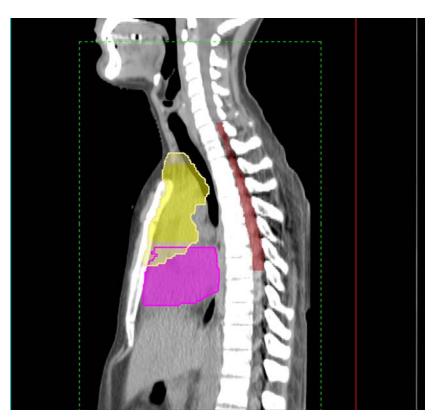
Comparative Effectiveness Research on Emerging Radiation Therapies

Grace Smith, MD, PhD
University of Texas M D Anderson Cancer Center

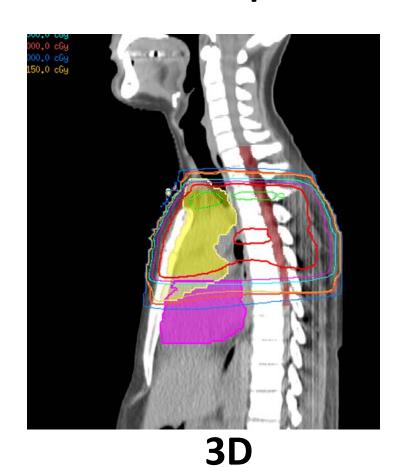
Comparative Effectiveness Research

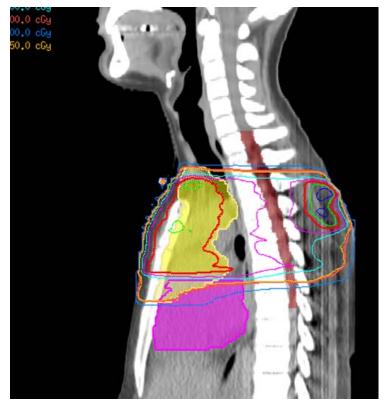
Objectives

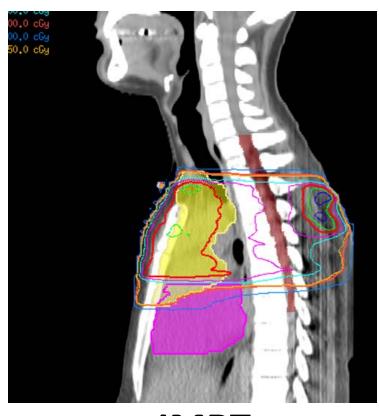

- Examine recent studies of emerging radiation technologies.
- Identify persistent challenges in the current science.
- Propose approaches to address these challenges.

Definition

- Comparative effectiveness research
 - Compare treatments
 - -Examine the relative benefits and harms
 - —To make decisions about treatment alternatives


Data Decision

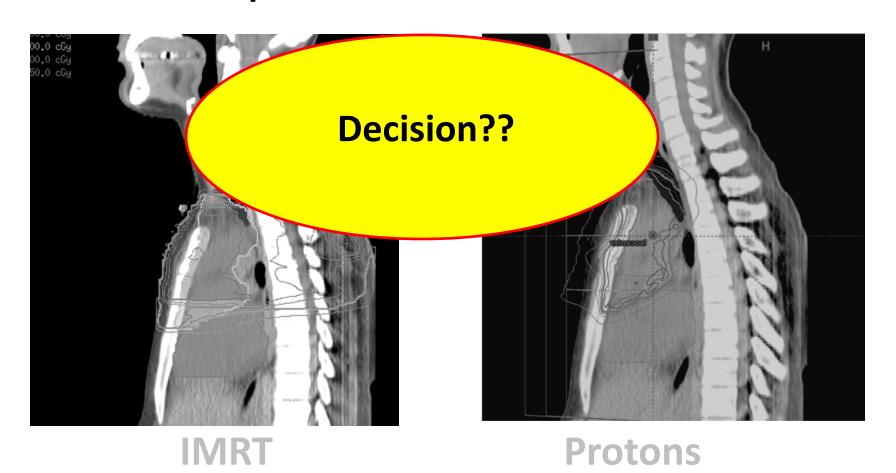

At the Bedside...


