

NC STATE UNIVERSITY

INSTITUTE OF MEDICINE

OF THE NATIONAL ACADEMIES

Advising the nation • Improving health

The Role of Clinical Studies for Pets with Naturally **Occurring Tumors in Translational Cancer Research**

June 8-9, 2015

Use and availability of canine cancer tissue banks in translational research - the dog as a model for accelerating gene discovery.

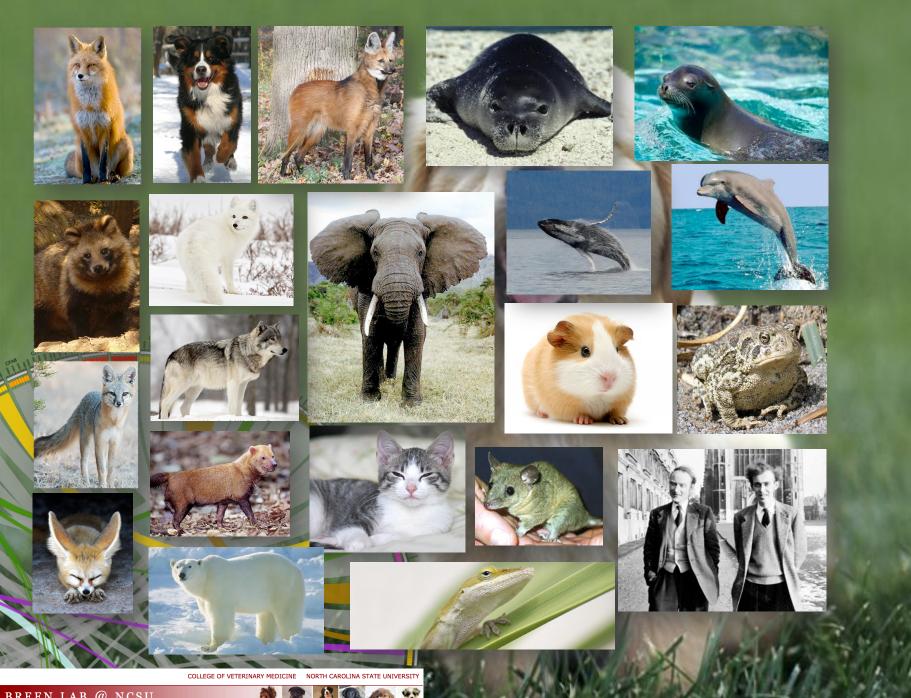
Matthew Breen PhD C.Biol. FSB

Oscar J. Fletcher Distinguished Professor of Comparative Oncology Genetics Dept. of Molecular Biomedical Sciences, College of Vet. Medicine, NC State University Center for Comparative Medicine and Translational Research, NCSU **Center for Human Health and the Environment, NCSU Lineberger Comprehensive Cancer Center, UNC-Chapel Hill**

One Medicine

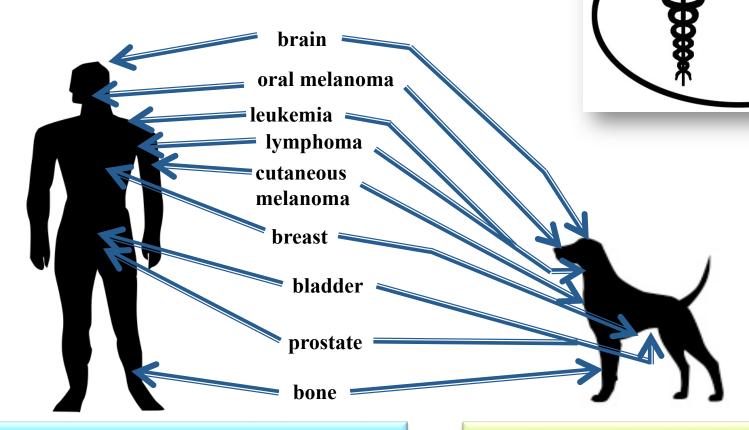
"Between animal and human medicine there is no dividing line – nor should there be. The object is different but the experience obtained constitutes the basis of all medicine."

Rudolf Virchow (1821-1902)



How do we apply this to cancer research?

The traditional cancer model



Canine cancer – breed predisposition

- 1. Cancer is a genetic disease
 - 2. Certain breeds of dog are highly affected by certain cancers (naturally occurring)
 - 3. Indicates that breeds of dog have an inherited predisposition to cancers
 - 4. Same environment as human

POWERFUL OPPORTUNITY = identification of genetic factors in the dog will simultaneously offer major factors contributing to advancing cancer research in humans

One Medicine

~1.66 million diagnoses each year (~500 cases/100,000 population)

~4.2 million diagnoses each year (~5,300 dogs/100,000 population)

One Pathogenesis

Why do we need biobanks?

- Research involving canine genetic or genomic information analyzed using biological specimens from well annotated patients is key to understanding complex diseases including cancer
- These data are key to advancing cancer detection, diagnosis, prognosis, intervention, treatment, and prevention.
- For maximum efficiency, establishment and sharing of resources is needed, comprising canine biological samples and information derived from their analysis.

Requirements of effective biobanks

Key elements (SOPs)

SPECIMEN SELECTION AND STORAGE

Fit for purpose

High quality preparation, storage and retrieval

SPECIMEN ACCESS

Specimens and patient data accessible for research over time

SPECIMEN USE

Data sharing plan

ABOUT

SERUICES

MAST CELL TUMO

FIND OUT MORE

ANNOUNCEMENTS

Home About

Canine Biobank

stored in a searchable database.

Mast cell tumors are Canine Comparative Oncology and Genomics However breeds suc Repository Announces the Sale Learn about another can

Consortium and the Pfizer-CCOGC Biospecimen of 1000 Biospecimens in First ear and Completion of

Canine Comparative Oncology & Genomics Consortiun About - Services - Announcements - Contac

News (Swe only)

All samples we collect are registered in the dog biobank. Phy

the dog biobank is a number of freezers that are kept at -80

Celsius, where we store blood and other tissues. When we h extracted the DNA from the blood or tissue, the DNA is store

different -20 freezer. Information about the dog and the samp

At New Year 2012-2013 biobank held samples from about 85

from 114 different breeds. Since each sample is split up into

Since we store data and samples in this way, we can use the

samples for multiple projects. If we already have samples for project, we have no need to search for new dogs. In this way

minimize the amount of times samples need to be taken! The Canine Biobank projects owe a big thank you to Swed Club and The insurance company Agria who have helped fin

different parts, we now have 30 000 samples.

