Combination of Molecularly Targeted Agents (MTAs)

- Clinical Perspectives

Helen Chen, M.D.
Investigational Drug Branch
Cancer Therapy Program (CTEP)
NCI

Cancer targets and available agents — opportunities for combination studies (a partial list)

- Approved agents
 - Estrogen /androgen receptors
 - BCR-ABL (Imatinib, dasatinib, nilotinib)
 - C-KIT (Imatinib)
 - EGFR (Gefitinib, Erlotinib, Cetuximab, Panitumumab)
 - HER2 amplification (lapatinib, Trastuzumab)
 - PDGF mutation Imatinib
 - mTOR (temsirolimus, everolimus)
 - VEGF (Bevacizumab, sunitinib, sorafenib, pazopanib)
 - Proteosome (Bortezomib)
 - HDAC (vorinostat)
 - Methylation (azacytidine)
 - CTLA-4 (ipilimumab)

- Validated targets with Investigational agents
 - PARP BRCA deficient tumors
 - Hedgehog (PATCH mutation) basal cell ca
 - JAK2 myelofibrosis
 - EML4-ALK- crizotinib
 - BRAFV600E melanoma
 - MEK

- Emerging targets/agents
 - AKT
 - TOR1/2
 - P13K
 - C-MET/HGF
 - IGF-1R
 - BCL-2 family
 - TRAIL
 - STAT
 - SRC
 - CK2, Ron, AxI
 - "Stem cell" targets
 - **–**

Challenges in combining two or more NMEs:

IP, Regulatory, and Scientific

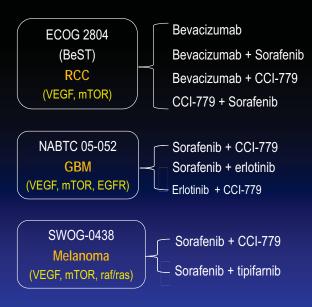
Outline of discussion – Scientific issues

- General consideration
 - Identifying and prioritizing combinations for clinical testing
- Clinical experience
 - Toxicity and efficacy
- Challenges and critical gaps

Which combination?

- rationale and hypothesis
- Derived from high throughput screening:
 - Genomic tools: e.g. siRNA library + agent of interest
 - Unbiased binary drug combination screen: e.g. "COMBO-Plate"; CombinatoRx
- Mechanism based experiments:
 - Maximize inhibition of a critical target
 - e. g, VEGFR + VEGF; Her2 TKIs and Abs
 - Maximize inhibition of a pathway (linearly):
 - e.g. Her2 + mTOR
 - Block parallel pathways/cellular process
 - e.g. *antiangiogenic + antitumor;
 - Overcome resistance/escape mechanisms:
 - e.g. IGF-1R + mTOR; BRAFV600-MEK; MEK- AKT/PI3K; AKT -RTK
 - HDACi + Proteosome inhibitor
 - Many others...

Prioritization for clinical evaluation amongst many possible combinations


Factors to consider (no set of criteria will fit all):

- Most essential: credentials of the individual agents
 - Adequate PK and safety of each agent
 - Evidence of clinical activity, and/or target engagement in patients
- Level of clinical validation of the individual targets
 - Biological activity in the indication to be treated
- Strength of <u>preclinical</u> POP for the combination (esp. important if only one or neither agent was clinically active)
 - Tested at clinically relevant doses/exposures?
 - Degree of therapeutic enhancement? (growth inhibition → cell kill)
 - Consistent results in multiple models?
 - · Or molecular contexts of synergism identified?