...From Bedside to Comparative Effectiveness



IMRT

...From Bedside to Comparative Effectiveness



IMRT

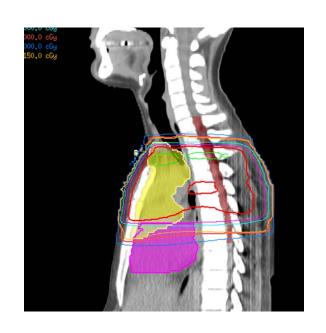
Protons

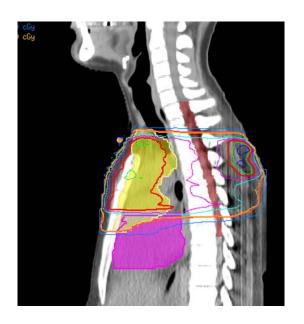
...From Bedside to Comparative Effectiveness

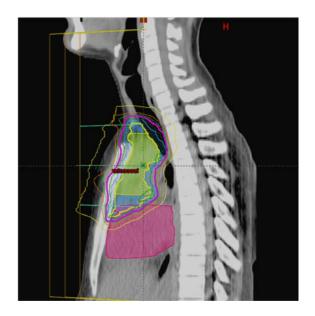
Maximize tumor target coverage

Maximize tumor target coverage

Maximize tumor cure and patient survival


- Maximize tumor target coverage
- Minimize dose to surrounding organs


- Maximize tumor target coverage
- Minimize dose to surrounding organs

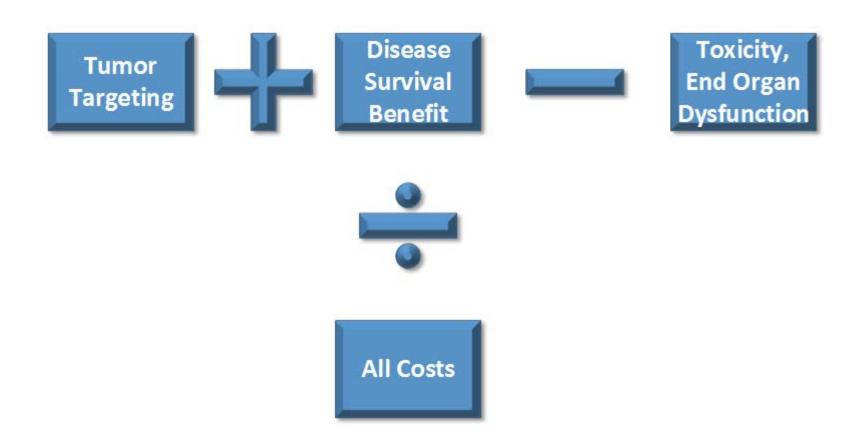

Minimize damage to actual organ function

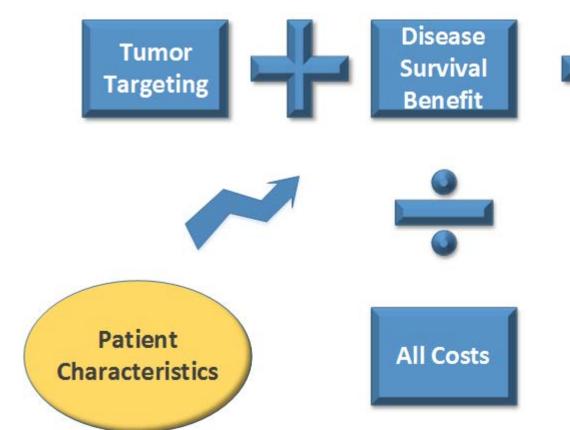
- Maximize tumor target coverage
- Minimize dose to surrounding organs

