

Advantages and Experiences with Trials that include Pet Animals

Chand Khanna, DVM, PhD, Diplomate ACVIM (Oncology)

Institute of Medicine Workshop2015

Advantages and Experiences with Trials that include Pet Animals

Disclosure/Perspectives

Chand Khanna, DVM, PhD Diplomate ACVIM (Oncology)

Cancer Biology/Translation

Consultant-Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute,

Comparative Oncology

Consultant-zfoundingDirector-Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland

Veterinary Oncology

The OnciologyService, LLC
Wasington,DC
Leesberg, Springfield, Richmond VA, Wasington,DC

AnimalHelthR&D

Consultant-Ainiml Clinical Investigation,LLC Wasington,DC

Advantages and Experiences with Trials that include Pet Animals

Disclosure/Perspectives

Chand Khanna, DVM, PhD Diplomate ACVIM (Oncology)

AnimalHelthR&D

Consultant-Ainimi Clinical Investigation,LLC Wasington,DC

Scientific Advisor- AbbottAnimal Health; Aratana Inc.

TGEN not-for- profit: Professor

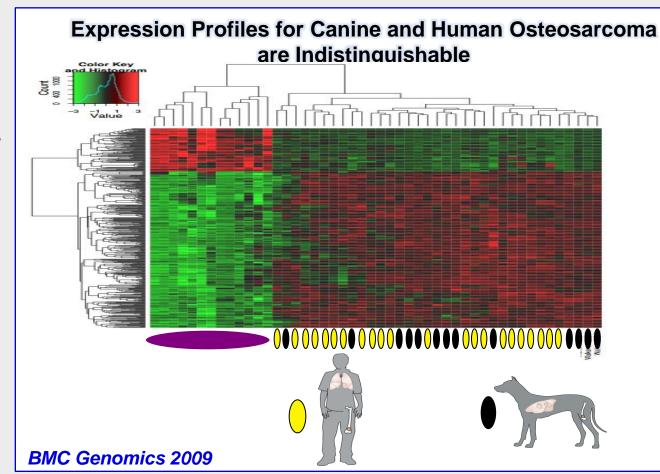
Cancer Biology
AnimalHealth

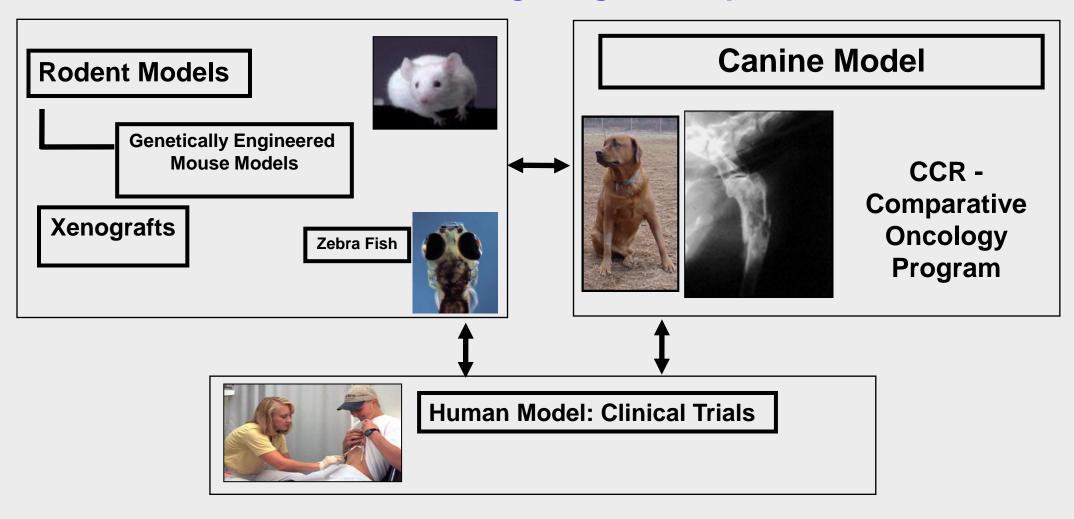
TGEN affiliateNewco.: CSO

AnimalHelthR&D

Comparative Oncology

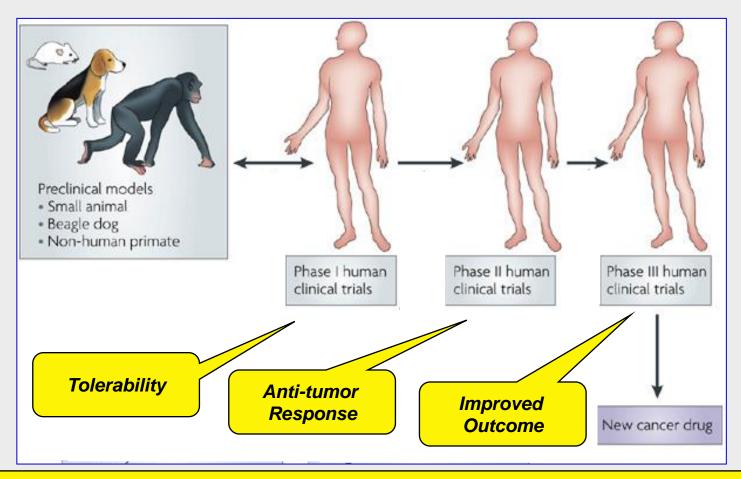
TO PROVIDE OPPORTUNITIES TO INCLUDE NATURALLY OCCURRING CANCER MODELS IN THE STUDY OF CANCER BIOLOGY AND THERAPY