CANINE COMPARATIVE ONCOLOGY & GENOMICS CONSORTIUM

HOME

ABOUT

SERUICES

PUBLICATIONS

CONTACT

PURCHASING TISSUES FROM OUR BANK

Canine cancer patient biospecimens are available for scientific use through the Canine Comparative Oncology and Genomics Consortium (CCOGC) and the Pfizer-CCOGC Biospecimen Repository.

The Pfizer-CCOGC Biospecimen Repository currently houses over 2,000 patient samples across seven spontaneously arising cancer histologies.

FIND OUT MORE

TISSUES WE CAN COLLECT FOR YOU

By utilizing our current tissue collection structure for our bank, we can tailor collections for the specific needs of your unique research. After submission of a brief on-line application, there will be follow up contact by the CCOGC to refine vour request. We will assess the availability within our network; prepare Standard Operating Procedures and a budget. After your approval and a contract process, tissue collection will begin specifically designed for your research.

FIND OUT MORE

ANNOUNCEMENTS

 Canine Comparative **Oncology and Genomics** Consortium and the Pfizer-CCOGC Biospecimen Repository Announces the Sale of 1000 Biospecimens in First Year and Completion of **Quality Control and** Assessment of Repository

MAST CELL TUMORS

Mast cell tumors are the most common skin tumor in dogs. They can occur at any location and affect any age or breed of dog. However breeds such as the Boxer,...

More info...

Learn about another cancer

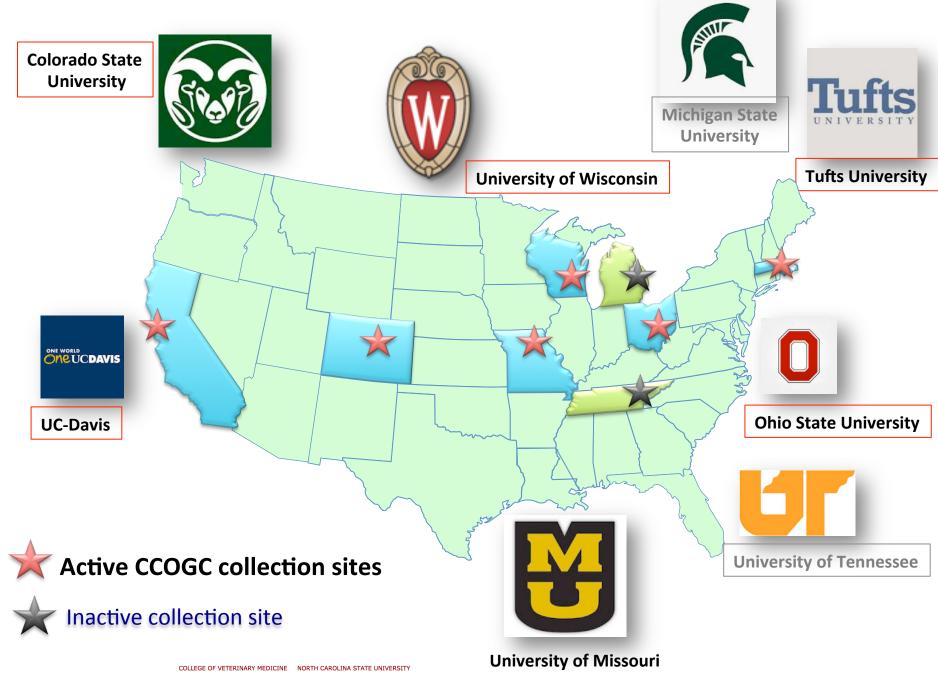
SEARCH

USEFUL LINKS

- Morris Animal Foundation
- AKC Canine Health **Foundation**
- Veterinary Cancer Society
- ACVIM

Copyright (c) 2014 Canine Comparative Oncology & Genomics Consortium About - Services - Announcements - Contact

www.CCOGC.net



CANINE COMPARATIVE ONCOLOGY & GENOMICS CONSORTIUM

- ➤ One time start-up costs \$1.7 million
 - > \$1.1M Pfizer, \$0.6M AKC-CHF, \$0.5M MAF
- > Physical infrastructure
- > Database development and management
- >Sample collection (>2,000 patients)
- **▶** Quality and assurance

CANINE COMPARATIVE ONCOLOGY & GENOMICS CONSORTIUM

Compliance is essential for consistency and quality

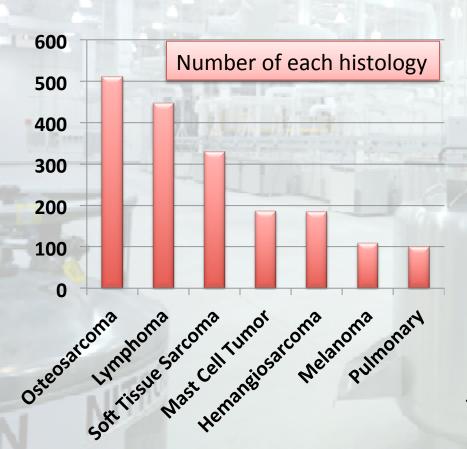
Pfizer-CCOGC Biospecimen Repository Standard

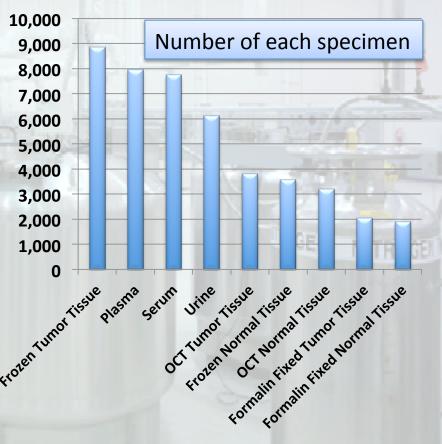
Operating Procedures

Purpose

- . Background
- 2. Criteria for specimen banking
 - 2.1 Protocol Definitions
 - 2.2 Clinical Assessment
- 3. Tissue Collections and Processing
 - 3.1 Selections and Submission of Tissue Embedded in Paraffin Blocks
 - 3.2 Selections and Submission of Frozen Tissues
 - 3.3 Collection of Whole Blood for Nucleic Acid Extraction
 - 3.4 Collections and Submission of Whole Blood for Genomic DNA
 - 3.5 Collections and Submission of Serum
 - 3.6 Collections and Submission of Plasma
 - 3.7 Collections and Submission of Urine
- 4. Patients and Specimen Labeling
- 5. Shipping
- 6. Sample Collection Supplies
- 7. Database Entry
- 8. Sample Processing Flow Chart