Deliver at an acceptable cost

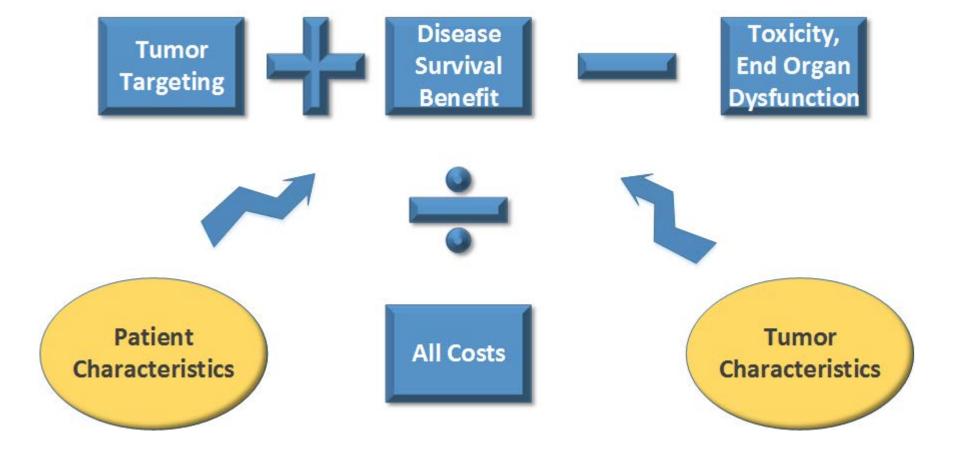
3D IMRT Protons

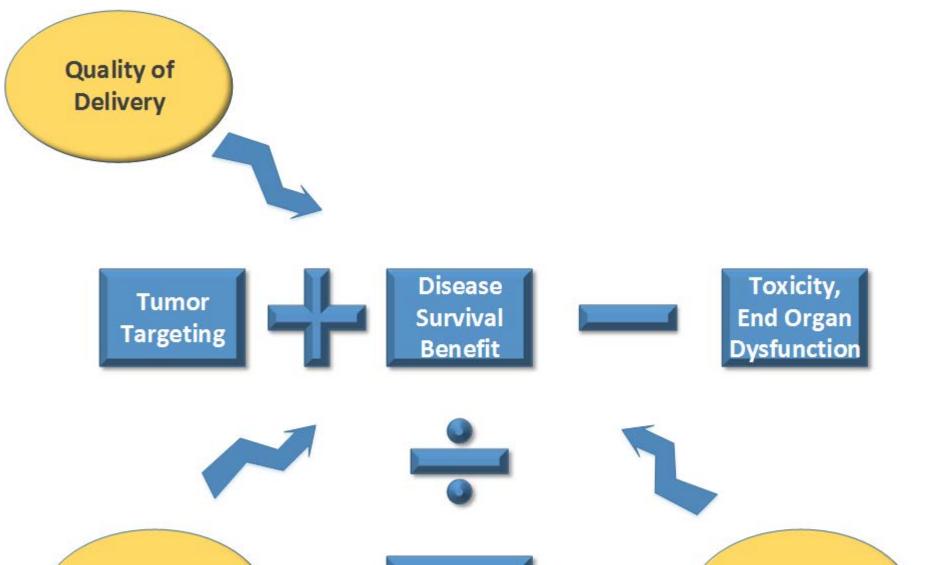
	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	?	?	?
Payer Cost (\$)	+++	++	+ -
*Medicare Reimbursement	1.0	1.4 - 2.6	2.9
Patient Cost (\$)	?	?	?
Overall Cost	?	?	?
Comparative Effectiveness Metric	?	?	?


	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	?	?	?
Payer Cost (\$)	+++	++	+ -
*Medicare Reimbursement	1.0	1.4 - 2.6	2.9
Patient Cost (\$)	?	?	?
Overall Cost	?	?	?
Comparative Effectiveness Metric	?	?	?

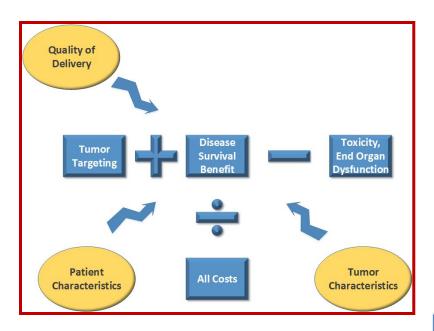

	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	?	?	?
Payer Cost (\$)	+++	++	+ -
*Medicare Reimbursement	1.0	1.4 - 2.6	2.8
Patient Cost (\$)	?	?	?
Overall Cost	?	?	?
Comparative Effectiveness Metric	?	?	?

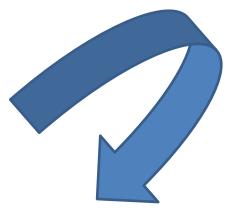
☑ CER Data?

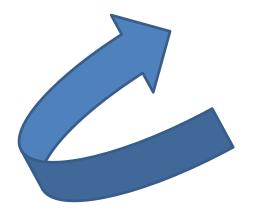

	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	$\overline{\mathbf{Q}}$	\square	\square
Payer Cost (\$)	+++	++	+ -
*Medicare Reimbursement	1.0	1.4 - 2.6	2.8
Patient Cost (\$)	$\overline{\checkmark}$		$\overline{\mathbf{V}}$
Overall Cost			V
Comparative Effectiveness Metric	?	?	?


Comparative Effectiveness Paradigm

Toxicity,
End Organ
Dysfunction

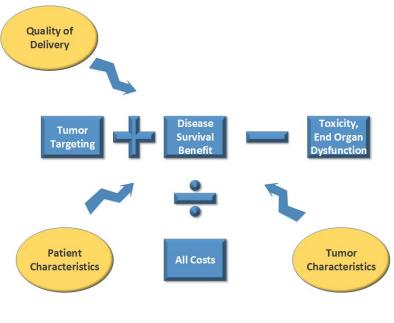



Patient Characteristics

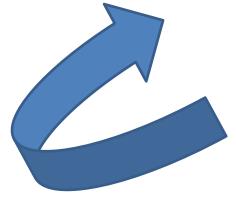


Tumor Characteristics

Data from CER

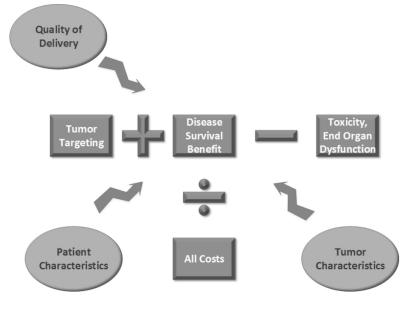


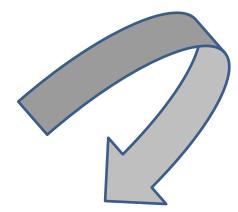


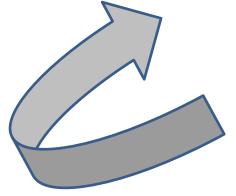


	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	?	?	?
Payer Cost (\$)	+++	++	+-
*Medicare Reimbursement	1.0	2.6	2.8
Patient Cost (\$)	?	?	?
Overall Cost	?	?	?