6

Examples of NME combination trials in the pilot project 2003 (VEGF, EGFR, mTOR)

- Investigational agents supplied by respective CRADA partners
- Phase I, followed by Randomized phase II design
- Mandatory baseline tissue collection and central banking
- Central depository of imaging data (DCE-MRI)

Trials based on best available knowledge and strong rationale *However,*

- Limited knowledge about the optimal dose/schedule
- No patient selection markers

To date, hundreds of target agent combination trials have been conducted, for various targets, and agents

- Agents w/o selection markers
 - EGFR (in EGFR WT)
 - mTOR
 - VEGF
 - Proteosome (Bortezomib)
 - HDAC (vorinostat)
 - CTLA4
 - PARP
 - IGF-1R
 - BCL-2 family
 - SRC
 - SHH (in paracrine mechanisms)
 - NOTCH

- Agents with candidates of selection markers
 - AKT
 - P13K
 - C-MET/HGF
 - MEKC-MET

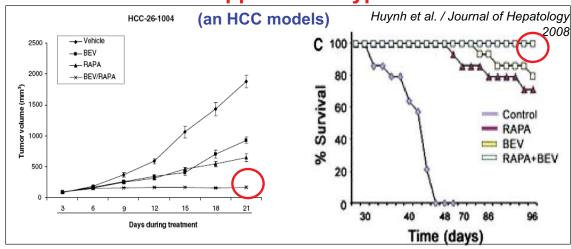
- Agents with known predictive markers
 - HER2 (amplification)
 - BRAFV600E
 - EGFR (mutation)....
 - BCR-ABL; PDGFRA (mutation)

http:Clinicaltrials.gov

Sponsored by industry, academia or NCI

Recent combination studies (a select list)

- ■IGF-1R + MEK
- ■MEK + mTOR
- ■EGFR/HER2 + mTOR


- ■IGF-1R + mTOR
- ■MEK + AKT
- ■HER2 + AKT

Clinical experience

» Tolerability and efficacy» Challenges

Example 1 – VEGF + mTOR

Preclinical data supports the hypothesis

*Similar results in ovarian, RCC and pancreatic ca models

• Clinical agents available and individually active

mTOR inhibitors
 •Temsirolimus; Everolimus ; Deforolimus
 •Bevacizumab; Sorafenib; Sunitinib; others
 Active in:
 •RCC; Endometrial ca; Neuroendocrine ca
 •multiple continuation in the sunitinibitors
 •Bevacizumab; Sorafenib; Sunitinib; others
 •RCC; Endometrial ca; Neuroendocrine ca
 •multiple continuation in the sunitinibitors
 •RCC; Endometrial ca; Neuroendocrine ca
 •multiple continuation in the sunitinibitors
 •RCC; Endometrial ca; Neuroendocrine ca
 •multiple continuation in the sunitinibitors
 •multiple continuation in the sunitinibitors
 •RCC; Endometrial ca; Neuroendocrine ca
 •multiple continuation in the sunitinibitors
 •multiple continuation in the

Example 1 – VEGF + mTOR

10

Tolerability

lerability	
VEGFR TKI + mTOR i	MTD
Sunitinib + Temsirolimus	Not tolerable despite dose reduction
Sorafenib + Temsirolimus	50% dose↓ (sorafenib)
Sorafenib + Everolimus	75% dose↓ (everolimus)
DLT:	G3 renal dysfunctionG3 rash
 G3 hand and foot syndrome 	• 00 Tasii

G3 typhitis

Enhancement in efficacy?

G3 cytopenia

```
Sorafenib + CCI-779 (Phase II)

• GMB - not active - RR: 0%; 6m PFS: 0%

• Melanoma - not active - RR: 0%; 6m PFS: 0%

•RCC - pending (BeST trial)
```

Bevacizumab + CCI-779

Phase I

MTD = Full doses of both agents

(Merchan et al, ASCO 2007)

Phase 2

Prolonged therapy not well tolerated

 ¬ ↑G3-4 toxicities (proteinuria; fistula, etc)

Enhanced Activity? (TORAVA trial, Escudier et al, ASCO 2010

	Temsirolimus/ Bevacizumab (n = 88)	Sunitinib (n = 42)	Bevacizumab/ Interferon (n = 40)
ORR	28%	24%	36%
mPFS	8.2 m	8.2m	16.8m
Median Rx duration	4.7 m		
Off-Rx w/o PD	50.0%	11.9%	30.0%