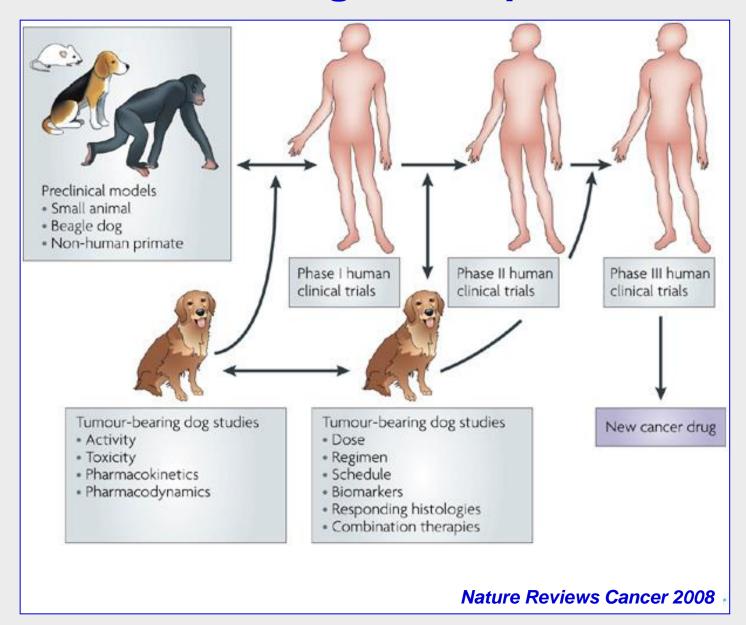
Companion Animal Cancer Models

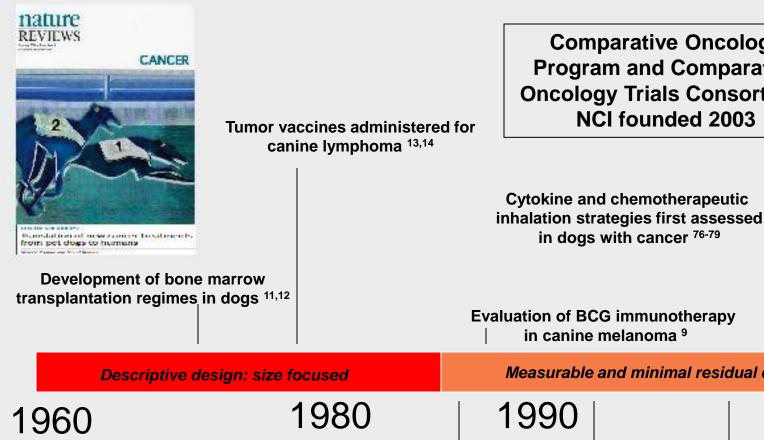
- Large outbred animals
- Strong genetic similarities to humans
- Naturally occurring cancers
- Immune competant and syngeneic
- Relevant tumor histology/genetics
- Relevant response chemotherapy
- No "Gold Standards"
- Compressed progression times
- Tumor heterogeneity
- Recurrence/Resistance
- Metastasis biology



Cross Species Comparative Approach Adds to the Totality of Data Surrounding Drug Development

Improved Understanding of Biology and Improved Treatment Outcomes


The Conventional Cancer Drug Development Path



What is the reason for the high attrition rate for oncology drugs?

- Cancer is a complex problem
- Preclinical models are not predictive
- Pathway is linear and largely ignores opportunties to be informed
- Important questions are not sufficently answered

A Comparative and Integrated Approach to Cancer Drug Development

Hyperthermia (thermoradiotherapy)

techniques correlated with clinical efficacy in a canine model 69

Comparative Oncology Program and Comparative Oncology Trials Consortium-NCI founded 2003

