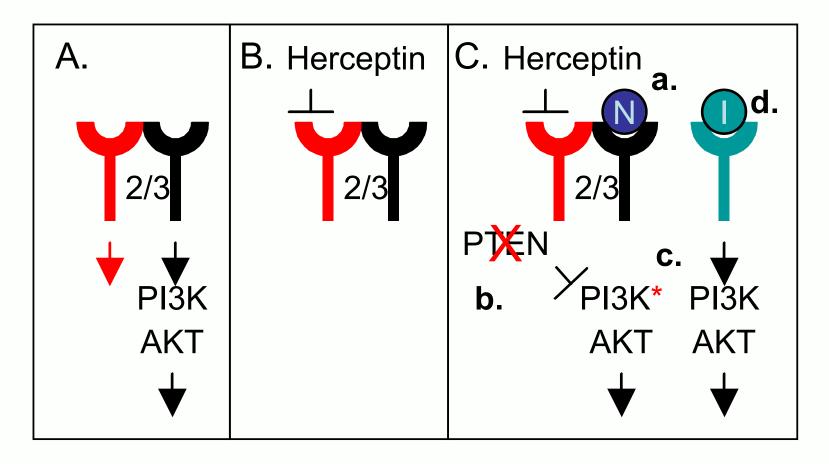
Trastuzumab, Imatinib, Erlotinib, PLX4032, Olaparib...

