Challenges to Delivery of High Quality Mammography

Overview of Current Challenges

Barbara Monsees, Washington University

Geographic Access, Equity and Impact on Quality Tracy Onega, Dartmouth Medical School

Audits and the National Mammography Database Carl D'Orsi, Emory University

Advising the nation • Improving health

Relevant Questions

How do we ensure broad access to high quality mammography?

What do patients need to understand about new technologies?

How does supplemental screening fit in?

How does the introduction of State laws mandating dense breast notification change expectations, outcome tracking?

Relevant Questions

What does MQSA require with respect to audits?

How does BIRADS address audits?

What tools are used to audit?

What are appropriate audit measures?

How often should audit data be reviewed?

What are reasonable goals for recall rates, detection rates, tumor size/stage?

What are reasonable tradeoffs for sensitivity/specificity?

Overview of Current Challenges

Barbara Monsees, MD
Ronald and Hanna Evens Professor of Women's Health
Washington University Medical Center, St. Louis
Mallinckrodt Institute of Radiology

Advising the nation • Improving health

OF THE NATIONAL ACADEMIE.

OF THE NATIONAL ACADEMIES

Breast Imaging includes screening and diagnostic mammography, ultrasound, MRI, image guided needle biopsy and other modalities

Expectations are high

Medicolegal implications are an issue

High volume

Variability in interpretation has been a problem

Double reading not feasible

More modalities/procedures can be helpful in patient management, but are time consuming

Who reads mammograms?

There are now more specialists who are dedicated breast imaging radiologists

Digital mammography makes centralized interpretation of screening mammograms feasible; less workable for diagnostic evaluation, where a radiologist should be present

Some groups use general radiologists to interpret screening mammograms or perform diagnostic workups, including breast ultrasound

Almost no non-radiologists, if any at all, interpret mammograms

Individuals who identify themselves as interpreting BI exams or Mammography

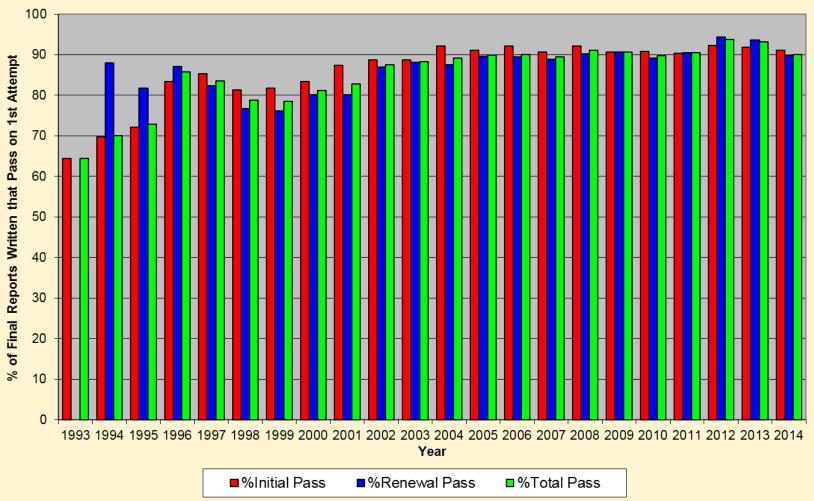
Source: ACR

Job	Individuals	ACR members
100% breast imaging	647	491
Spend time doing BI	7212	5208
Spend time doing Mammo	9050	6549
Both BI and Mammo	6835	4966