One patient, many opportunities





& GENOMICS CONSORTIUM

- > ~60,000 specimens from ~1,900 cancer bearing patients averaging 30 vials/patient
- > >100 breeds > 52% male:48% female

and re

1) To perform a deta

Quality control & quality assurance of canine biological specimens available through the Pfizer-CCOGC biospecimen repository for comparative oncology studies

chael Thomas 12, Mark Simpson 3, Hiroyuki Mochizuki 1, Christina Williams 1, Kelsey Poorman 1, Katle Kennedy 1, Christina Mazcko 4, Jaime F. Modiano 5,6 and Matthew Breen 1,2.7

| *Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Relaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine and Translational Research, North Carolina States University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University of Minnesots, St. Paul, MN;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University of Minnesots, St. Paul, MN;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University of Minnesots, St. Paul, MN;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University of Minnesots, St. Paul, MN;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology and Genetics 4 *Comparative Medicine, University, Ralaigh, NC;
| *Long transport of Cancer Biology And C

Samuel of Newson

Quality control & quality assurance of canine biological specimens available through the Pfizer-CCOGC biospecimen repository for comparative oncology studies

Rachael Thomas ^{1,2}, Mark Simpson ³, Hiroyuki Mochizuki ¹, Christina Williams ¹, Kelsey Poorman ¹, Katie Kennedy ¹, Christina Mazcko ⁴, Jaime F. Modiano ^{5,6} and Matthew Breen ^{1,2,7}

¹ Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh

Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC; ² Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC; ³ Laboratory of Cancer Biology and Genetics & ⁴ Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MA; ⁵ Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 5; ⁶ Masonic Cancer Center, University of Minnesota, Minneapolis, MN; ⁷ Cancer Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill

of samples assessed for each histology relati the total number of samples of that histology

Quality control and assurance parameters were assessed on a panel of biospecimens distributed randomly across the eight submitting institutions and the seven tumor histologies represented in

melanoma). Note abbreviations used for each tumor histology.

> The quality of each nucleic acid sample was then scored according to the following three parameters (maximum score for each parameter = 3). These scores were then summed to yield a global quality score for each specimen (maximum global quality score = 9).

This evaluation of the Pfizer-CCOGC Biospecimen Repository provides further data to reinforce the potential value of this sample collection for furthering advances in canine and comparative cancer studies.

Category C (score ≤ 5)

Presented at AACR, The Translational Impact of Model Organisms on Cancer, Nov 2013

eviewed dies to date.

A total of 331 formalin-fixed and paraffin-embedded (FFPE) tumor specimens, representing a cross section of all seven tumor histologies, was subjected to rigorous pathology re-review by a panel of board-certified veterinary pathologists at the NCI.

H&E-stained specimens were () evaluated in context with the original histologic diagnosis assigned by the submitting veterinarian, and (i) assessed for tumor versus stromal contamination by routine histopathology, immunohistochemistry and quantitative morphometry.²

Tumor DNA	25mg	250:280 value	>18	1.5 - 1.8	<1.5
		Gel integrity	High molecular weight	Minor degradation	Marked degradation
		Yield	>10µg	5 - 10µg	< 5µg
Tumor RNA	25mg	260:280 value	>2.0	1.6 - 2.0	<1.6
		RIN	>8	6-8	< 6
		Yield	> 3µg	1.5 - 3µg	<1.5µg
Blood DNA	0.2ml	260:280 value	>1.7	1.5 - 1.7	<1.5
		Gel integrity	High molecular weight	Minor degradation	Marked degradation

References

1 http://www.ccogc.net/
2 Webster JD et al., J Biomol Tech. 2011 September; 22(3): 108–118

Acknowledgements

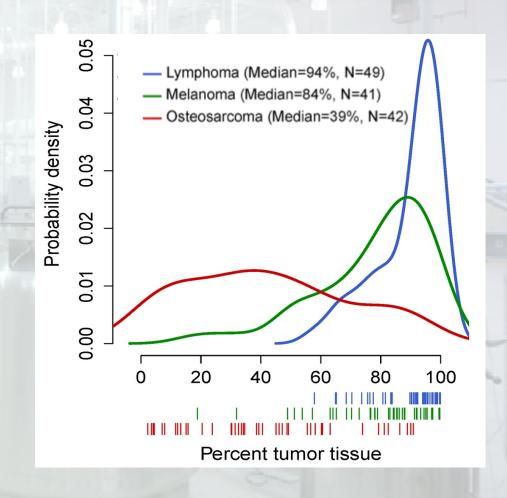
This study was supported by funding from the CCOGC.

CANINE COMPARATIVE ONCOLOGY& GENOMICS CONSORTIUM

Pathology review – diagnosis verification

Tumor	Number of cases assessed	Number (%) of diagnoses corroborated
MCT	50	47 (94%)
HEM	50	32 (64%)
STS	49	44 (90%)
PUL	50	46 (92%)
OSA	42	42 (100%)
LSA	49	49 (100%)
MEL	41	35 (85%)
TOTAL	331	295 (89%)

Outcome of pathology rereview of 331 cases distributed across each of the seven tumor histologies.

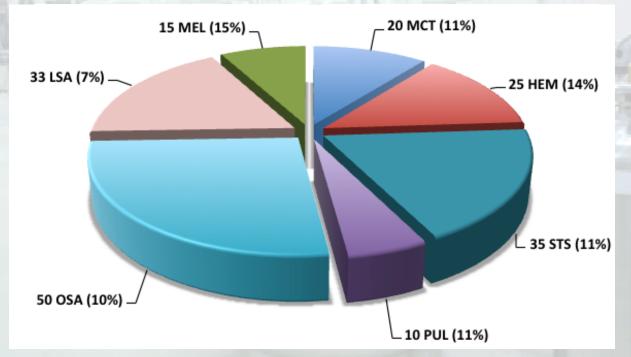


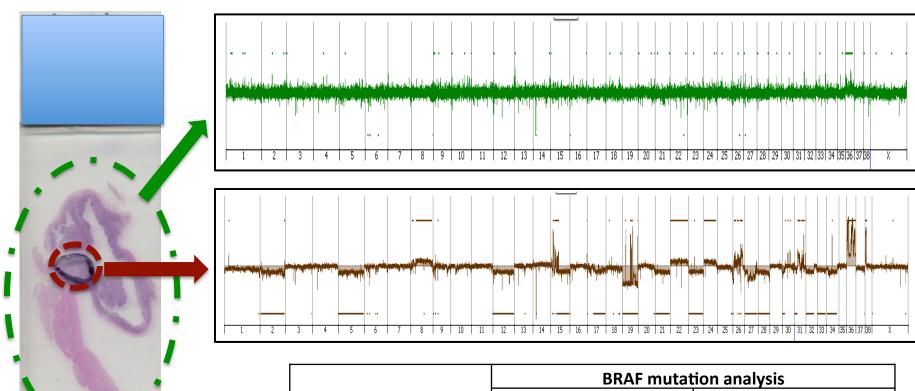
& GENOMICS CONSORTIUM

Pathology review – tumor purity

Assessment of 132 cases according to the percentage of tumor versus stromal contamination contained within each specimen.