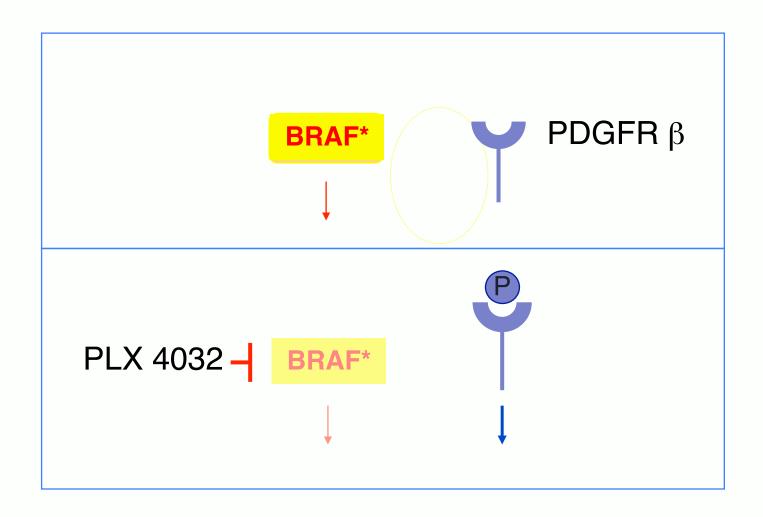
responses are not durable

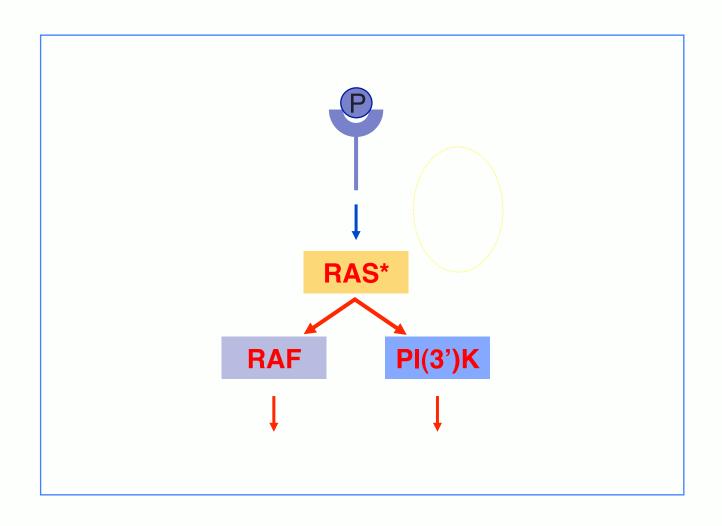




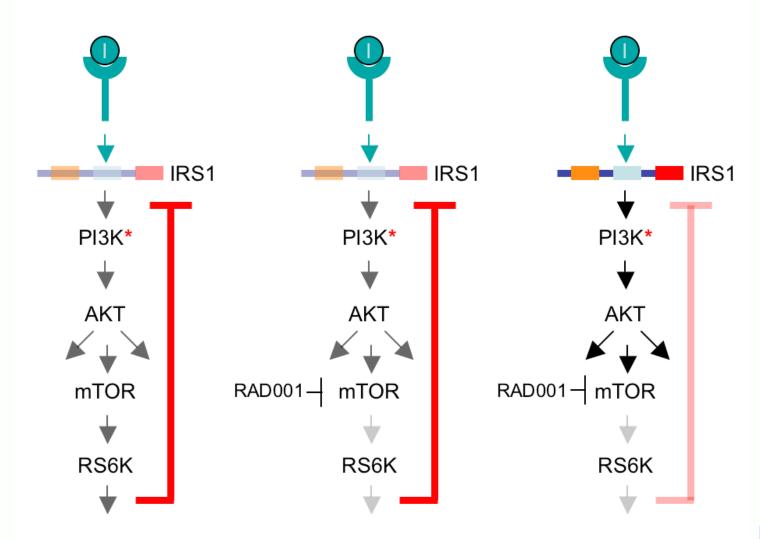

Fig 1. Kaplan-Meier survival curves of subgroup studied for various markers as well as impact of erlotinib according to marker status. HR, hazard ratio.

Multiple Drivers


Receptor Bypass


Ligand Bypass


Pathway Resistance

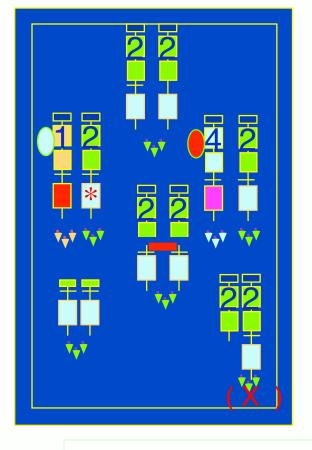

Autocrine Bypass

Pathway Bifurcation

Homeostatic Feedback Mechanisms

SURGERY

CHEMOTHERAPY

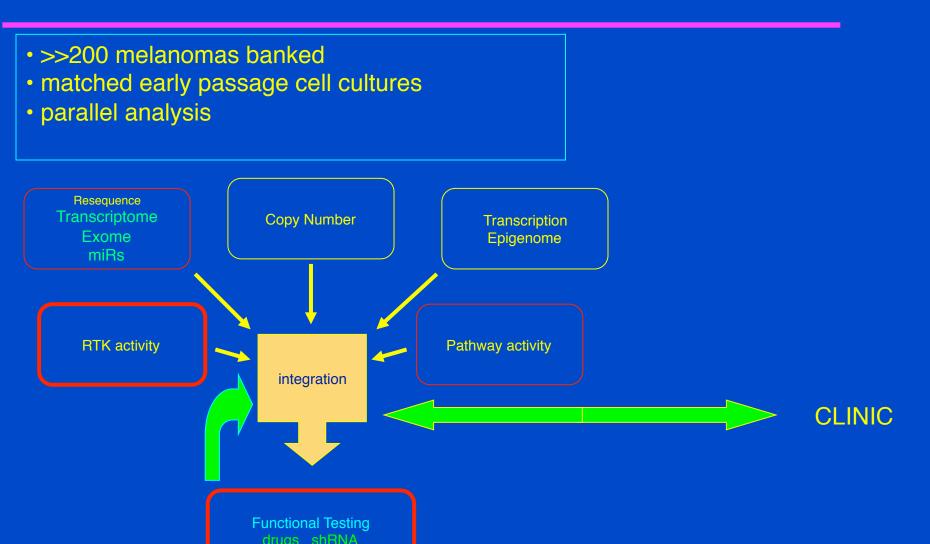

RADIOTHERAPY

SIGNALING

IMMUNOTHERAPY

DNA DAMAGE

IMMUNOMODULATION

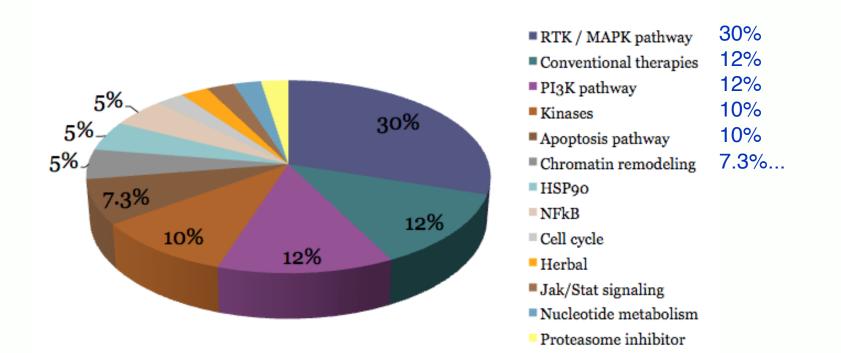


DNA/cDNA sequencing

Copy Number
Transcription
SNP
Substitutions, InDels
DNA Rearrangements
microRNA
Epigenetics
proteomics

identify driver(s)
identify patterns of sensitivity
identify drug sensitivity signatures
anticipate drug resistance
learn how to kill cancer cells
distill for clinical practice