Canine Genome Release 2005

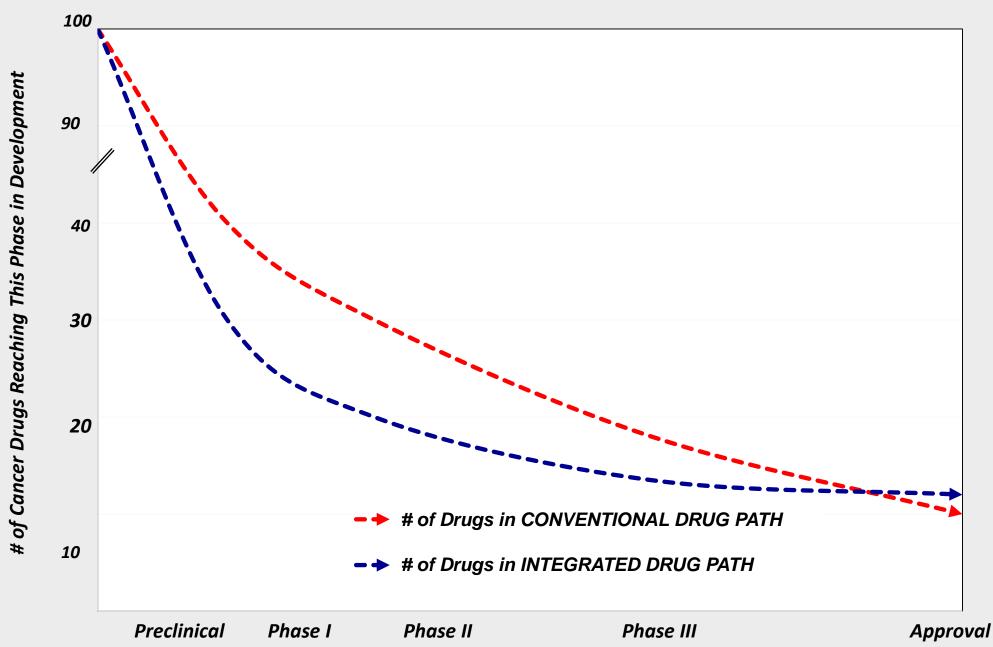
Defined toxicity, activity, PK and tumoral PD with tyrosine kinase inhibition 44,84