Mammography has improved

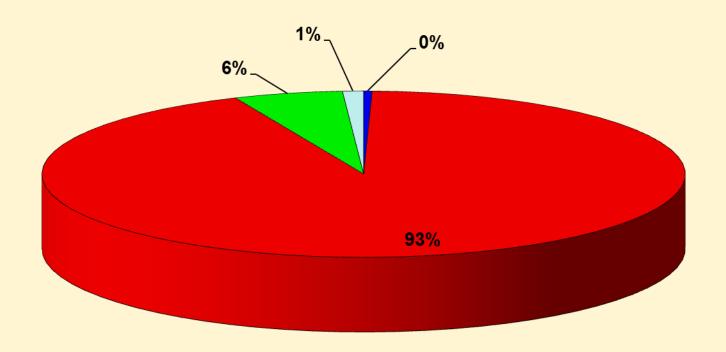
ACR Mammography Accreditation Program & MQSA

Technologists have learned how to produce better images with good compression and positioning


Digital Mammography: Technique factors less of an issue due to wider recording latitude and elimination of film processors

QC easier and more streamlined

Fewer lost exams & ease of transfer


ACR Mammography Accreditation Program Pass Rates

Advising the nation • Improving health

MAP Reasons for Unit Deficiency - 1ST ATTEMPT 2014

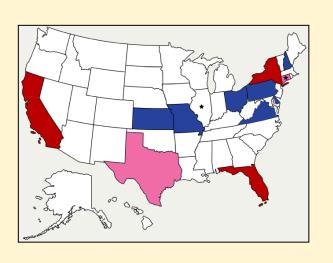
■Clinical + Phantom ■Clinical Only ■Phantom (no clinical) □Only Dose

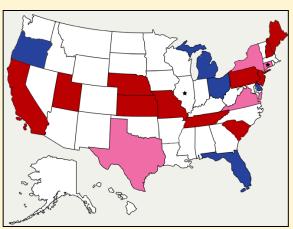
When MQSA was reauthorized, a requirement was added re: sending patients a summary in lay terms within 30 days

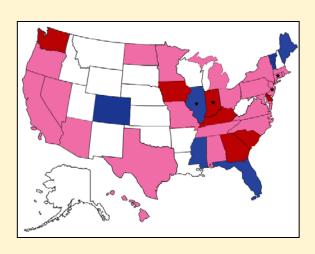
Communication of Results to Patients

Citation:

900.12(c)(2)(i),(ii): Communication of mammography results to the patients. Each facility shall send each patient a summary of the mammography report written in lay terms within 30 days of the mammographic examination. If assessments are "Suspicious" or "Highly suggestive of malignancy," the facility shall make reasonable attempts to ensure that the results are communicated to the patient as soon as possible.


- (i) Patients who do not name a health care provider to receive the mammography report shall be sent the report described in paragraph (c)(1) of this section within 30 days, in addition to the written notification of results in lay terms.
- (ii) Each facility that accepts patients who do not have a health care provider shall maintain a system for referring such patients to a health care provider when clinically indicated.




September 2011

September 2012

April 2015

D.E.N.S.E.^R State Efforts

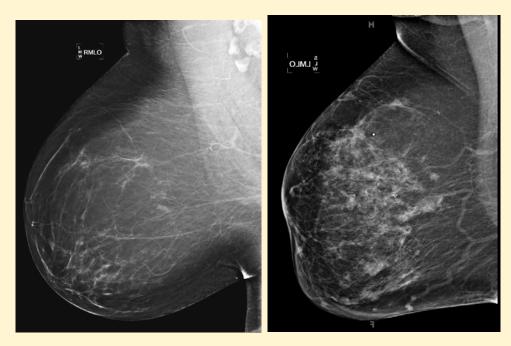
State Dense Breast Legislation Varies

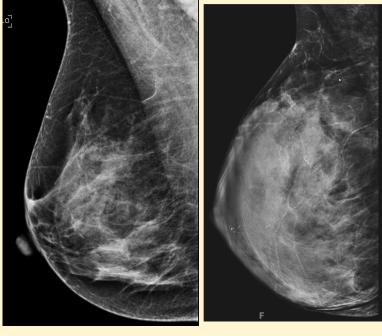
- Type of notification (letter vs poster in breast center)
- Language: Some legislation
 - requires that notification inform whether women have dense breasts; others do not
 - addresses supplemental screening
 - addresses other risk factors
- All say to speak with health care provider
- Few mandate payment for supplemental screening

Requirements for reports & lay letters

	Lay letter sent	Lay letter density	Report density
FDA	Yes	No	No
BIRADS	Yes	No	Yes

There is no guarantee that a women or her doctor will learn her breast density




What is Mammographic Breast Density?