Data at the Bedside







	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	?	?	?
Payer Cost (\$)	+++	++	+-
*Medicare Reimbursement	1.0	2.6	2.8
Patient Cost (\$)	?	?	?
Overall Cost	?	?	?

Decision-Making

	3D	IMRT	Proton
Target Tumor	++-	+++	+++
Minimize Organ Dose	+	+++	++++
Minimize Organ Damage	?	?	?
Payer Cost (\$)	+++	++	+-
*Medicare Reimbursement	1.0	2.6	2.8
Patient Cost (\$)	?	?	?
Overall Cost	?	?	?

Current State of the Research

- Some examples
- Strengths of current approaches
- Persistent challenges

Research

Original Investigation

Lobectomy, Sublobar Resection, and Stereotactic Ablative Radiotherapy for Early-Stage Non-Small Cell Lung Cancers in the Elderly

Shervin M. Shirvani, MD, MPH; Jing Jiang, MS; Joe Y. Chang, MD, PhD; James Welsh, MD; Anna Likhacheva, MD, MPH; Thomas A. Buchholz, MD; Stephen G. Swisher, MD; Benjamin D. Smith, MD

JAMA Surg. 2014;149(12):1244-1253. doi:10.1001/jamasurg.2014.556 Published online October 15, 2014.

 QUESTION: In eligible pts, stereotactic ablative radiosurgery vs. surgery?

CHALLENGE: Prospective trials have not accrued.

 DESIGN: Retrospective analysis of SEER-Medicare cohort.

 RATIONALE: Use statistical modeling to account for patient differences.

 ANALYSIS: Proportional hazards analysis and propensity score matching.

	Stereotactic Radiation				Sublobar Surge	ery
	HR	95% CI	P-value	HR	95% CI	P-value
Overall Survival	1.01	0.74 – 1.38	0.94	1.36	1.17 – 1.58	<.001
Lung Cancer Survival	1.00	0.52 - 1.92	0.99	1.46	1.13 – 1.90	.004
Cost						

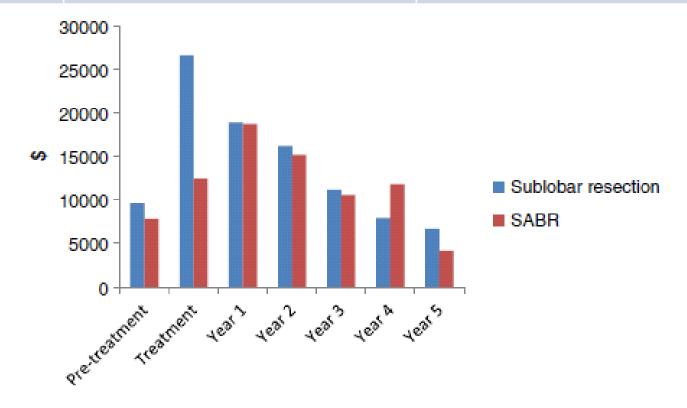
	Ste	Stereotactic Radiation			Sublobar Surge	ery
	HR	95% CI	P-value	HR	95% CI	P-value
Overall Survival	1.01	0.74 – 1.38	0.94	1.36	1.17 – 1.58	<.001
Lung Cancer Survival	1.00	0.52 – 1.92	0.99	1.46	1.13 – 1.90	.004
Cost						

	Stereotactic Radiation				Sublobar Surge	ery
	HR	95% CI	P-value	HR	95% CI	P-value
Overall Survival	1.01	0.74 – 1.38	0.94	1.36	1.17 – 1.58	<.001
Lung Cancer Survival	1.00	0.52 – 1.92	0.99	1.46	1.13 – 1.90	.004
Cost						

Cost-effectiveness of stereotactic radiation, sublobar resection, and lobectomy for early non-small cell lung cancers in older adults

Benjamin D. Smith^{a,*}, Jing Jiang^a, Joe Y. Chang^a, James Welsh^a, Anna Likhacheva^b, Thomas A. Buchholz^a, Stephen G. Swisher^a, Shervin M. Shirvani^b

^aThe University of Texas MD Anderson Cancer Center, Houston, TX, United States



JOURNAL OF GERIATRIC ONCOLOGY

http://dx.doi.org/10.1016/j.jgo.2015.05.002 1879-4068/© 2015 Elsevier Ltd. All rights reserved.