Measurable and minimal residual disease

Integrated

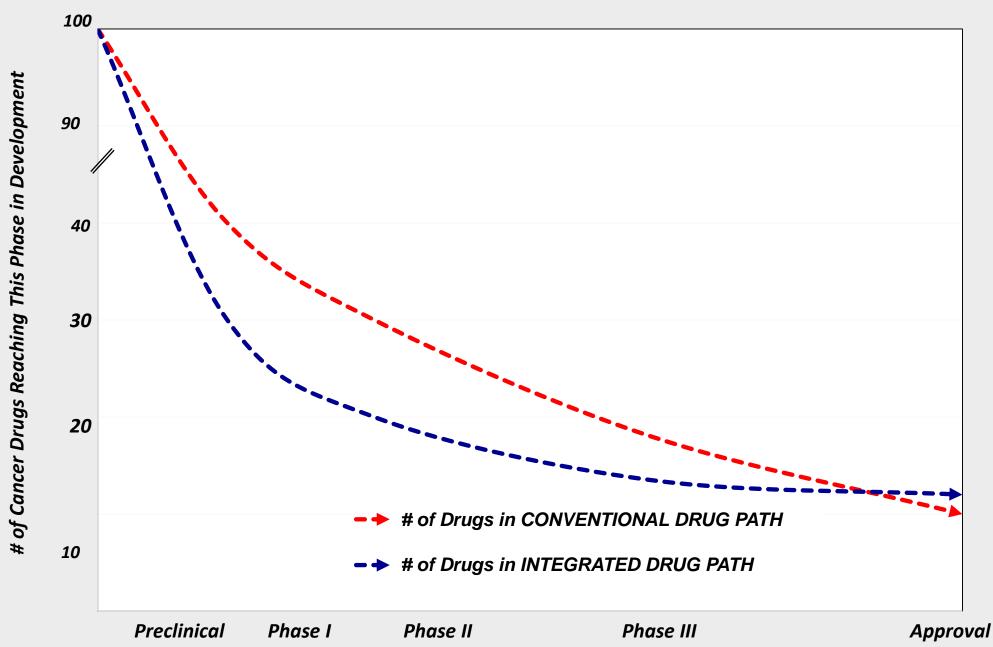
2000

2012

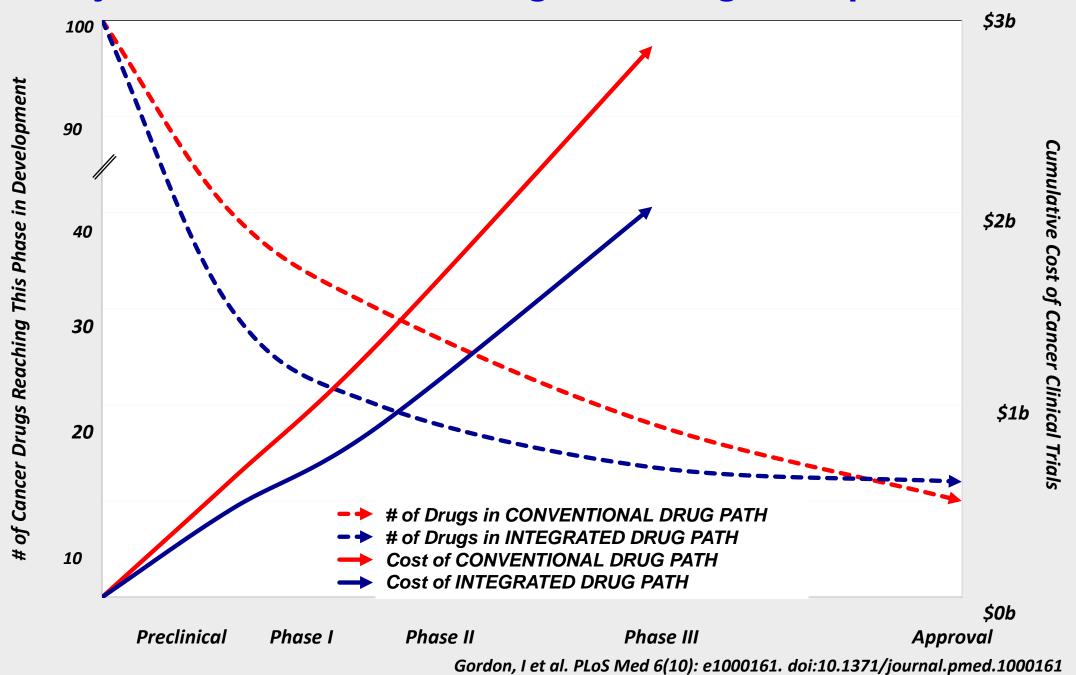

L-MTP-PE evaluated in MRD osteosarcoma guided COG studies 94

DNA vaccine approved for use in canine melanoma 37,99-

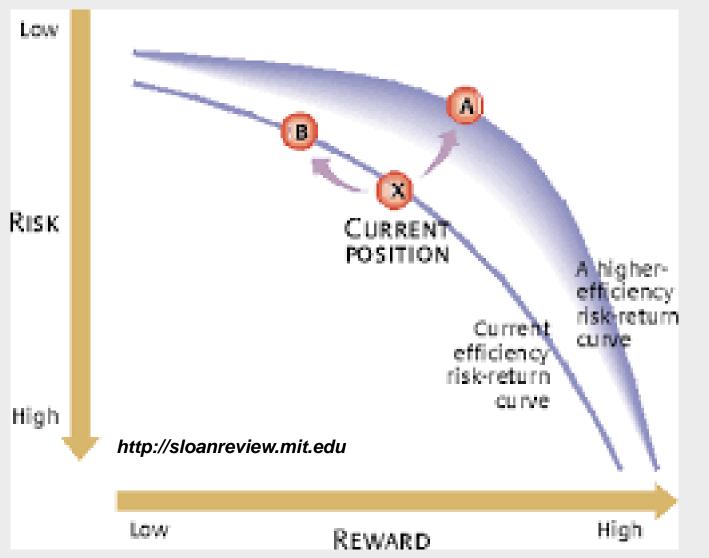
Limb sparing optimized in canine osteosarcoma 71,72

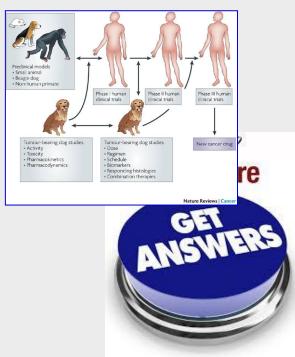

Canine Comparative Oncology and Genomics Consortium founded 2006

Projected "Value" of an Integrated Drug Development Path


Gordon, I et al. PLoS Med 6(10): e1000161. doi:10.1371/journal.pmed.1000161

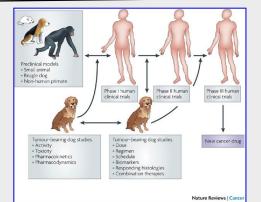
Projected "Value" of an Integrated Drug Development Path




Gordon, I et al. PLoS Med 6(10): e1000161. doi:10.1371/journal.pmed.1000161

Projected "Value" of an Integrated Drug Develpment Path

"Value" of an Integrated Drug Development Path is defined by the importance of questions that are now <u>un</u>answered.



"What are the question best answered through this comparative approach:Review

LeBlanc ,Khanna et al.In Preparation

Comparative Oncology Program – Center for Cancer Research

Reagent/Resources to conduct studies in Comparative Oncology

Genomics
Proteomics
Antibodies
Biospecimen Repository
PD Core

Canine Comparative Oncology and Genomics Consortium

Advocacy for the Appropriate Integration of Comparative Oncology Trials

Academia
Pharma
NCI
Regulatory Bodies

Progress by the Comparative Oncology Trials Consortium (COTC)

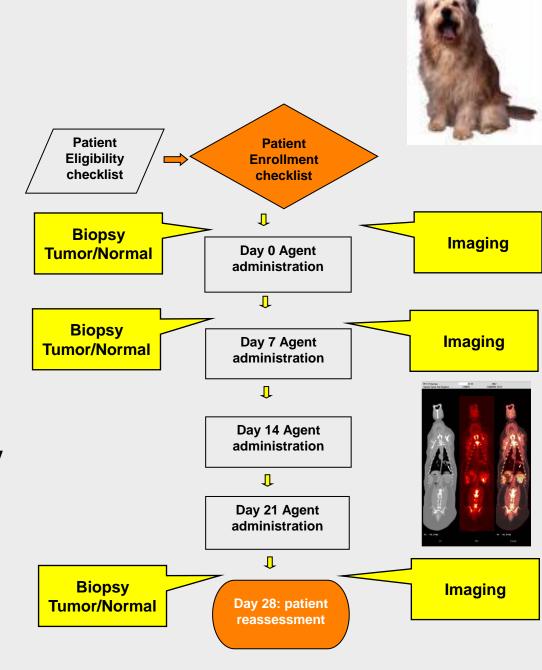
Initiated of Letters of Intent 19
Initiated study protocols 11
Studies completed 9
Studies published 3
Studies in progress/in press 7