Relative amount of fibrous and glandular tissue which attenuates x-rays on a mammogram.

Does not correlate with clinical breast examination firmness or lumpiness.

Almost entirely fat
Scattered areas of fibroglandular density
Heterogeneously dense
Extremely dense

Estimate: w

Estimate: women with dense breasts exceeds 25 million

Advising the nation • Improving health

Brian L. Sprague et al. JNCI J Natl Cancer Inst 2014;106:dju255

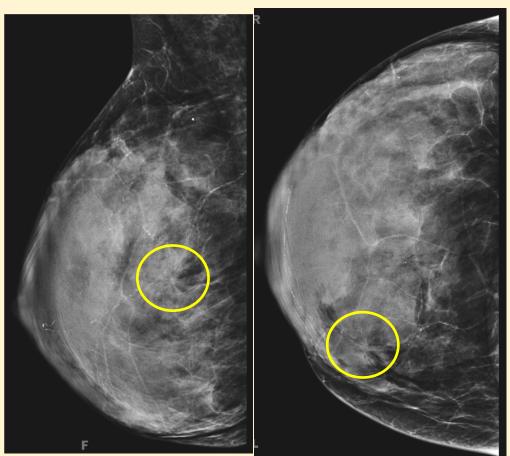
Breast Density and Sensitivity Mammography (Film-Screen)

330,000 women from BCSC, 1996-98; 2223 cancers

	Sensitivity %	
Fatty	88.2	
Scattered	82.1	
Hetero	68.9	
Extremely	62.2	

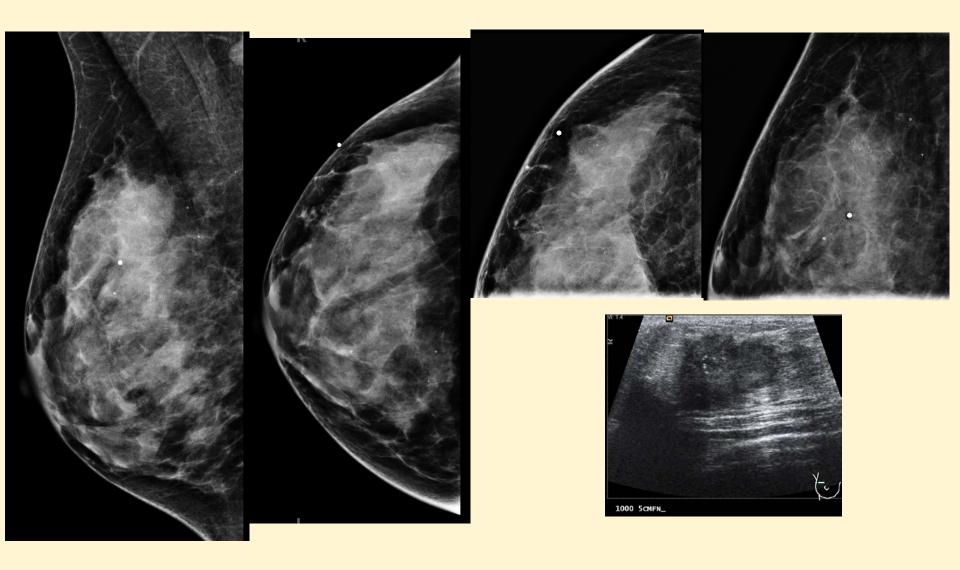
Carney et al Ann Intern Med. 2003;138(3):168-175

