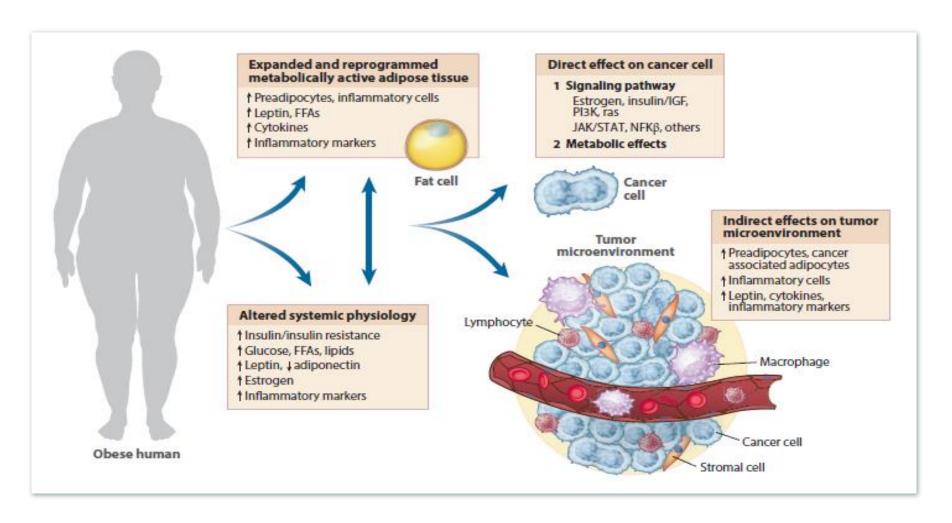

# Evidence Gaps that Current Trials Will Address, Gaps that Remain, and How These Gaps Can be Filled

Jennifer Ligibel, MD
Dana-Farber Cancer Institute
National Cancer Policy Forum
February 13, 2017



# A brief recap of what we know about weight, physical activity and health outcomes for cancer survivors

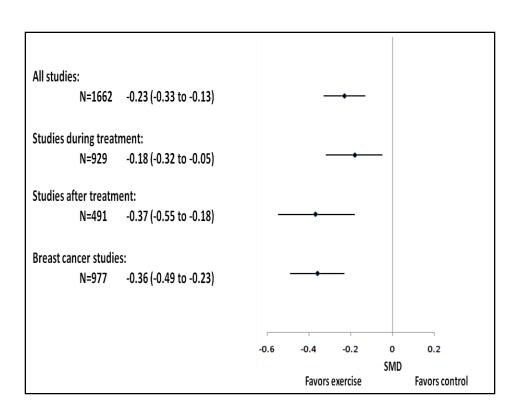
## Obesity and inactivity are associated with poor prognosis in many cancers

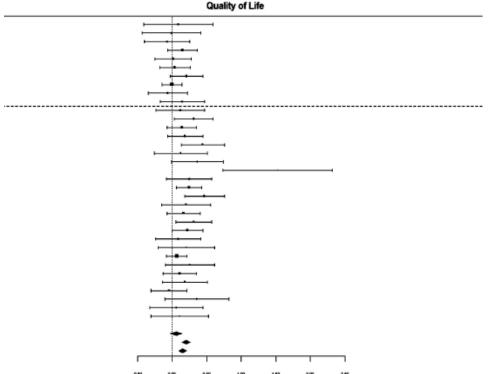



#### PA and cancer-specific mortality

Table 1. Individual and pooled risk estimates from prospective cohort studies that related postdiagnosis physical activity to cancer-specific mortality, by cancer site