Studies of COTC are published under a "Collection" in PLoS One

Patient X3 Page 3 (Enroll for Screening) Page 1 of 1.	
Visit Date 21-Mar-2006	Blank Comment
Enroll COM	
	Blank 🔲
ENROLLMENT	
Dog's Sex	Date of Birth Age Initials
Breed	
Dog's First Name	Dog's Last Name
Owner's First name	Owner's Last Name
Referring DVM Name	
Referring DVM Address	
Referring DVM Phone Number	
Date of Registration	
Registering Institution	"MO037" - University of Missouri
Patient ID	"TN021" - University of Tennessee
Patient Subgroup	"CO018" - Colorado State University
	"PA151" - University of Pennsylvania
Primary Disease Site	
Disease Term	
Stage of Disease	

Review

Guiding the Optimal Translation of New Cancer Treatments From Canine to Human Cancer Patients


Chand Khanna,3 Cheryl London,2 David Vail,1 Christina Mazcko,3 and Steven Hirschfeld4

Abstract

On June 20, 2008, a meeting entitled "Translation of new cancer treatments from canine to human cancer patients," sponsored by the National Cancer Institute in Bethesda, Maryland, was convened to discuss the potential value, opportunity, risks, and rewards of an integrated and comparative drug development path for new cancer therapeutics that includes naturally occurring cancers in pet animals. A summary of this meeting and subsequent discussion are provided here to afford clarity on the conduct of these studies so as to optimize the opportunities provided by this novel drug development and modeling strategy. (Clin Cancer Res 2009;15(18):5671–7)

COTC Study Development:

- 1. Discuss questions not answered fully through conventional models or human trials.
- Determine if the dog can be used to answer questions.
 - Validation of target/drug biology in the dog
 - CCOGC Biospecimen Repository
 - PD Core
- 3. Iterative collaboration to define study overview/endpoints
- 4. Develop study protocol and data base
- 5. Selection of COTC sites to manage clinical study
 - Based on study completion goals and protocol intensity
- 6. Conduct study
 - Amend protocol with data input
- 7. Complete study

Canine Comparative Oncology & Genomics Consortium (CCOGC)

- Pfizer-CCOGC Biospecimen Repository is open for tissue release
- •Currently houses over 2,000 patient samples
 - osteosarcoma, lymphoma, melanoma, pulmonary tumors, mast cell tumor, soft tissue sarcomas and hemangiosarcoma.
 - tumor and normal tissues (formalin fixed, snap frozen and OCT), frozen serum, plasma, urine and whole blood.

CANINE COMPARATIVE ONCOLOGY & GENOMICS CONSORTIUM

News Release

FOR IMMEDIATE RELEASE

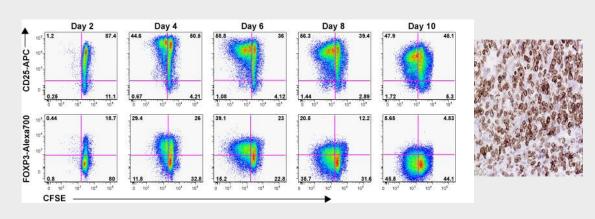
Contact: Matthew Breen, Ph.D.

E-mail: Biospecimens@ccogc.net

Date: October 29th 2012 **Phone:** 919-879-8438

Canine Comparative Oncology and Genomics Consortium and the Pfizer-CCOGC Biospecimen Repository
Announce the Availability of
Canine Cancer Patient Biospecimens for Scientific Study
Effective October 29th 2012

COTC Pharmacodynamics Core


Providing efficient access to laboratory and investigative platforms to study the biology of cancer and drug-cancer relationships in dogs

"Credential" targets and biological concepts before study launch

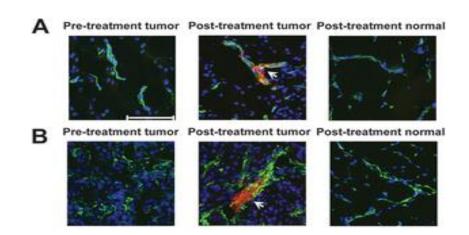
Support biological questions asked within COTC studies

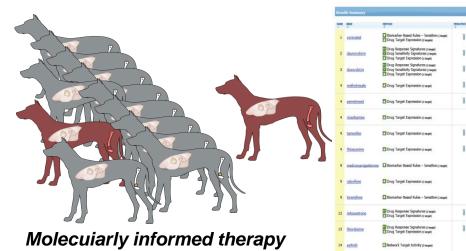
- •Clinical Pathology
- Pathology
- PARR for clonality
- •IHC
- ·ICC
- •Flow cytometry
- •Cell Culture/
 Proliferation/
 Migration/Invasion