- Lymphomas consistently exhibited a high proportion of tumor
- Melanomas were more variable
- Osteosarcoma cases showed extensive variation.




CANINE COMPARATIVE ONCOLOGY& GENOMICS CONSORTIUM

Nucleic acid QC

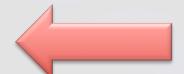
188 cases, selected at random, from the biorepository to provide proportional representation of each tumor histology and submitting institution

The importance of pathologic review

Canine bladder mass with Inflammation

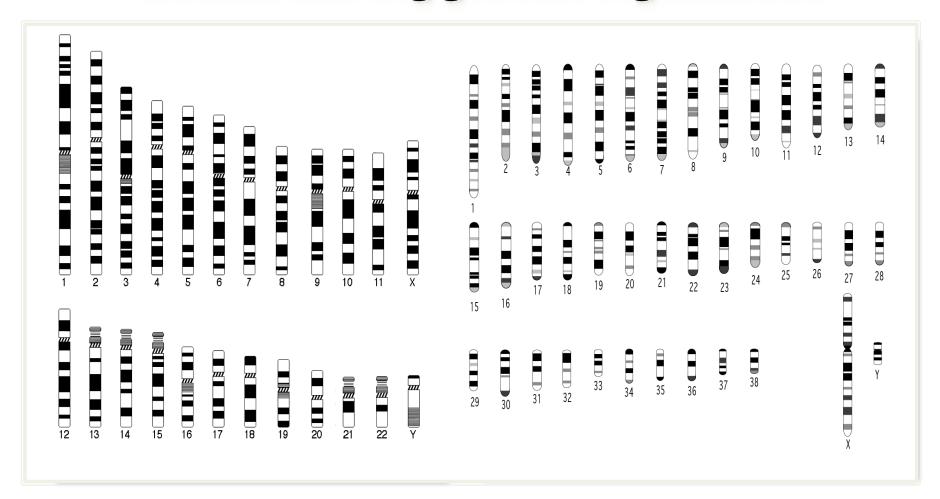
	BRAF mutation analysis		
DNA source	Mutation fraction by ddPCR	Sanger sequencing	
Full size section	1.2%	negative	
Macrodissected section	12.2%	negative	

How are we using canine well defined cancer patient specimens to accelerate cancer research for the benefit of dogs and people?



How are we approaching comparative oncology using the dog as a model?

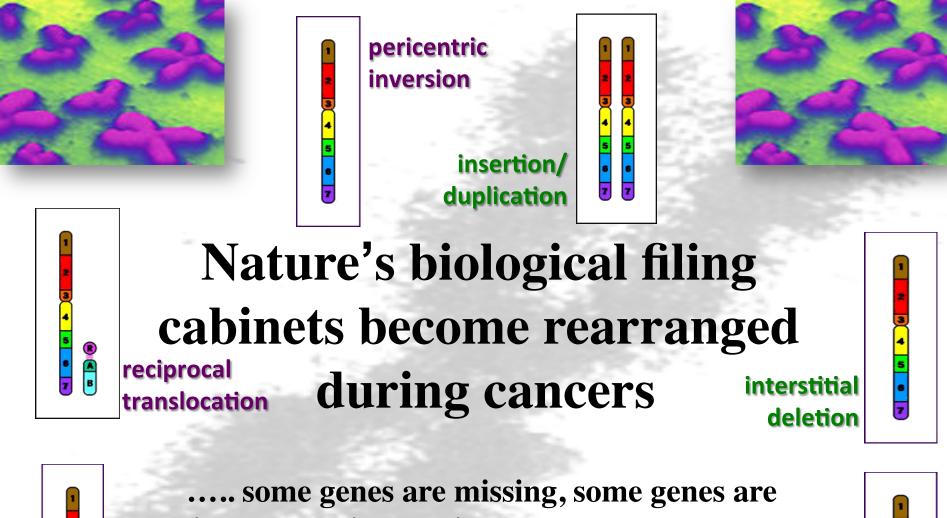
Identification of inherited and somatic changes

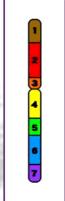

molecular cytogenetics

gene expression case-control GWAS

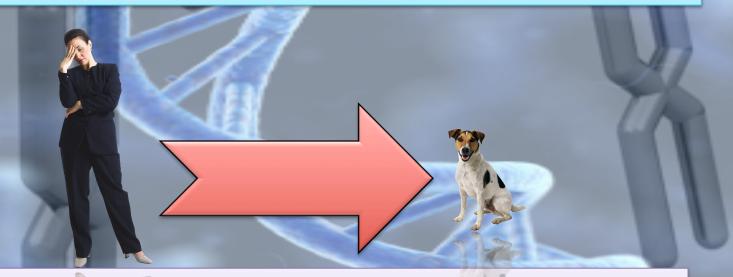
exome sequencing of tumor-normal pairs WGS of tumor-normal pairs

Human and dog genome organization


46 chromosomes


22 autosomal pairs + sex chromosomes 38 autosomal pairs + sex chromosomes

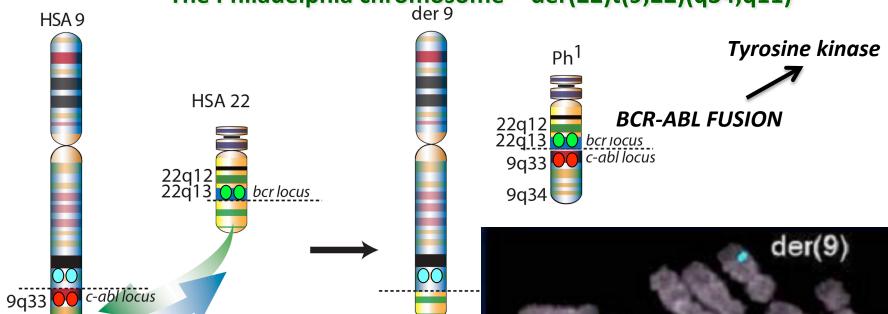
78 chromosomes

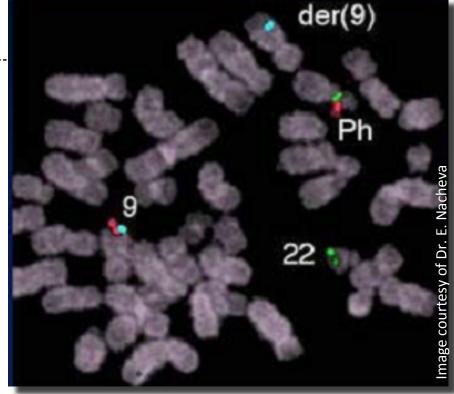

.... some genes are missing, some genes are duplicated, and in certain cases some genes move to new locations where they do not get along well with their new neighbors

paracentric inversion

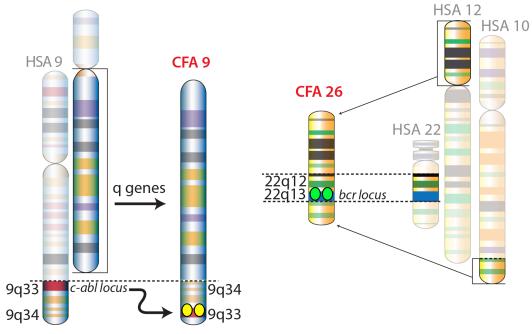
deletion

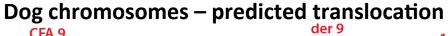
Now we have the reagents to ask some key questions