Yale SPORE in Skin Cancer Ruth Halaban, PI


Single agent screening MARCUS BOSENBERG

- Single agent screening
 - 153 compounds
 - 16 point dose response curves
 - 26 human melanoma lines, two breast, mouse
- clustering for patterns of single agent dose responses
- integration with SPORE data to...
 - identify genotype-based sensitivity
 - identify biomarkers predictive of response or resistance

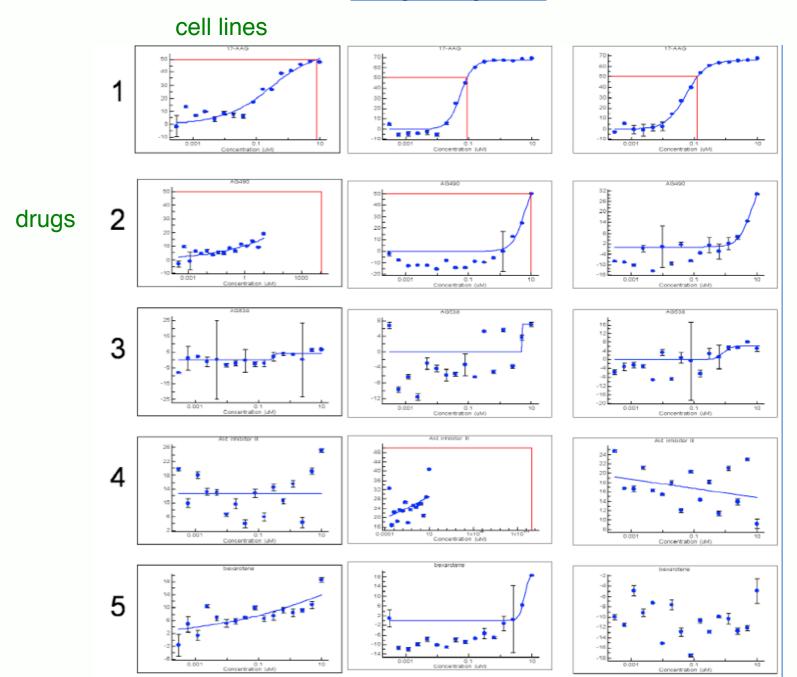
Single agent screening

Yale Center for Small Molecule Discovery

- 153 compounds
- 16 point dose response curves in triplicate
- 3 day assays: CellTiterGlo
- 26 human melanoma lines, two breast, mouse

2 EGFR 2 EGFR/HER2 3 FGFR 3 IGF1R 4 MET 5 FGFR, VEGF, KIT 5 AXL, Src.JAK, 5 Kit, P, Abl 5 PDGFR/VEGFR 5 Abl/Src 5 Abl/Src 5 VEGFR/EGFR 5 VEGFR/PDGFR/k 5 VEGFR, Kit, PDGF 6 JAK2 6 Stat3 6 Stat3 8 p38 9 Jnk 10Raf 10 Raf* 10 MEK 10 MEK 10 MEK 12 Chk 11 Akt 11 Akt 11 mTOR 11 mTOR NFKb, mTOR 11 PI3K,pentose 12 kinases 12 Rho kinase 13 HSP901 12 Aurora 12 GSK3beta 12 CDK4 12 CDK 12 CDK 14 TLR 14 NOTCH 14 ER 14 RXR 14 RAR 14 Hedge Hog 14 Hedge Hog 14 Cox2 14 MIF 14 Bol-2 inhibitor 14 Bcl-2 inhibitor 14 proteasome