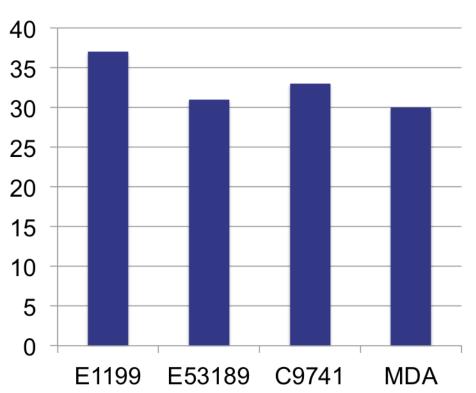
|                                        | No. of       | Effect   |           |     |     |                 |     |
|----------------------------------------|--------------|----------|-----------|-----|-----|-----------------|-----|
| thor, year                             | events/cases | estimate | 95% CI    |     |     |                 |     |
| st                                     |              |          |           |     |     |                 |     |
| Bradshaw, 2014 (10)                    | 195/1,033    | 0.27     | 0.17-0.42 |     |     |                 |     |
| lolick, 2008 (26)                      | 109/4.482    | 0.49     | 0.27-0.89 |     | -   | _               |     |
| lorch, 2015 (9)                        | 155/1,327    | 0.50     | 0.15-1.62 |     | _   | _               | _   |
| lolmes, 2005 (27)                      | 280/2,987    | 0.60     | 0.40-0.89 |     | -   |                 |     |
| rwin, 2011 (11)                        | 86/2,910     | 0.61     | 0.38-0.99 |     |     | -               |     |
| win, 2008 (28)                         | 115/933      | 0.65     | 0.23-1.87 |     |     |                 |     |
| /illiams, 2014 (8)                     | 46/986       | 0.76     | 0.63-0.92 |     |     | _               | -   |
| Glas, 2014 (12)                        | 39/435       | 0.77     | 0.28-2.12 |     | _   |                 | -   |
| ernfield, 2009 (29)                    | 102/1,970    | 0.87     | 0.48-1.59 |     |     |                 |     |
| orugian, 2004 (7)                      | 112/603      | 1.00     | 0.63-1.60 |     |     | _               | _   |
| cooled Estimate ( $I^2 = 61.3\%$ )     | 1,239/17,666 | 0.62     | 0.48-0.80 |     |     | -               | _   |
| rectal                                 |              |          |           |     |     |                 |     |
| iper, 2012 (13)                        | 51/606       | 0.29     | 0.11-0.77 | _   |     |                 | _   |
| Neyerhardt, 2006 (30)                  | 80/573       | 0.39     | 0.19-0.82 |     |     |                 |     |
| eyerhardt, 2009 (31)                   | 88/661       | 0.47     | 0.24-0.92 |     |     |                 |     |
| rem, 2015 (14)                         | 128/3,797    | 0.53     | 0.27-1.03 |     | _   | _               |     |
| ampbell, 2013 (15)                     | 379/2,236    | 0.87     | 0.61-1.24 |     |     | _               | _   |
| aade, 2011 (16)                        | 345/1,825    | 0.88     | 0.67-1.15 |     |     |                 | _   |
| oled Estimate ( $I^2 = 56.6\%$ )       | 1,071/9,698  | 0.62     | 0.45-0.86 |     |     | _               | _   |
| ate                                    |              |          |           |     |     |                 |     |
| nfield, 2011 (17)                      | 112/2,705    | 0.42     | 0.20-0.88 |     |     |                 | _   |
| riedenreich, 2016 (18)                 | 170/830      | 0.56     | 0.35-0.90 |     |     | _               | _   |
| onn, 2015 (19)                         | 194/4,623    | 0.73     | 0.51-1.05 |     |     |                 | •   |
| poled Estimate (I <sup>2</sup> = 0.8%) | 476/8,158    | 0.62     | 0.47-0.82 |     |     | _               | _   |
|                                        |              |          |           |     |     | _               |     |
| e, 2014 (20)                           | 337/1,021    | 0.62     | 0.44-0.87 |     |     | _               | _   |
| oue-Choi, 2013 (21)                    | 184/2,017    | 0.72     | 0.47-1.10 |     |     |                 | -   |
| all                                    |              |          |           |     |     |                 |     |
| poled Estimate ( $I^2 = 47.9\%$ )      | 3,307/38,560 | 0.63     | 0.54-0.73 |     |     | -               |     |
|                                        |              |          |           | 0.1 | 0.2 | 0.5             | 1.  |
|                                        |              |          |           | 0.1 | 0.2 |                 | 1.0 |
|                                        |              |          |           |     |     | Effect Estimate |     |