^bBanner MD Anderson Cancer Center, Gilbert, AZ, United States

	Stereotactic Radiation	Surgery
Cost	\$55,000	\$78,000

	Stereotactic Radiation	Surgery
Cost	\$55,000	\$78,000
Cost Model*	\$40,000	\$51,000

*Shah et al., *Cancer* 2013; 119: 3123

Ex. 1: Lessons Learned

 When randomized data difficult, large population and claims data provide insights into comparative effectiveness.

Advanced technology <u>can</u> be less costly than prevailing practice

Ex. 1: Challenges

True cost data difficult to obtain

 No consensus on how to <u>reconcile</u> divergent cost data from different sources.

 No consensus on how to <u>translate</u> divergent data into a quantitative metric for decisions.

ARTICLE

Proton Versus Intensity-Modulated Radiotherapy for Prostate Cancer: Patterns of Care and Early Toxicity

James B. Yu, Pamela R. Soulos, Jeph Herrin, Laura D. Cramer, Arnold L. Potosky, Kenneth B. Roberts, Cary P. Gross

J Natl Cancer Inst 2013;105:25–32

 QUESTION: Does proton therapy have better toxicity profile than IMRT?

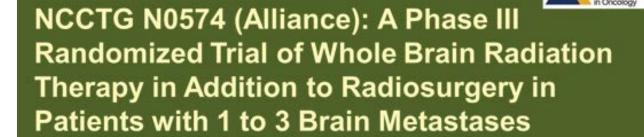
 CHALLENGE: Prospective randomized trials face similar difficulties.

DESIGN: Retrospective analysis of Medicare.

 RATIONALE: Use diagnosis claims codes as surrogate for toxicity outcomes.

 ANALYSIS: Logistic regression with matching to account for systematic differences.

	6-month toxicity				12-mo	
Complications	IMRT (%)	Proton (%)	OR	95% CI	Р	Р
Genitourinary	9.5	5.9	0.60	0.38 – 0.96	0.03	0.66
Gastrointestinal	3.6	2.9	0.84	0.42 – 1.66	0.61	0.89
Other	2.5	<2.6	0.69	0.29 – 1.66	0.41	0.46


 Lessons: Feasible to detect clinical differences in toxicity between proton radiation vs IMRT.

Challenges:

- Claims-based surrogate treatment adequate?
- Claims-based surrogate outcome adequate?
- Retrospective matching adequate?

- Retrospective biases due to:
 - Disparate characteristics: adopt vs. non-adopt
 - Surrogate variables
 - Temporal factors
 - Variation from patient, tumor, and quality of care

Ex. 3: Less Radiation vs. Less Radiation

Presenting Author: Paul Brown, MD MD Anderson Cancer Center

A.L. Asher*, K.V. Ballman, E. Farace, J.H. Cerhan, S.K. Anderson, X.W. Carrero, F.G. Barker II, R. Deming, S.H. Burri, C. Ménard, C. Chung, V.W. Stieber, B.E. Pollock, E. Galanis, J.C. Buckner, K. Jaeckle

* Paul Brown and Anthony Asher contributed equally to this study.

J Clin Oncol 33, 2015 (suppl; abstr LBA4)

Ex. 3: Less Radiation vs. More Radiation

• QUESTION:

- In brain mets, stereotactic radiosurgery (SRS) delivers highly targeted radiation.
- Effectiveness of targeted SRS vs added whole brain radiation (WBRT)?

Less Radiation vs. More Radiation SRS SRS+WBRT

Survival equivalent

Better tumor control

Less Radiation vs. More Radiation SRS SRS+WBRT

- Survival equivalent
- Toxicity?

- Better tumor control
- Toxicity?

Less Radiation vs. More Radiation

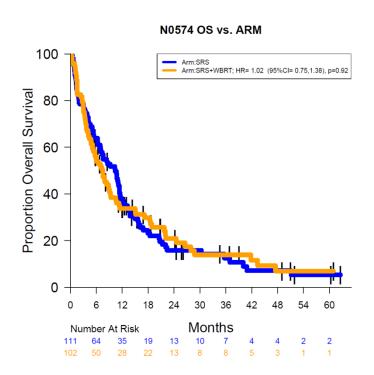
SRS

SRS+WBRT

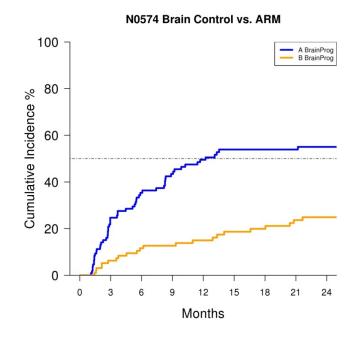
 Tumor progression causes more toxicity?

Toxicity,
End Organ
Dysfunction

Less Radiation vs. More Radiation SRS SRS+WBRT


 Radiation treatment causes more toxicity?