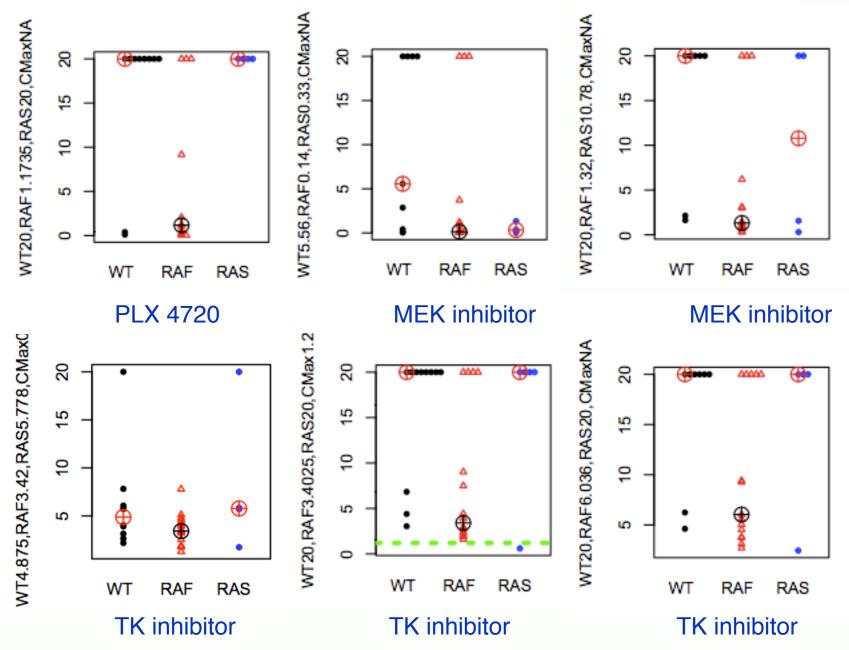
21 microtubule


21 microtubule

21 microtubule 21 microtubule 22 HDAC

22 SAHA HDACI 22 5-AzaC

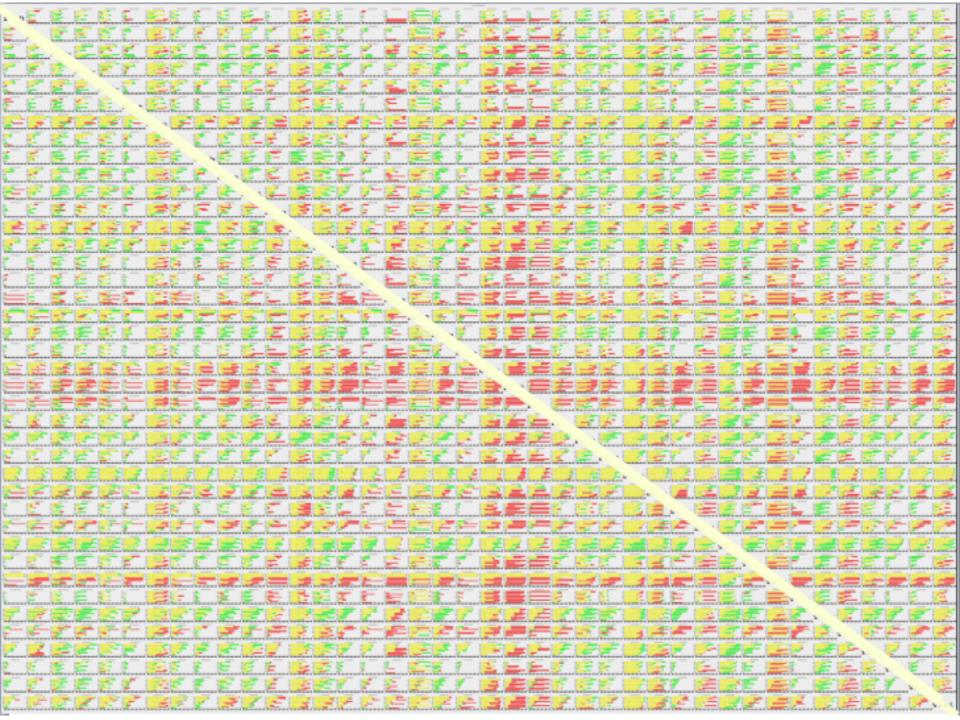
1 ALK

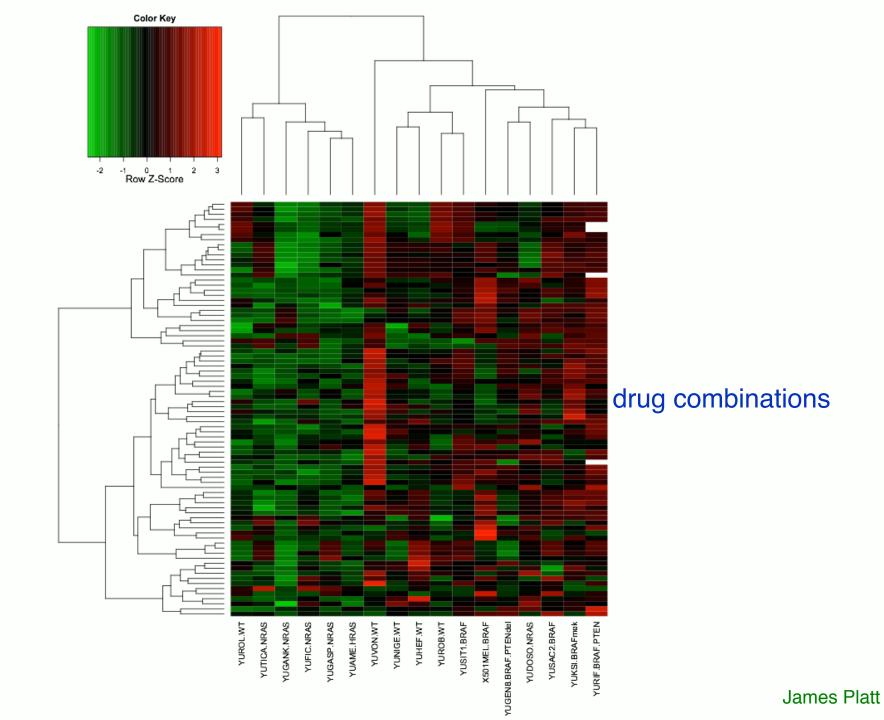

Single Agents

20 Call Chains 152 compounds

30 C	ell S	Stra	ain	S,	15	3	cor	np	oui	nds															
ariote its gatheris	- 4	77					4	E-1 (081)	-1	444	- 3	7		YURSUI	77	FF	414		437	J.70		4	146		rolk Profe Profe
Lipudello PD (173676 SUS-62	263	• 47		191	9,00		- 58		•	77	444	77	*41	268		i. Linia	E P		7.25	1		1	151		rofreskrik I Forr I Forr
60536 BHS 536904 PO461		116	651		727		-1	24-	*	6.76	4	4	1.1	616	6.02	6.48	151		123	4	7.81	- 4			IMFIR IMFIR IMFIR
physics TS3 Bookin ib Chinasi bookin ib Marin ib	2/18	113		749	134	175		74.	17.4	2.25	1	298	J.T1	121	7	275	18		184	1.25 2.25 2.26	741 239 142	2.7	331 156	- 36 5	- HET SFORR NEOF, HOL SKILLSKY JOH, J SKILLSKY
aoraineile ann imilia Danaineile	240	1.69	*26 191		7.12	*.59 6.15		117 174	- 7	1.22	2.79 4.78	- (8	136 336	1.5% 1.7% 1.7%	178	135	150	2.17 +.76	9,14 133 2,15	3.38 1.87	2,41 2,42 8,41	- 21	254 131	*.16 S	Sveger Poger, I Spoger Arger Schler
rice is Variouris do Meis	ATS	•49		•#1 •#1	7.11		7.13		יי	454	2.29	1.4	· £T	F	1.71	E la m		277	3,75	1.0		777	2.76	• 51 S	s obbiec s veger eiger s veger eig ger e
kautelb 60e96 51 (-36) Sank		М		6.66		697		6.71	Ÿ	- 7		-	1.23	6.16	Ŧ	Ť	-	153		-	1.21	-	6.72		svener japoner 1 16k2 1 Sud 1 Sud
PP) SECOLSES JAIK HABBORE		П					444		Ţ	44.	445	414		E Prije	П	467	14	197	3.36	45.4		444			Tárc Í plá Papk