- •Expression Arrays
- Proteomics
- •Western Blot
- Pharmacokinetics
- Microscopy
- Metabolism
- •RT-PCR

Comparative Oncology Trials Consortium: Study Examples

Antitumor activity and immunomodulatory effects


"Evaluation of IL-12 and IL-2 Immunocytokines in Tumor Bearing Dogs"



Tumor Specific Targeting – Tolerability

"Evaluation of RGD Targeted Delivery of Phage Expressing TNF-a to Tumor Bearing Dogs"

Modeling Personalized Medicine Delivery in Dogs

Pick the Winner – Biological and Antitumor activity
"Preclinical Comparison of Three TOPO-1 inhibitors in
Dogs with Lymphoma"

AAVP-TNF Therapeutic Index (repeat dose):

- Favorable safety profile, n=18 dogs with cancer (relevant host)
 - **▶** Grade 3 hypersensitivity reaction, n=9
 - ➤ Grade 3 and 4 Fever, n=5 (2 on non-admin day)
 - ➤ Tumoral necrosis, n=1
 - **▶** No clinically relevant Hem/Biochem toxicities
 - > Three warm necropsies: no end organ abnormalities

Single species
Assessment
of Therapeutic Index

AAVP-TNF Associated Tumor Regression:

- > RECIST criteria
- >15 evaluable dogs
- **▶**Objective anti-tumor activity
 - >2 Partial Response
 - **▶**6 Stable Disease
 - >7 Progressive Disease

Systemic delivery of AAVP-TNF (phage) results in tumor regression

Canine Myxosarcoma (T3bN0M0)

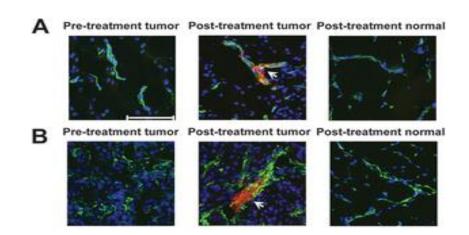
LD = 12.3 cm

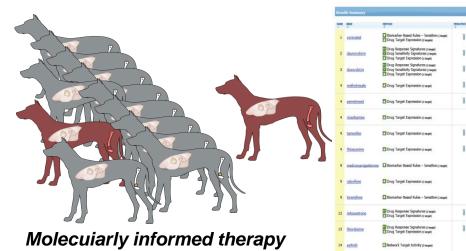
LD = 8.2 cm RECIST = 33% regression

Now surgically resectable - CR

Comparative Oncology Trials Consortium: Study Examples

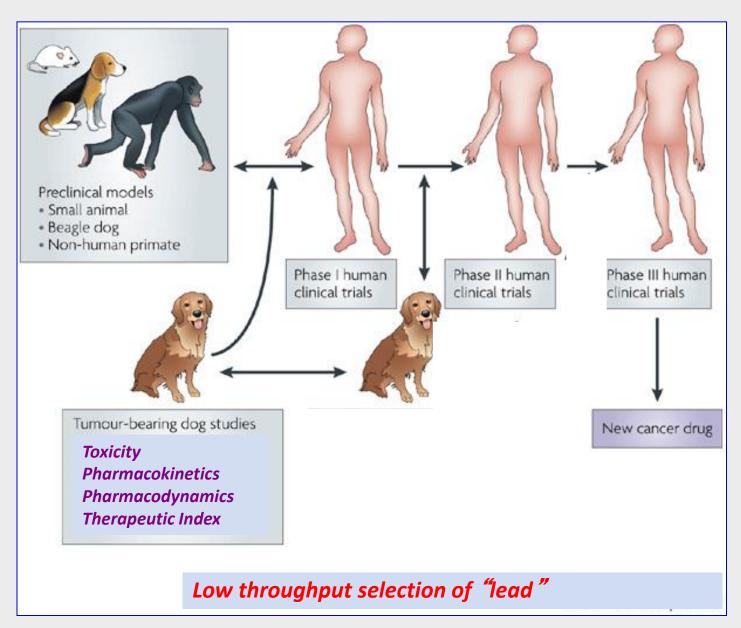
Antitumor activity and immunomodulatory effects

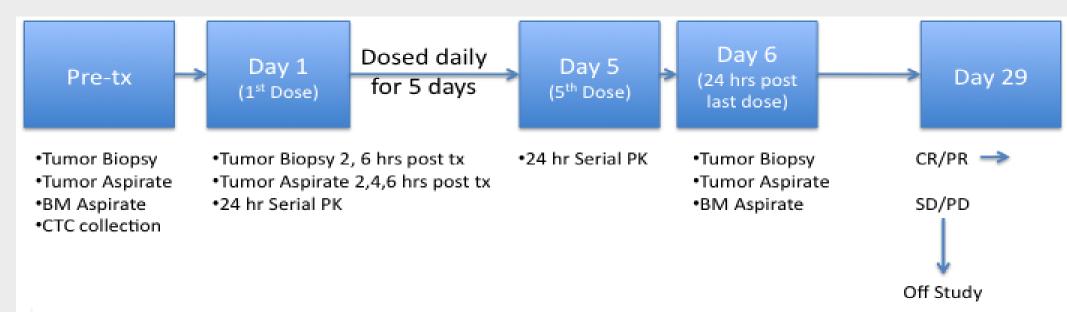

"Evaluation of IL-12 and IL-2 Immunocytokines in Tumor Bearing Dogs"