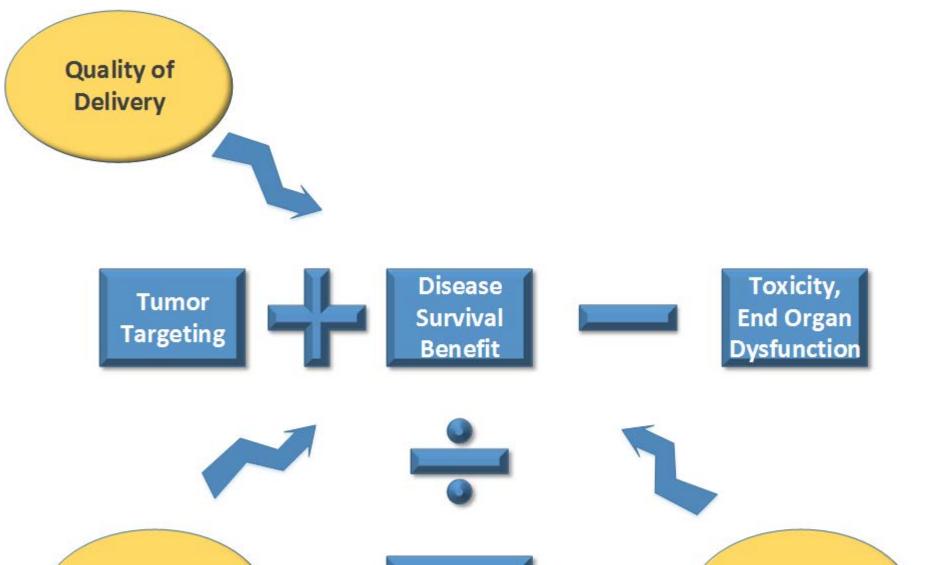
Toxicity,
End Organ
Dysfunction



Ex. 3: Less Radiation vs. More Radiation

 No difference in overall survival (P=0.92)

 SRS had worse intracranial tumor control (P<0.0001)



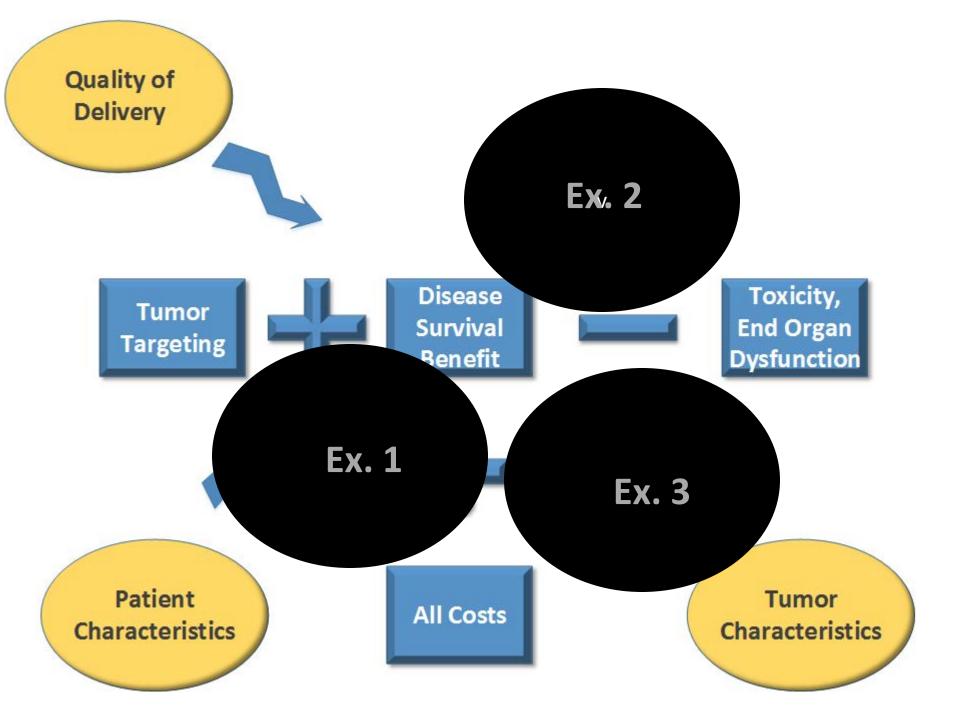
Ex. 3: Less Radiation vs. More Radiation

	Stereotactic Radiation (SRS)		SRS + WBRT		
		95% CI		95% CI	P-value
Cognitive Decline	63.5%	50.5 – 75.3	91.7%	80.0 – 97.7	<.001
Functional Well Being	3		-22		.006
Total QOL	-1		-11		.002

Cognitive Test	SRS	SRS+WBRT	P-value
HVLT Total Recall	8.2%	30.4%	0.0043
HVLT Delayed Recall	19.7%	51.1%	0.0009
HVLT Recognition	22.6%	40.4%	0.0585
TMT Part A	16.7%	30.4%	0.1063
TMT Part B	19.0%	37.2%	0.0677
COWA	1.9%	18.6%	0.0098
Pegboard-Dominant	29.3%	47.7%	0.0656

QOL Test/Subtest	SRS	SRS+WBRT	P-value
Physical Well Being	- 4	- 18	0.053
Social/FamilyWB	1	- 3	0.369
Emotional Well Being	13	5	0.129
Functional Well Being	3	- 22	0.006
FACT General	0	- 12	0.001
FACT Brain Specific	-1	- 9	0.029
FACT-BR Total	-1	-11	0.002

Patient Characteristics


Tumor Characteristics

Ex. 3: Less Radiation vs. More Radiation

 Lessons: Prospective data can provide detailed comparisons.