^{■ ↑} ORR over historical single agent data; however, no clinical benefit over SOC

BeST trial (CTEP) and Phase 3 trial results pending

MTD of MTA combinations

			MTD (cycle 1-2)
VEGFR	+ mTOR i	Bevacizumab + CCI-779	Full dose
		Sunitinib + CCI-779	Not tolerable
		Sorafenib + CCI-779	Dose reduction ↓ (sorafenib)
EGFR+	mTOR	Erlotinib + CCI-779	Dose reduction ↓
IGF-1R +	mTOR	IMC-A12 + CCI-779	Dose reduction / Full dose

VEGF + VEGFR	Bevacizumab + Sorafenib	Dose reduction ↓↓ (> 50%↓)
	Bevacizumab + Sutent	Not tolerable
EGFR + MEK	Erlotinib + AZD 6244	Dose reduction ↓
MEK + AKT	AZD 6244 + MK2066	Dose reduction ↓↓

EGFR + c-MET	Erlotinib + MetMab	Full dose
EGFR + VEGF	Erlotinib + Bevacizumab	Full dose
	Erlotinib + Sorafenib	Full dose

- Agents with higher specificity more "combinable"
- Combinations targeting the same pathways or "nodal signals" less tolerable
- MTD based on cycle 1-2 did not always predict feasibility of longer therapy

[•]Inadequate duration of therapy? Inappropriate discontinuation rules?

MTA combinations with <u>promising</u> activity

Maximizing inhibition of the same target

HER2 Ab + TKI **Trastuzumab + Iapatinib** Breast ca → *phase 3 (PFS)*

VEGF + VEGFR **Bevacizumab+ sorafenib** RCC, Ovarian ca (phase I) EGFR Ab + TKI **Gefitinib + cetuximab** NSCLC (pilot phase II)

Inhibition of parallel pathways

VEGF + EGFR BV + Erlotinib NSCLC → in phase 3 (PFS)

HCC

EGFR + c-MET **Erlotinib + MetMab** NSCLC (c-MET IHC+)

Other

IGF-1R + mTOR IMC-A12 + Temsirolimus Ewing sarcoma (phase I)

PI3K + MEK GDC + GDC Phase I
BRAF + MEK GSK + GSK Melanoma

*Many still awaiting confirmatory trials

 Agents with clinical activities individually more likely to show additive efficacy when combined

Combinations of MTAs that "failed" in clinical trials

Targets	Combinations	Indications
VEGR + EGFR	BV + Chemo + panitumumab	Colon* → worse PFS and OS
	BV + Erlotinib	Pancreatic, RCC, breast
	Erlotinib + sorafenib	GBM
VEGF + PDGFR	BV + Imatinib	RCC
mTOR + Estrogen	CCI-779 + aromatase i	Breast*
mTOR + ImmunoRx	CCI-779 + INF α	RCC*
mTOR + EGFR	CCI-779 + Erlotinib	GBM
mTOR + VEGF	CCI-779 + sorafenib	GBM, Melanoma

* Combinations failed, even though individual agents were active in the same clinical setting

What went wrong?

- Wrong hypothesis? Incomplete understanding of the biology
- Inadequate dose or duration of therapy?
- Wrong patient population or lack of patient selection?

The dose and schedule question

If reduction of drug exposure is necessary for a combination.....

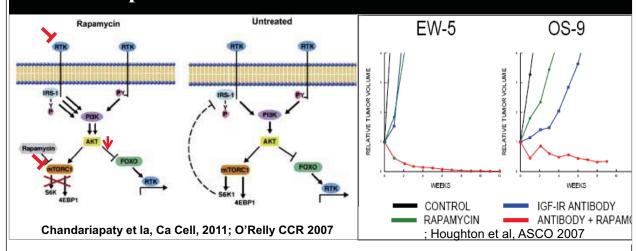
What would be the optimal dose ratio?

½ dose of A + ½ dose of B ¼ dose of A + Full dose of B Full dose of A + ¼ dose of B

Is intermittent exposure sufficient or better?