PLX+612 PLX+276 GDC 6479		226	2.12		784		201		Ŧ		6.79	6.78	6.16	6.64 6.12		6.54	250		8.12 8.24	6.41	4,43	250	237		ióRuf ióBRuf
PD 196366 166126 CIP 13-74 6370 7762	174	726	2.1	13.0 13.0	123	107	-27	5.1* 6.14		*.(2)	669	6.90	2012 6423 6453 1453	6.05 6.05 6.03		173	736	256 134 6.14	1.17	5.78 6.78	1.7% 6.0%	2.99	635 644 631	3.16 (645)	16 HER 16 HER 16 HER 12 CH
64 (P) Blor B Bao-235 rapape de	6.74	6.02		6.0		t-t-	127		£ £ 4	6.6	6.66	81.6	6.15	6.63	464		6.65	621	131	6.67	1.13	6.0		6.36	LLEGAL LLEGALOR LLEGALOR
Lysylees Perikalna Historia Ruados		*41	8			4	3			**			45.54	262		7	-	-36		-	*4	-3	.27		HPUR HBU HBU HBUOR
Tanakolina a Carcando SAT	6.08	663	6.42	6.67	7.15 8.15	6.63	्र संदर्भ (संदर्भ	6.22	Ť	6.61	6.63	6.63	13.3	6.61	6.64	6.61	6.63	616	144	6.68	8.47	6.00	LAA		LLINTOR REPONITOR LLINTOR
Suprosportes (A)7517	6.66	6.15		6.61		626	(dalm	6.61		6.63	6.64	6.63	6.66	6.66	661	6.66	6.64	6.6*	141	6.63	141	4	661	6.63	i Plikperose 12kbases 12Rbokbase
17-01-64 17-664 Too seemb 6R-6611=18	6.67	661 6.0	626	٠,	127	666 663 26*	1.12	621	6.63	• 27	70.0	6.6-	6.63 6.12 • £8	626 621 147	6.24 6.24	6.64	6.63 (.43 (.43	(1/f2 	8.18 3.12	6.00	122	6.60	6.16		id MSP96 id MSP96* id Seroru id GSRIBeu
PD-6332991 Roscoville						727							444								9 F F		159		13CDM 13CDK 13CDK
Principade DEC Turned librations Securosses							3		44.24		- 1	-3	فقاد	7		£43E	15.45			7		7			1= TLR 1 1= HOTCH 1= ER 1= RXR
Trefroir Cyclopardre GDC 6=9							4		H A	446.	7					144.	444			4		4			is beedshod is peedshod
calaccolb HE-604 HE-164 HE-164	4	η				1			1	1	_		FFFF		4	7				,	F	4			1= Coo } 1= HEF 1= HEF 1= HEF
HF-112 HF-119 HF-151													1664								÷				1 HE 1 HE