Tumor Specific Targeting – Tolerability

"Evaluation of RGD Targeted Delivery of Phage Expressing TNF-a to Tumor Bearing Dogs"


Modeling Personalized Medicine Delivery in Dogs


Pick the Winner – Biological and Antitumor activity
"Preclinical Comparison of Three TOPO-1 inhibitors in
Dogs with Lymphoma"

COTC007: Novel Topo Inhibitors: Integrated Comparative Approach to Identify Lead Agent

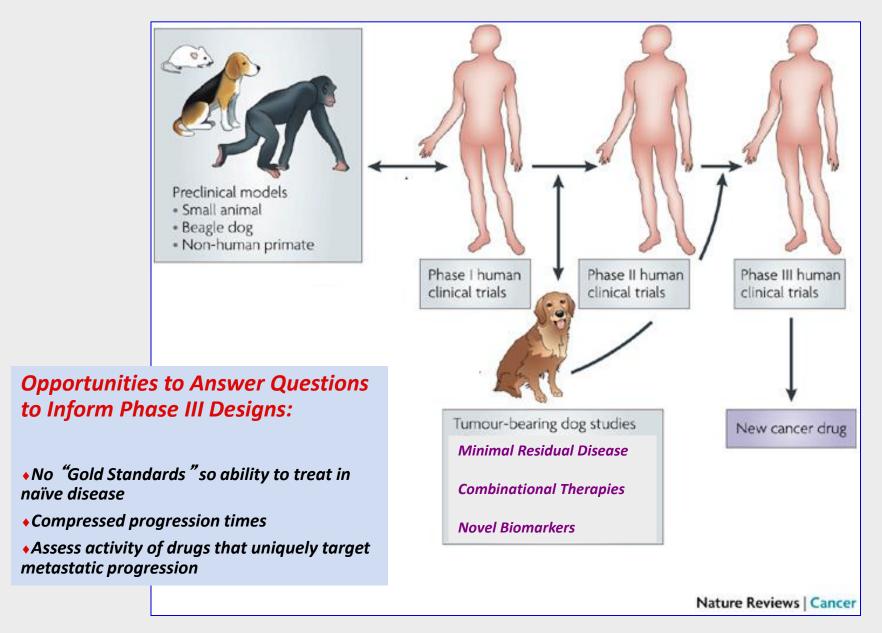
Lead Candidate Discrimination/Selection Study: COTC007b

Biological Endpoints

Serum Pharmacokinetics Circulating Tumor Cell

Numbers

Tumoral Target Modulation
Drug Levels Biological Activity


Drug Target/Modulation

Biological Activity

Normal tissue (Bone marrow)

Target Modulation Biological Activity

COTC007: Novel Topoisomerase I Inhibitors: Integrated Comparative Approach to Identify Lead Agent

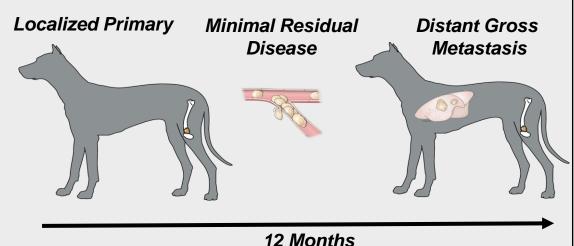
Clinical Cancer Research

Perspectives

Toward a Drug Development Path That Targets Metastatic Progression in Osteosarcoma

Chand Khanna^{1,11,12}, Timothy M. Fan¹³, Richard Gorlick^{14,15}, Lee J. Helman^{11,12}, Eugenie S. Kleine m. h¹⁷, Peter C. Adamson¹⁹, Peter J. Houghton²⁰, William D. Tap¹⁶, Danny R. Welch²¹, Patricia S. Steeg^{7,11,12}, Glenn Merlino^{8,11,12}, Poul H.B. Sorensen^{34,35}, Paul Meltzer^{9,11,12}, David G. Kirsch²², Katherine A. Janeway^{23,24}, Brenda Weigel²⁵, Lor Randall²⁶, Stephen J Withrow²⁷, Melissa Paoloni^{3,11,12}, Rosandra Kaplan^{2,11,12}, Beverly A. Teicher^{10,11,12}, Nita L. Seibel^{4,11,12}, Malcolm Smith¹², Aykut Üren^{28,29}, Shreyaskumar R. Patel¹⁸, Jeffrey Trent³⁰, Sharon A. Savage^{5,11,12}, Lisa Mirabello^{6,11,12}, Denise Reinke³¹, Donald A. Barkaukas³², Mark Krailo³³, and Mark Bernstein³⁶

Integrated Approach to Osteosarcoma Drug Development


Translational studies of agents that target "vulnerable" metastatic cells.