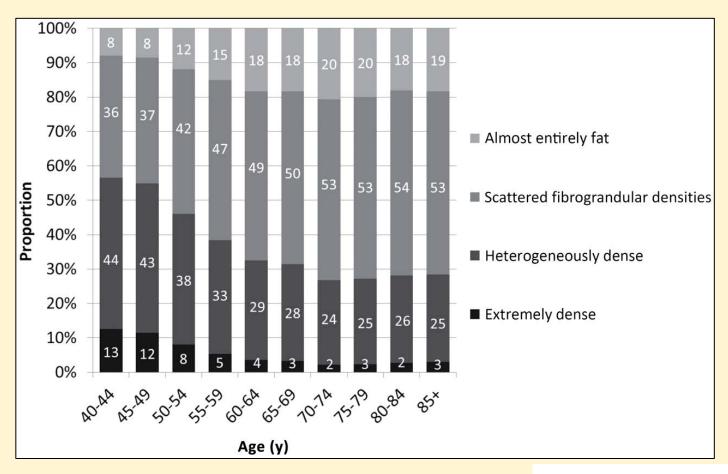
Copyright © American College of Physicians. All rights reserved




Mammo Sensitivity for Dense Breasts FFDM vs Film

	Film-Screen	FFDM
Hetero	79	82
Extremely	68	84

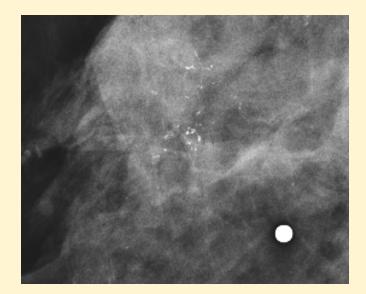

Kerlikowske et al, Ann Intern Med. 2011; 155: 493-502

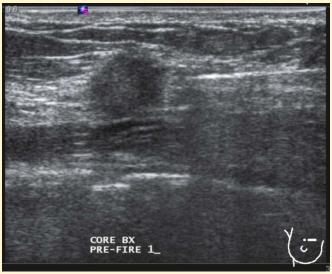


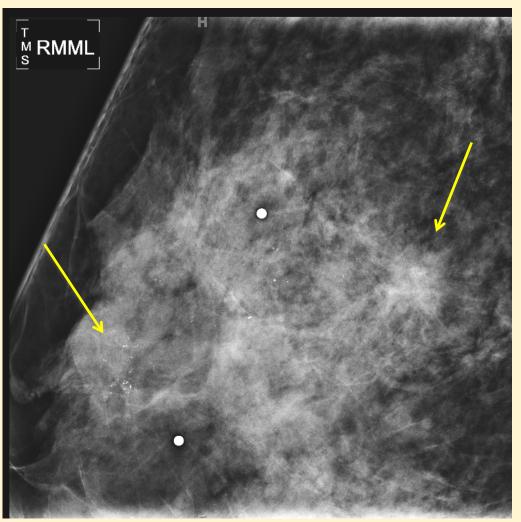
Distribution of BI-RADS breast density categories by age, Breast Cancer Surveillance Consortium, 2007–2010.

Brian L. Sprague et al. JNCI J Natl Cancer Inst 2014

Supplemental screening can detect additional mammographically occult breast cancers




ACRIN 6666


	Prevalence Screen		Incidence Screens	
	Mammo	Mammo +US	Mammo	Mammo +US
Recalls (%)	11.5	26.6	9.4	16.8
Sent to bx (%)	2.4	10.2	2.0	7.0
Cancer yield of bx (%)	29.2	11.4	38.1	16.2
Cancer rate per 1000	7.5	12.8	8.1	11.8
Short term followup (%)	3.2	13.8	1.6	5.3