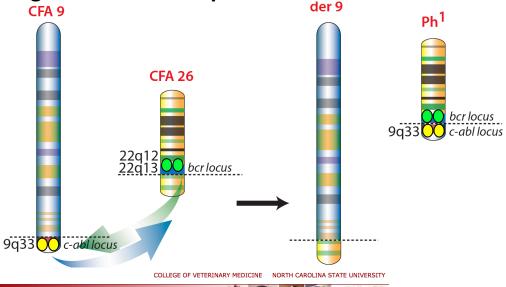

Q. Are there evolutionarily related chromosome aberrations that suggest an ancestral mechanism of pathogenetically significant events?


Rationale: look for well described human cytogenetic changes in canine cancers

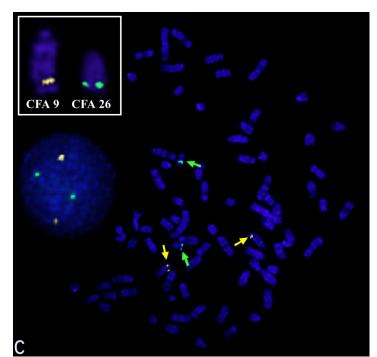
One example of many

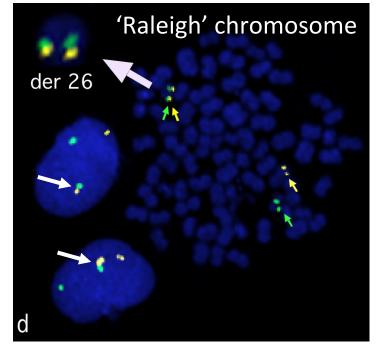



- **ABL**
- **BCR**
- HSA 9q32 SLP



9q34

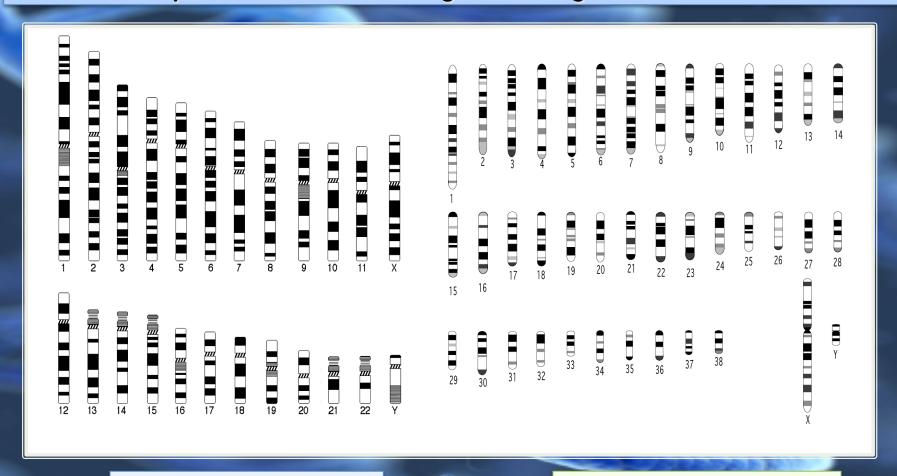

Comparative chromosome alignment



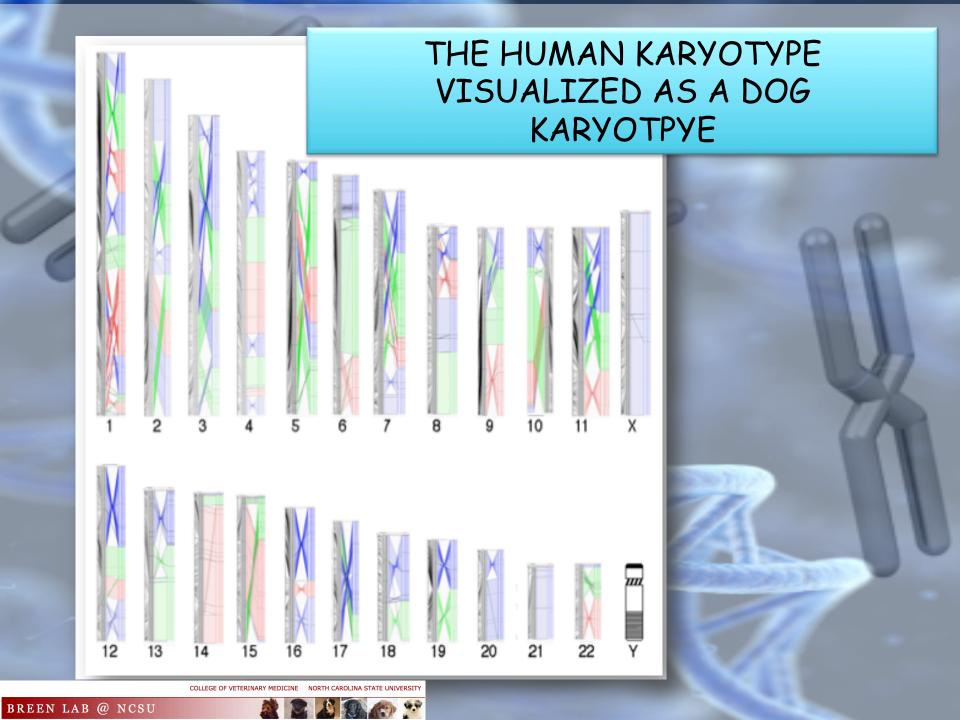
BREEN LAB @ NCSU

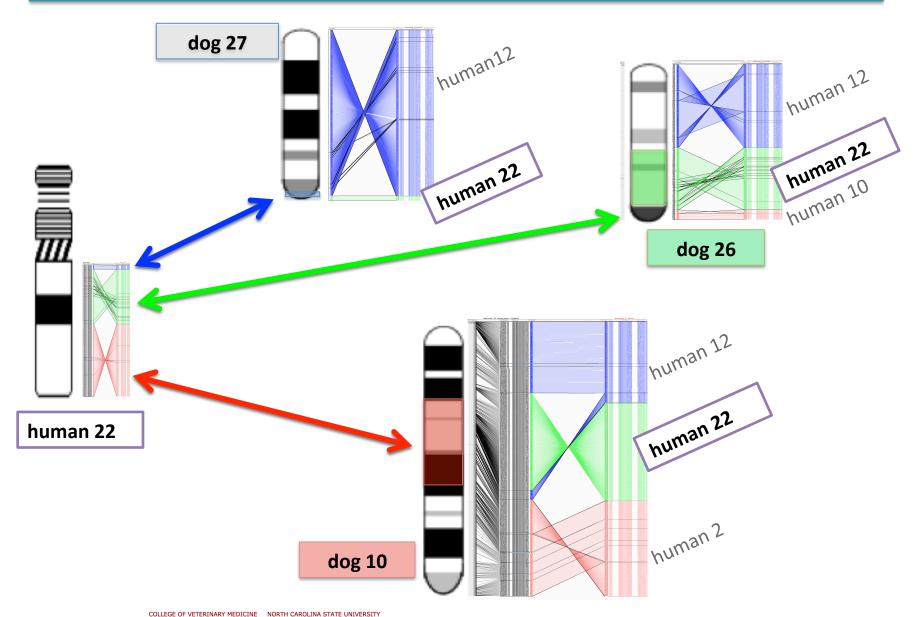
Q. Are there evolutionarily related chromosome aberrations which suggest an ancestral mechanism of pathogenetically significant events?

A. YES but what could this mean for human and dog patients?


<u>VETERINARY PERSPECTIVE</u> = same pathogenetic mechanism = same treatments?

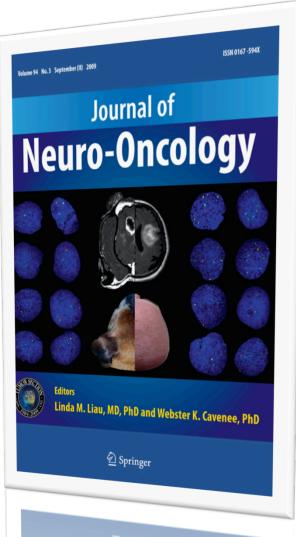
<u>MEDICAL PERSPECTIVE</u> = differential organization of the dog genome may narrow key regions of the genome associated with cancers


Q. CAN WE USE THE GENOME OF THE DOG TO IDENTIFY CANCER GENES THUS FAR 'HIDDEN' IN THE HUMAN GENOME


Contrasting architecture of the dog and human genomes offers tremendous potential to refine regions of significance