HE-150 Thatlacedae Historia	4					1			7	Ţ	4	1	i.a.a.i.	П		4	7	8		4.4	7	1			= 146" = 26 = Bc1-2 in 6 Biblion
607-737 borren cerib 16664-Fe publis el	6.66	6.61	626	626	121	6.66 1.91 6.66	0206	626	6.70	83.6 72.1	626	6.61	6.64	6.66	6.61	6.66	6.61	646	141	6.62	141	661	626	6.66	r= Sch2le Fiblion r= prosessiones r= HVC 2r referon beta
babapilora Historycia C Virbinalirani ilina Virbinalirani ilina	6.61 	291	128	175	141	6.66 6.66 6.61	1.76	6.15	1.78	626 626 126 126	6,63	1,63	667	6.56 6.53 6.63	127	6.63 1.74 6.66	6.68 6.63	6.06	1.12	6.5	8.44 8.18		1.15	g.ex	21 reionombele 21 reionombele 21 reionombele
Trickeeut 6 Verbeau Declubbe 667-444	6.0	179 911	649	es.	833 276	120	6.4	6,03	Ţ	6.58	2.96	PL6 P&1	6.2T (all)	6.03	6.16 1.12	225	143	692	325	1.53	1.17	1.56	6.1*	3	22 564 6 4 D 6CT 22 564 6 4 D 6CT 22 5-60 1C 21 968 9
Cartoplair Cartoplair Ngh Coaliplair	777		226			256		127	귀	1.79	444	- 7	**	2.78		326 6.56	- 53		441	1	421	45.4			I Plane I Plane I Plane
Claptate Terror clords e Terror clords e							1		T T	444	***	444	4 54	44		£ £ 4.3.	114			444		444			li Prang 1266ylur 1266ylur
Carrente Fulcégius Certe Danscontide FCI	4	612	640	616		6.61	663	6.6TH	4.0	A (T	6.67	6.07	6.63	6.63	612	6.00	6.0	6.16	145	65	7	1.T%	684		l Petroaceres I Pathylatice I Pathylatice I Pathylatice
Decemble Capacitable	6.64	6.13 663	6.64			661	6.69	6.661	6.00 6.50 7	6.75	6.0	6.18	73.6	6.64	6.13 667	6.66	6.75	6.66	147	6.66	1.16	6.61	6.64	6.64	l J dartu appracyc I s-Fu

Does drug sensitivity assort with Genotype? ${\tt uM\ conc.\ 50\%\ Growth\ Inhibition\ by\ Genotype}$