Need to known ...

- Preclinical
 - Optimal schedule/doses
 - PD/PK required for synergism; surrogate marker of cytotoxicity
- Clinical
 - PD/PK at the chosen and deliverable doses
 - May need to test more than one dose/schedule (with clinical and PD endpoints)

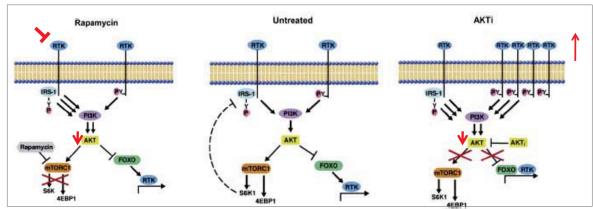

Patient selection issues

- A given combination can be synergistic or antagonist in different molecular contexts. Patient selection is key to ...
 - Improving trial efficacy
 - Avoiding unnecessary drug exposure or negative outcomes
- If a combination requires significant dose reduction, therapeutic window may still (only) exist in <u>selected</u> patients ...
 - If the tumor is exquisitely sensitive to the agent
 - * e.g. EGFR TKIs in EGFR mutant NSCLC (MTD may not be necessary)
 - If the molecular context is associated with synergism
 - True synergism may confer better efficacy despite dose reduction

.... how to find these pts?

Issues with tumor biology

-- Experience of IGF-1R and mTOR combination


Phase 1 trial IMC-A12 + Temsirolimus (Naing, .. LoRusso, ASCO 2011)

- Expansion cohort for EWS (n=17)
 - ORR: 2/17 (12%)
 - 1CR (16m+) in pt with prior IGF-1R mab failure
 - PFS: 5/17 (29%) at 5 months

IMC-A12 alone

- ■ORR: 1/18 (6%)
- ■PFS 2/18 (11%) at 2.8m

There are more escape mechanism!

Chandariapaty et la, Ca Cell, 2011 (Rosen)

- AKT inhibition can induce activation of an array of RTKs
 - •HER3, InR, EGFR, FGFR, EGFR,
- Which RTK is responsible for escape depends on different cell lines and underlying molecular makeup
- ■Further studies may identify which RTK should be inhibited in which patients
 - •However, other escape pathways may emerge!

Optimizing the patient outcome – therapeutic goals and strategies

- Search for combinations that are truly synthetically lethal to tumor cells:
 - Intensive, short course (sustained response or cure)
- If tumor control requires continuous therapy, consider
 - "lighter" dose or regimen that can be tolerated up to tumor progression
 - Sequential rather than concurrent use of active components
- Incorporate agents that act beyond the tumor molecular complexity
 - Active immunotherapy (vaccine, anti-CTLA4, PD-1 ...)
 - Other modalities

What have we learned about combinations among MTAs

- Adverse effects on normal tissues may limit the spectrum and degree/duration of combined target inhibitions
- Efficacy results have been variable, with (modest)
 successes and notable failures preclinical data not
 easy to translate
- Identifying the optimal dose/schedule <u>and</u> the right patients may improve the therapeutic index and outcome

Filling the Gaps

- Systematic preclinical studies across diverse molecular backgrounds
 - Identify molecular contexts predictive of synergism or antagonism
- In-depth studies on individual agents and their combinations
 - Define molecular effects on targets; surrogate markers of biological activity
- Models for toxicity studies
 - Predict risk, explore mechanism and mitigation strategy
- Systematic effort in biomarkers infrastructure
 - Marker discovery, assay development; assay performance
- Resource and tools to facilitate biomarker incorporation in clinical trials

Acknowledgement

- NCI/DCTC
 - James Doroshow, M.D., Director, DCTD
 - Sherry Ansher, Ph.D., RAB, CTEP
 - Jeff Abrams, M.D., Associate Director, CTEP
 - James Zwiebel, M.D., Chief, IDB
 - Michaele Christian, MD (former CTEP Associate director)
- Investigators
- Industry Collaborators