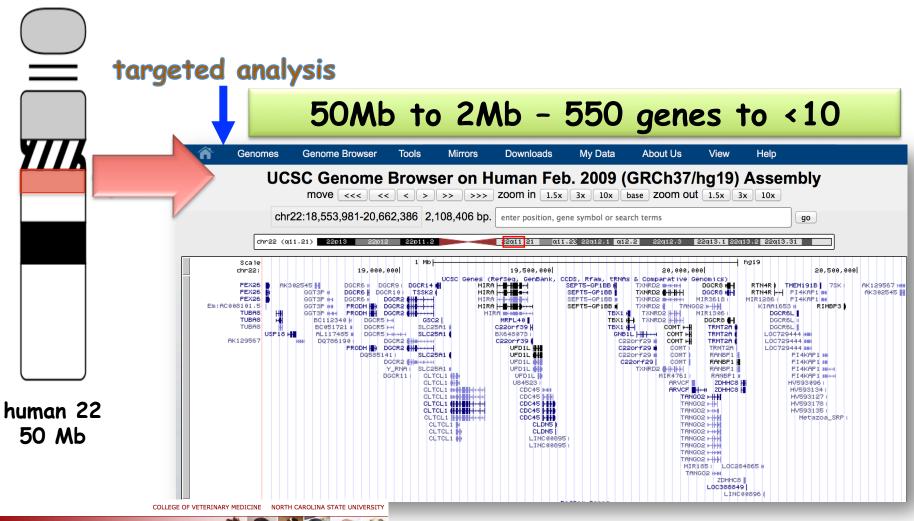
HUMAN 2n = 46 bi-armed autosomes range from 247Mb - 47Mb DOMESTIC DOG 2n = 78 single-armed autosomes range from 125Mb - 26Mb

Comparative genomic map of human 22 and the domestic dog

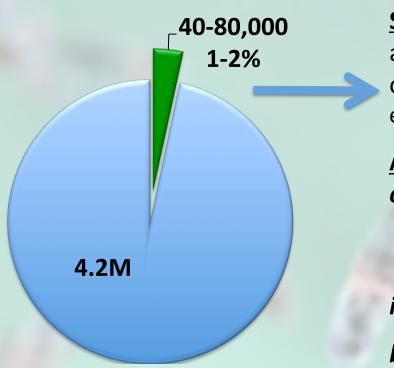

'Putting our heads together': insights into genomic conservation between human and canine intracranial tumors

Rachael Thomas · Shannon E. Duke · Huixia J. Wang · Tessa E. Breen · Robert J. Higgins · Keith E. Linder · Peter Ellis · Cordelia F. Langford · Peter J. Dickinson · Natasha J. Olby · Matthew Breen

Cytogenetics of meningiomas


Among the first solid tumors recognized as having cytogenetic alterations (Mark et al. 1972)

- ·A hallmark genomic imbalance of meningiomas is either the partial (del(22)(q12)) or total deletion of chromosome 22
 - = up to a 50Mb deletion with over 500 genes
- Loss of chromosome 22 more often occurs in low grade meningiomas (implies key early event?)
- •Deletions frequently involve the region HSA 22q12 (NF2)



Evaluation of canine meningioma data reduces candidate region of interest ~25 fold

Canine TCC/UC (bladder cancer)

Diagnostic challenge(>2.5M cases of UTI p.a)