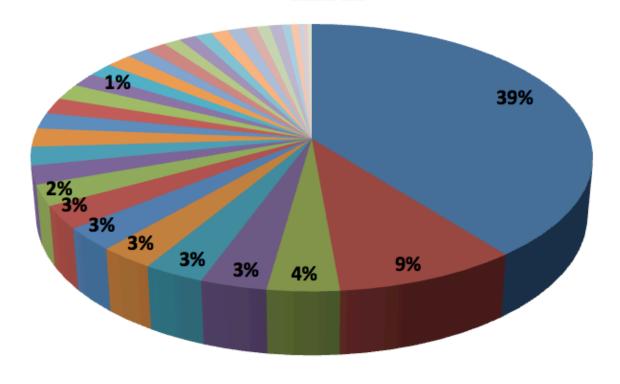

combination screening


Yale Center for Small Molecule Discovery

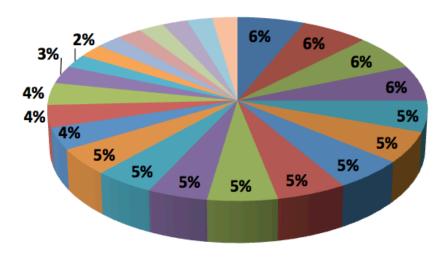
- Identify potentiators of...
 - » maximal effect
 - » dose-dependence
 - » cell killing
- drugs
- interacting pathways

Combination testing

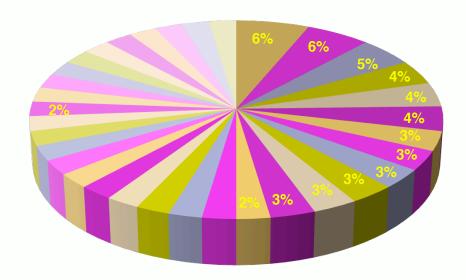
- 40 compounds at 3 concentrations
- BRAF, RAS, WT
- filter data to detect:
 - Synergy
 - Selective effect (genotype based)
 - Completeness of effect
 - Antagonistic effects
 - Enrichment for one agent in combos



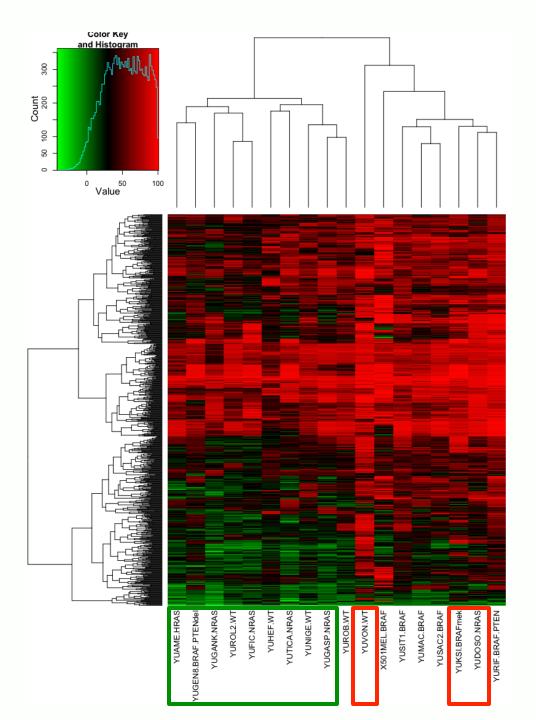
Drug	#times in a combo
A	141
В	33
B C	13
D	12
E	11
F	10
D E F G	10
H	10
1	9
J	8
K	8
L	8 7 7
M	7
N	
0	7
Р	6
Q R S	6
R	6
S	5
Т	5
U	4
V	4
W	4
T U V W X Y Z	4
Υ	4
Z	3
AA	3
BB	3
CC	2
DD	3 3 2 2 1 1 1
EE	1
FF	1
GG	1


filters for.. threshold combination effect threshold maximum effect internal consistency of combination data points < CMax

. . .


Frequency drug appears in a combination selective for NRas mt lines

Frequency of combinations selective for <u>NRas mt</u> lines (at least 3 combinations as cutoff)



Frequency of combinations selective for BRaf mt lines (at least 3 combinations as cutoff)

What accounts for variable sensitivity?

uM conc. 50% Growth Inhibition by Genotype WT20,RAF1.1735,RAS20,CMaxNA WT20,RAF1.32,RAS10.78,CMaxN WT5.56,RAF0.14,RAS0.33,CMaxN 20 8 8 5 5 5 \oplus 10 9 9 5 S 2 0 RAS WT RAF RAS WT RAF RAS WT PLX 4720 **MEK** inhibitor **MEK** inhibitor WT4.875,RAF3.42,RAS5.778,CMax0 WT20, RAF3.4025, RAS20, CMax 1.2 WT20,RAF6.036,RAS20,CMaxNA 20 20 20 15 15 15 9 9 10 **(1)** 2 2 2 RAF RAS WT **RAS** WT RAF RAS **RAF** WT TK inhibitor TK inhibitor TK inhibitor

Resistance Signature: Supervised clustering transcription profiles resistant vs Sensitive WT/NRAS

Summary

ongoing:

- cells from defined mouse models (Marcus Bosenberg)
- connect to phosphoproteomic data
- link to exome sequencing, CN, ...
- animals

for...