Challenges:

- 10 year effort to collect data
- No patient-level cost data collected
- Single inst*: SRS \$119,000 vs SRS+WBRT \$74,000

Comparative Effectiveness Research

Current Challenges

- Retrospective biases
- Prospective trials barriers
 - Long period for accrual
 - Shifts in indications, target populations

Current Challenges

• Is the barrier a lack of data?

Current State of CER

Treatment Planning

Treatment Delivery

Medical Record Population Databases

Current State of CER

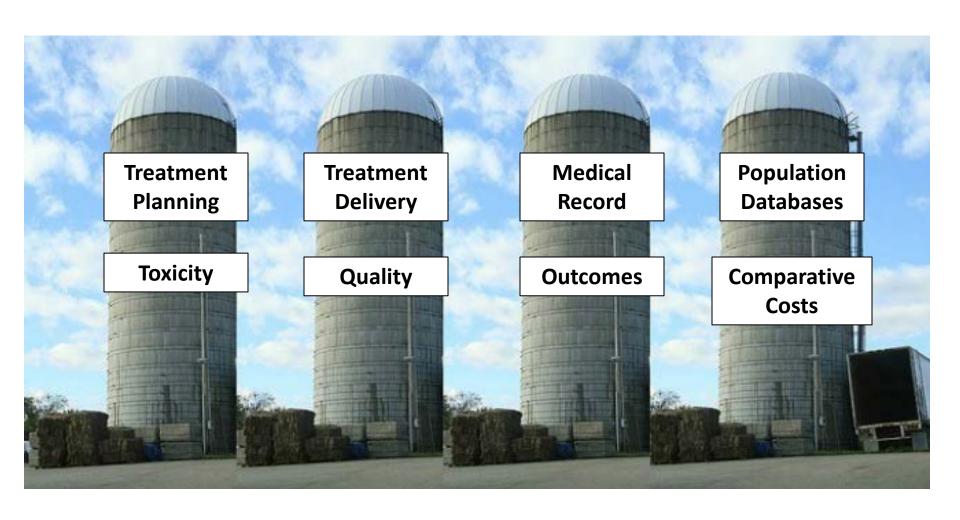
Treatment Planning

Treatment Delivery

Medical Record Population Databases

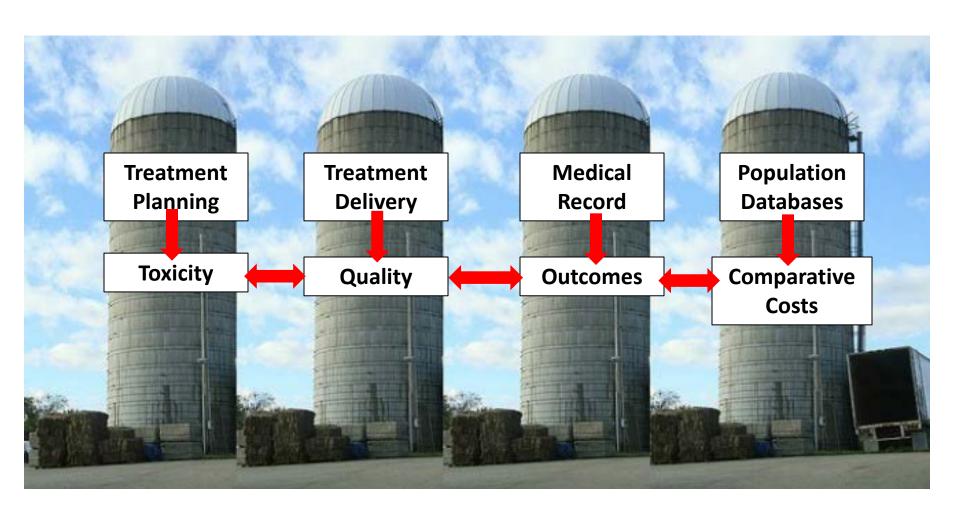
Toxicity

Quality

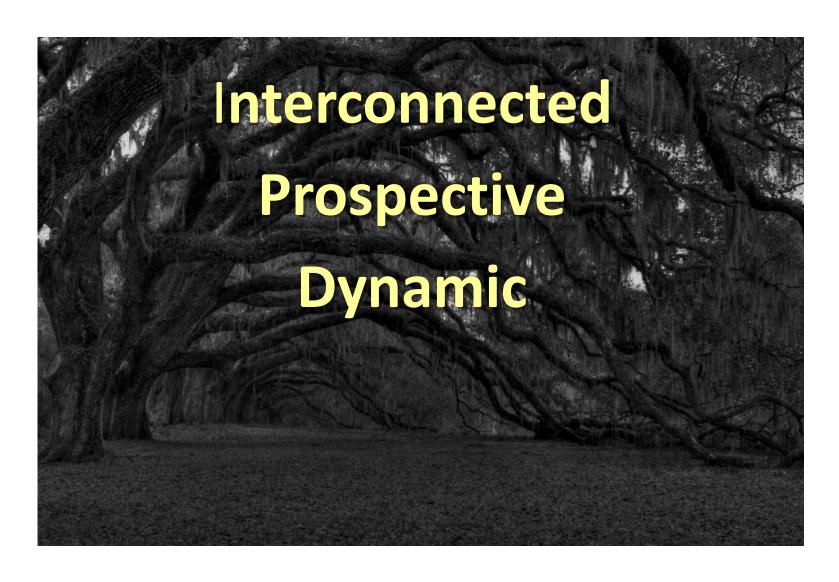

Outcomes

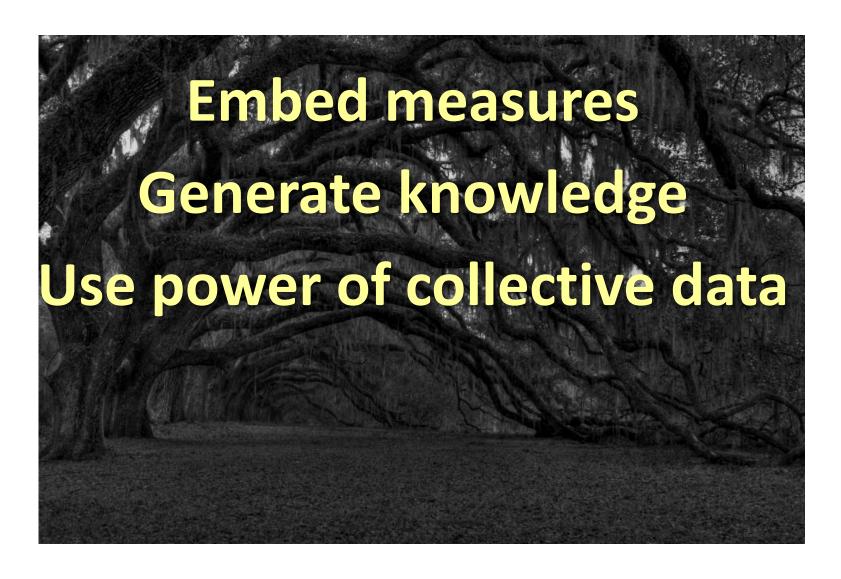
Comparative Costs

• Is the barrier a lack of data?


Lacking design to optimally connect data.

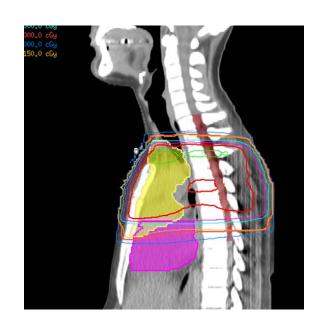
Current State of CER