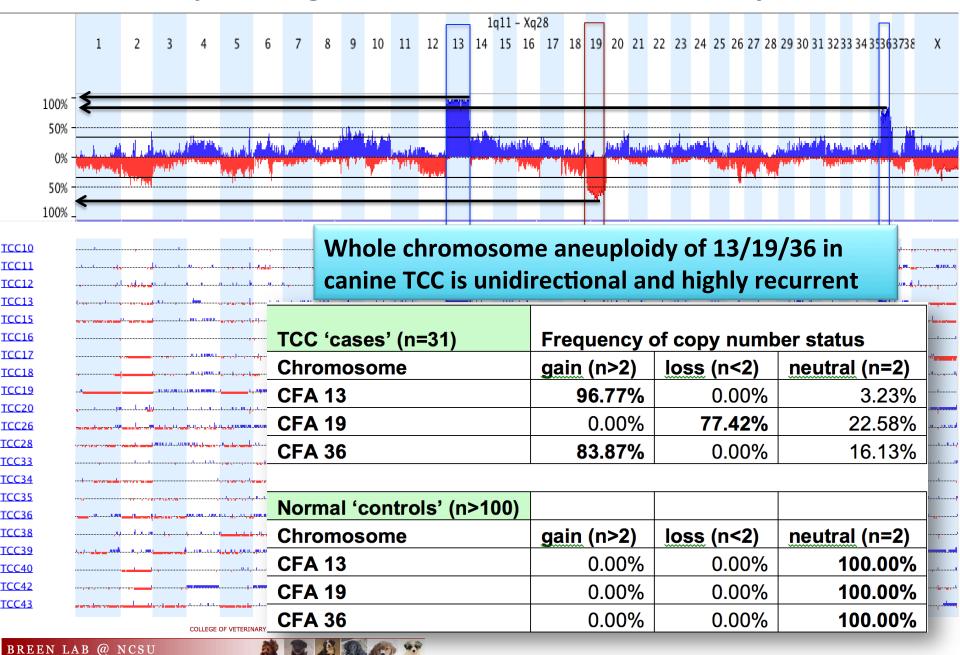
SYMPTOMS of urothelial cancer in the dog are shared with variety of other urinary tract conditions

e.g. bladder infection/inflammation, bladder stones

APPROACHES to diagnosis currently:

cytology - can be misleading, relies on abnormal cells which may be shed due to other conditions

imaging - tumor, inflammation?

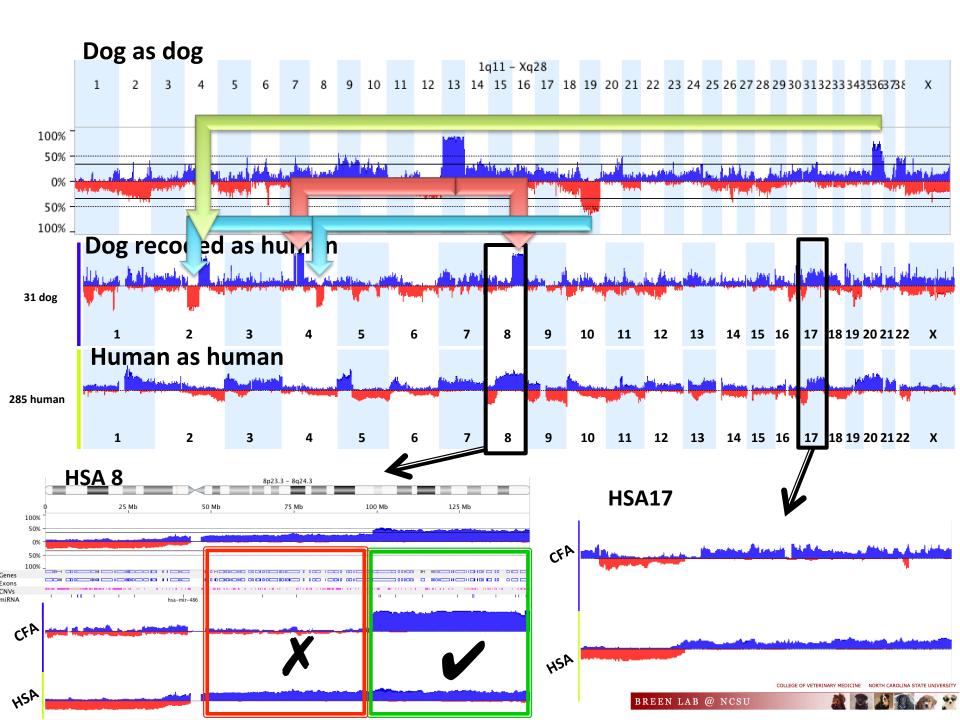

biopsy-

only way to conclusively diagnose and obtained by traumatic catheterization or cystoscopy, both of which carry risk of seeding = reluctance to biopsy

Demand for a FC-urine diagnostic for TCC

oaCGH profiling of canine TCC – cohort analysis

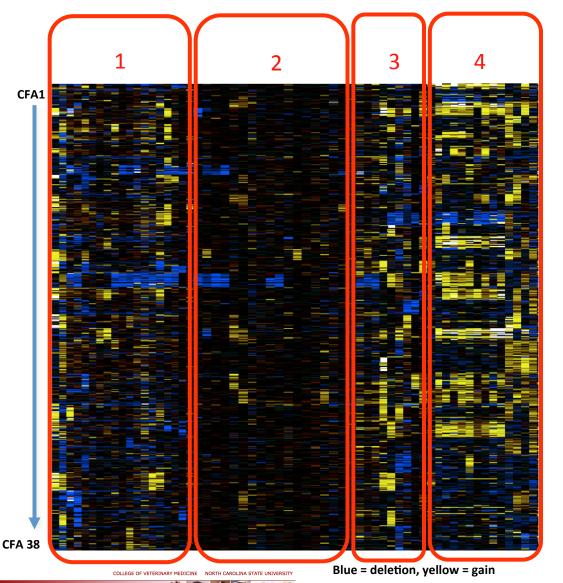
"Genomic Recoding" are people really like their dogs?


Canine urothelial carcinoma: genomically aberrant and comparatively relevant

S. G. Shapiro · S. Raghunath · C. Williams · A. A. Motsinger-Reif ·

J. M. Cullen • T. Liu • D. Albertson • M. Ruvolo • A. Bergstrom Lucas •

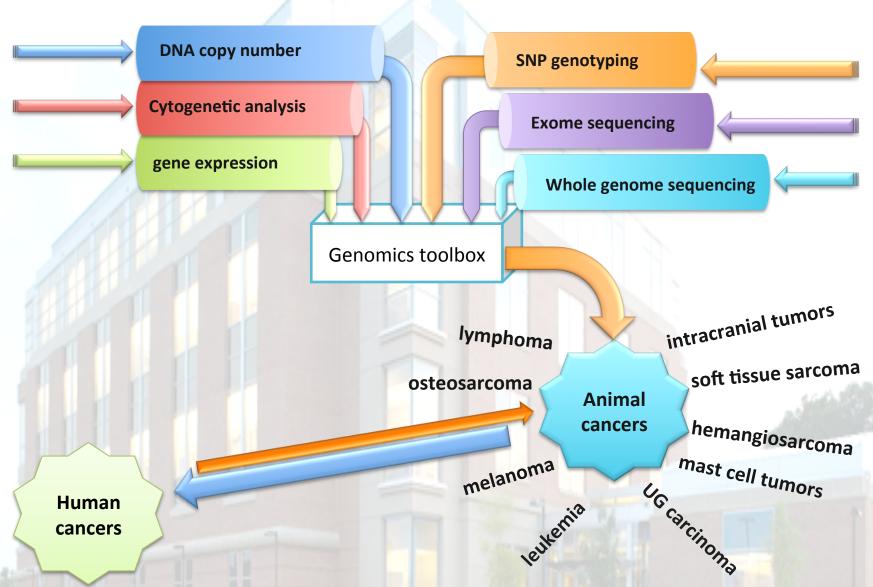
J. Jin · D. W. Knapp · J. D. Schiffman · M. Breen