Canine OS Trials

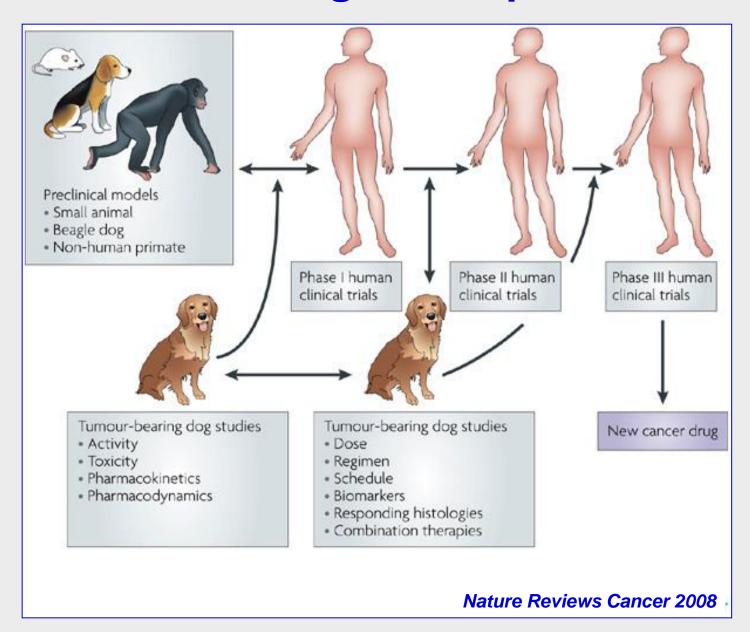
Minimal residual disease studies

- Comparative Oncology Trials Consortium
 - •5 new agents in 5 yrs
- Prioritize agents for human MRD/adjuvant based studies of metastatic progression

Early Phase Trials

Measurable Disease

Therapeutic Approach:


Aminobisphosphonates
Rapalog inhibition of mTOR
Ezrin small molecule inhibitors

Later Phase Trials

Minimal Residual
Disease

A Comparative and Integrated Approach to Cancer Drug Development

Perceived Risks and Concerns with the Integration of a Comparative Approach

Study Duration

- Timelines are longer than those in rodent models
- Strategic inclusion of pet dogs should allow timely integration of data into human trials

Patient to Patient Variability

- Tumor-bearing dogs represent a different clinical population compared to research dogs
- SNP frequency amongst dogs is similar to that of patients in early phase cancer studies

Cancer Prevalence by Histology

- Most common: sarcomas and lymphoid neoplasms
- Less common: Breast, prostate, gastrointestinal, lung carcinomas
- Studies in the less common histologies require more time for completion and more clinical trial centers
- Histology is increasingly replaced with biology and not often a primary question for trial design

Target biology may be unique and must be defined ("credentialed")

- Canine Comparative Oncology and Genomics Consortium
- Pfizer Canine Oncology and Genomics Consortium Biospecimen Repository
- Comparative Oncology Program Tissue Array Resource

Perceived Risks and Concerns with Integration of a Comparative Approach

Drug and Budget Requirements

- Greater drug supply needed
- GMP not required
- Study costs include: clinical management, serial biopsy of tumors, imaging and other correlative endpoints

Control and reporting of data

- Good Clinical Practice guidelines
- Adverse Event reporting: Assign severity, duration, and attribution
- Compliance by pet owners and study investigators is very high

Regulatory oversight/reporting

- Pre-IND agents guidance has been proposed and used
 (Khanna et al Clin Cancer Res 2009)
- Post-IND agents guidance exists

Biotech and aversion to "rocking" the development boat

Acknowledgements

Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute

Ling Ren

Arnulfo Mendoza

Michael Lizardo

James Morrow

Allyson Koyen

Tanasa Osborne

Rhadika Gharpure

Martin Mendoza

Sung Hyeok Hong

Manpreet Alhuwalia

Jessica Cassavaugh

Joseph Briggs

Comparative Oncology Program

CCR, National Cancer Institute

Amy Leblanc

Melissa Paoloni

Christina Mazcko

Molecular Oncology Section, Pediatric Oncology Branch, National Cancer Institute

BobWiltrout

Lee Helman

C3D,- NCI

Caryn Steakley Allison Wise Jeffrey Shilling Sawsan Sahin Deven Shah Rohit Paul

COTC

Amy LeBlanc
Jeffrey Phillips
Shelley Newman
Doug Thamm
Susan Plaza
Christie Anderson
Carolyn Henry
Kimberly Selting
David Vail
Ilene Kurzman
Karin Sorenmo
Amy LaBlanc
Timothy Fan
William Kisseberth
Barb Kitchell

Heather Wilson

CCOGC

David Vail
Matthew Breen
Sue Lana
Jaime Modiano
Kerstin Linblad-Toh
Elizabeth McNeil
Phil Bergman
Steve Withrow
Mark Simpson
Cheryl London
Bill Kissebirth

Last Slide