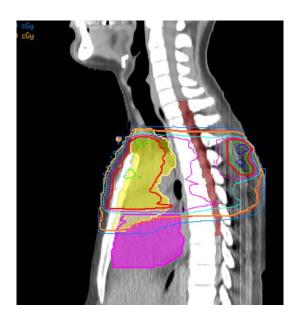


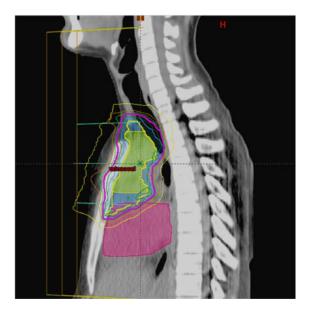

Current Challenges

Designs uni-dimensional, lacking plasticity

- The National Radiation Oncology Registry
 - Pilot effort
 - Multi-center
 - Prospective


Practical Radiation Oncology (2012) 2, 10-17




Special Article

Developing a national radiation oncology registry: From acorns to oaks

Jatinder R. Palta PhD ^{a,*}, Jason A. Efstathiou MD, PhD ^b, Justin E. Bekelman MD ^c, Sasa Mutic PhD ^d, Carl R. Bogardus MD ^e, Todd R. McNutt PhD ^f, Peter E. Gabriel MD ^c, Colleen A. Lawton MD ^g, Anthony L. Zietman MD ^b, Christopher M. Rose MD ^h

3D IMRT Protons

Summary

- Technology continues to advance.
- More data is being generated.
- Need to contain costs remains.

Summary

- To balance competing demands, develop:
 - Culture
 - Sustainable method
- To move from data to decisions.
- To optimize radiation treatment strategies.