- mechanism
- apoptosis
- pathway/target interactions
- predict sensitivity

Rationale:

Scientific challenges for single signaling therapies

Resilience through transcriptional routes (autocrine circuits)

Resilience through intra-pathway feedback and inter-pathway cross-talk

Pathways have multiple efferents

Redundant drivers (EGFR + MET amplification)

Bypass mutations (PTEN)

Rapid routes to resistance

Genetic and epigenetic plasticity

On-target mutations

Bypass mutations

Tumor cell population heterogeneity

Ignorance about...

Inducing tumor cell kill

Rationale:

Scientific **opportunities** for signaling therapies

Feedback/network responses to signaling perturbations

Crosstalk of signaling, DNA damage responses, cell cycle regulation

Best combinations of pathway inhibition

In vitro and in vivo assay development

Epigenetic regulation, esp. for reactivation TS genes

Combinations with other modalities...

DNA damage agents/Radiotherapy with repair inhibitors Immunomodulation to complement other approaches Immunomodulation in partnership with Ab therapies

Practical Challenges/opportunities for investigation

Academic role

- Cancer biology/genetics
- Target identification (molecules, pathways, interactions)
- Pharmacology, medicinal chemistry

Access to compounds

- IP
- Federal: NCI DTP, Experimental Therapeutics Program (NExT)
- Pharma: on-target but shelved compounds
- si/shRNA for target selection

Practical Challenges/opportunities for investigation

Scale: exponential nature of combination screens

- Focus on targets/pathways rather than drugs
- Hypothesis: know the target and relevant pathways
 - e.g. Trastuzumab to dual and pan-ErbB
 - · e.g. immunomodulation
 - e.g. PARP inhibitors X BRCA1
- How do effective therapies work?
 - Trastuzumab, Lapatinib
- Sensitization screens vs. single challengers
- Genetic and functional information about co-activation

7. What lessons have been learned, and what would you recommend to improve?

Still much basic and applied science remains

interactions of target pathways

apoptosis

patterns of drug response

patterns of drug resistance

interpreting transcriptional phenotypes

feedback pathways

Toxicology

Patient selection

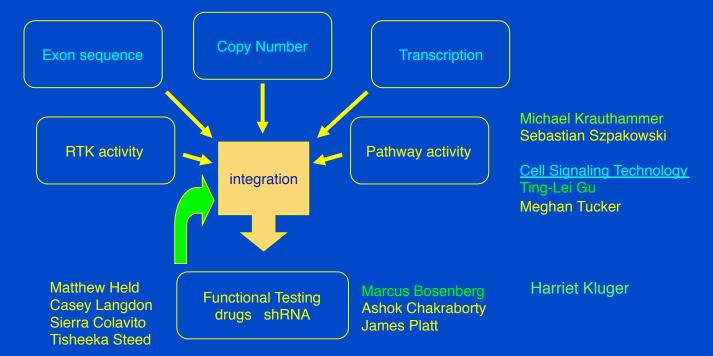
- Mapping t.c. and animal models onto clinical predictions
- Clinical: rebiopsies, neoadjuvant models
- Monitoring: biopsy, CTC for tumor burden

9. Is there a role for precompetitive collaboration for development of combination Cancer therapies?

- Overall alignment of Academic, Pharma, and NIH goals
- But...

IP, proprietary information, credit, priorities

- Government: economy of scale, drug and shRNA libraries
- Bidirectional interaction Pharma and Academia


Yale SPORE in Skin Cancer Ruth Halaban, Pl

M. Sznol, R.Tigelaar co-PI

Antonella Bachiocchi

Kat Tworkoski Garima Singhal Tina Zito

Rahul Dalal Betsy Cowell

Roslyn and Jeremy Meyer Fund Harold J. Lloyd Trust Anonymous

Yale Small Molecule Discovery Center
Janie Merkel

Michael Salcius Mariya Kolesnikova