Received: 10 January 2015 / Revised: 7 February 2015 / Accepted: 10 February 2015

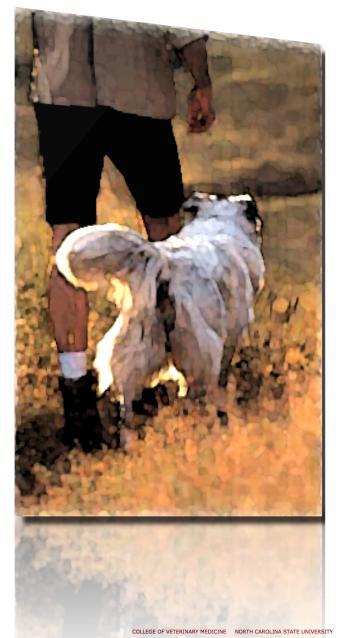
Compile the data

Lymphoma	n≈ 350
Leukemia	n≈ 1 <i>75</i>
Osteosarcoma	n≈ 125
Intracraníal	n≈ 100
Hemangiosarcoma	n≈ 110
Hemangiosarcoma Histiocytic malignancies	n≈ 130
Melanoma	n≈ 100
Mast cell	n≈ 200
Urogenital carcinoma	<u>n≈ 100</u>
	<u>n≈1,280</u>

Cluster analysis of genome-wide DNA copy number changes in a series of canine cancer patients.



Do any of these recurrent aberrations correlate with subtype and/or prognosis in dogs?

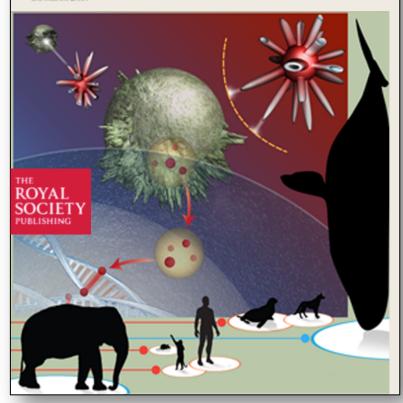

YES

Are there corresponding cytogenetic lesions in human patients?

YES

Detailed pathology and clinical outcome associated cases = opportunities for diagnostic and prognostic signatures

On the path to effective cancer therapies


the keys to unlocking some of these puzzles may be walking right beside us PHILOSOPHICAL TRANSACTIONS B

ISSN 0962-8436 | Volume 370 | I Issue 1673 | 19 July 2015

Cancer across life: Peto's paradox and the promise of comparative oncology

Theme issue compiled and edited by Joshua Schiffman, Carlo C. Maley, Leonard Nunney, Michael Hochberg and Matthew Breen

Cancer across life: Peto's paradox and the promise of comparative oncology

Compiled and edited by Joshua D. Schiffman, Carlo C. Maley, Leonard Nunney, Michael Hochberg and Matthew Breen

Vol 370: 19th July 2015

On-line June 8th 2015

Acknowledgements

NCSU

Shannon Becker- Graduate student
Katie Kennedy- Graduate student
Hiro Mochizuki - Post Doc
Lauren Poe - Research Assistant
Sharanya Raghunath - Post Doc
Sarah Roode - DVM/PhD student
Daniel Rotroff - Post Doc
Susan Shapiro - DVM/PhD student
Rachael Thomas- Research Assistant Professor
Christina Williams - Research Associate

Luke Borst - Veterinary Pathologist
John Cullen - Veterinary Pathologist
Keith Linder - Veterinary Pathologist
Natasha Olby - Veterinary Neurologist
Chris Mariani - Veterinary Neurologist
Steven Suter - Clinical Veterinary Oncologist
Dahlia Nielsen - Statistical Geneticist
Alison Motsinger-Reif - Biostatistician

Key collaborators (Dog, human and marine mammal)

Kerstin Lindblad-Toh et al - Broad Institute Jaime Modiano et al - U. Minnesota. USA Josh Schiffman et al Huntsman CI, USA Anne Avery, Sue Lana et al - ACC, CSU, USA Bill Kisseberth, Guillermo Couto- Ohio State U, USA Pete Dickensen, UC Davis, USA Ted Valli - VDx Veterinary Diagnostics CA, USA Jim Cerhan, Susan Slager et al - Mayo Clinic, USA Debbie Knapp, Purdue University, USA Chand Khanna, Stephen Hewitt - NCI Elaine Ostrander et al - NIH Frances Gulland, Marine Mammal Center, CA Sea Lion Cancer Consortium Mona Rosenberg - Veterinary Cancer Group, CA Scott Moroff/Phil Bergman- VCA/Antech Diagnostics Jimmy Jin, Michael Ruvolo, Anne Lucas, Agilent Technologies

Key collaborators (Dog, human and marine mammal)

Acknowledgements

NCSU

S D S R

Ch

Joh

Shannon Becker- Graduate student Katie Kennedy- Graduate student Hiro Mochizuki - Post Doc Lauren Poe - Research Assist

. and the thousands of dog parents and their veterinarians who have submitted Sharanya D specimens to help this research. Luk

Keit Nat ____ Oldy - Veterinary Neurologist Chris Mariani - Veterinary Neurologist

Steven Suter - Clinical Veterinary Oncologist

Dahlia Nielsen - Statistical Geneticist

Alison Motsinger-Reif - Biostatistician

Frances Gulland, Marine Mammal Center, CA

Sea Lion Cancer Consortium

Kerstin Lindblad-Toh et

Mona Rosenberg - Veterinary Cancer Group, CA

Scott Moroff/Phil Bergman- VCA/Antech Diagnostics

Jimmy Jin, Michael Ruvolo, Anne Lucas, Agilent Technologies

Thank you

Matthew_Breen@ncsu.edu