Berg et al, JAMA 2008; 299 (18): 2151

Advising the nation • Improving health

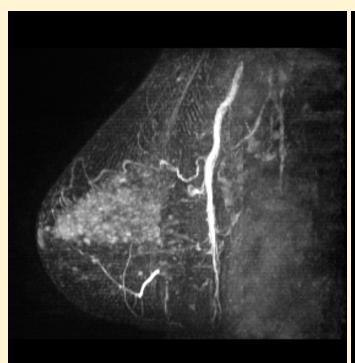
Published experience from CT shows that additional cancers can be detected by screening US

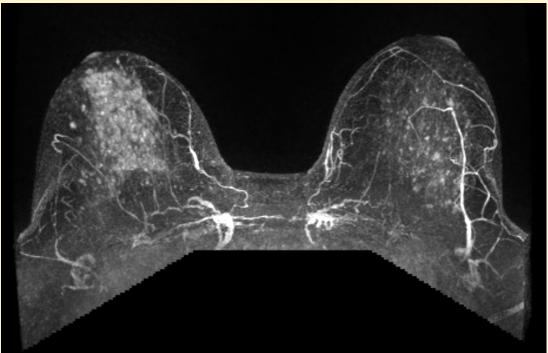
Hand held, performed by technologists

	Women studied	Incremental Cancer yield/1000
Hooley	935	3.2
Weigert	8647	3.2
Parris	5519	1.8
ACRIN 1st round		5.3
ACRIN subsequent		3.7

Hooley et al, Radiology, Vol 265; 1, October 2012, p 59 Weigert and Steenbergen, The Breast J; Vol 18; 6, November 2012, p 517 Parris et al, The Breast J, Vol 19; 1, November 2013, p 64

ACRIN 6666: Adding MRI after 3 annual screens with Mammo & US


Modalities	AUC
Mammo	0.63
Mammo + US	0.69
Mammo + US + MRI	0.95
Mammo + MRI	0.94


After 3 rounds of screening, 14.7 cancers were detected (per 1000) by MRI in women who had been already screened by Mammo + US.

Berg et al, JAMA 2012; 307 (13): 1394

High risk patient comes for screening MRI Extremely dense mammogram is normal

Abbreviated Breast MRI... a Novel Approach to Breast Cancer Screening

FAST 3 min breast MRI Additional cancer yield of 18.2/1000

Kuhl et al, J Clin Oncol 32: 2304

Short-Term Outcomes of Screening Mammography Using Computer-Aided Detection

A Population-Based Study of Medicare Enrollees

Joshua J. Fenton, MD, MPH; Guibo Xing, PhD; Joann G. Elmore, MD, MPH; Heejung Bang, PhD; Steven L. Chen, MD, MBA; Karen K. Lindfors, MD, MPH; and Laura-Mae Baldwin, MD, MPH

Conclusion: Use of CAD during screening mammography among Medicare enrollees is associated with increased DCIS incidence, the diagnosis of invasive breast cancer at earlier stages, and increased diagnostic testing among women without breast cancer.

Ann Intern Med. 2013;158:580-587

Digital Breast Tomosynthesis (DBT)

Mammography misses approx 20% of breast cancers

Of recalls from screening, 10-20% due to superimposed breast tissue

Lack DBT data on incidence screening rounds

For prevalence screening round:

DBT increases cancer detection

DBT reduces recalls for additional evaluation

DBT improves screening parameters in all but fatty breasts

	Design	Increase CDR	Decrease recalls
Ciatto	Prospective; paired	51%	17%
Skaane	Prospective; paired	27%	15%
Rose	Retrospective; non-paired	54%	34%
Haas	Retrospective; non-paired	10%	30%
Freidewald	Retrospective; non-paired	41%	15%
Durand	Retrospective; non-paired	4%	37%

Thoughts:

Mammography quality has improved and advances such as DBT can improve screening parameters

There are limitations to mammography and complementary technologies can improve cancer detection

Who should have supplementary screening and with what methods?

The workforce is not standardized and varies in practice settings