## Mechanistic data support biologic plausibility of link between obesity/physical activity and cancer




## Interventional studies show benefits of weight loss/increased PA in cancer survivors

### Impact of exercise interventions on fatigue


## Impact of exercise interventions on quality of life



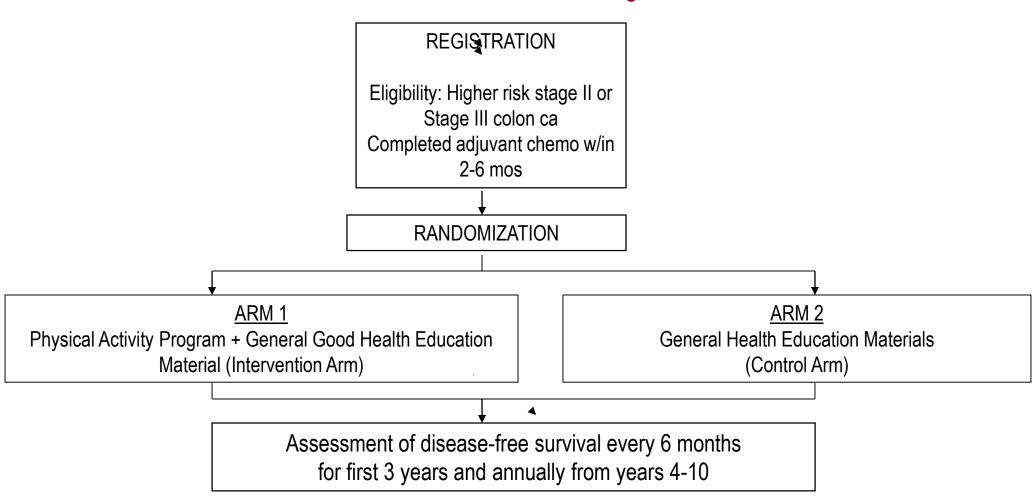


## Obesity and inactivity are common in cancer survivors

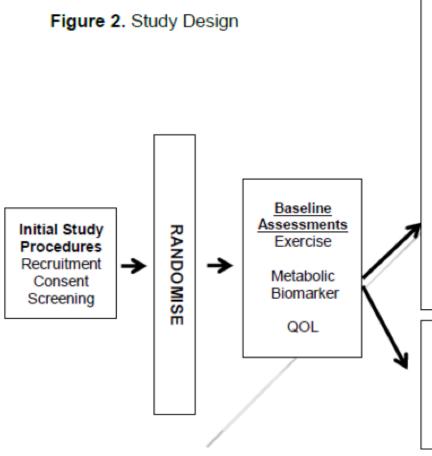
## Obesity at diagnosis in women with breast cancer



| <b>Table 2.</b> Percentage of Cancer Survivors Meeting the Recommendations for Physical Activity, Fruit and Vegetable Consumption, and Smoking by Cancer Group |                          |                |                |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------------|--|--|--|--|--|--|
| Cancer Group                                                                                                                                                   | Physical<br>Activity (%) | 5-A-Day<br>(%) | Smoking<br>(%) |  |  |  |  |  |  |
| Breast                                                                                                                                                         | 37.1                     | 18.2           | 88.1           |  |  |  |  |  |  |
| Prostate                                                                                                                                                       | 43.2                     | 15.6           | 91.6           |  |  |  |  |  |  |
| Colorectal                                                                                                                                                     | 35.0                     | 15.9           | 91.3           |  |  |  |  |  |  |
| Bladder                                                                                                                                                        | 36.0                     | 16.3           | 82.6           |  |  |  |  |  |  |
| Uterine                                                                                                                                                        | 29.6                     | 19.1           | 91.1           |  |  |  |  |  |  |
| Skin melanoma                                                                                                                                                  | 47.3                     | 14.8           | 89.0           |  |  |  |  |  |  |
| Abbreviation: 5-A-Day consumed five servings of fruits and vegetables each day.                                                                                |                          |                |                |  |  |  |  |  |  |


### **Unanswered questions**

- Does weight loss/increased PA after cancer diagnosis reduce risk of recurrence and mortality?
- If so, what dose and duration are needed to impact cancer outcomes?
- What is most important? Weight? Physical activity? Diet?
- Do all patients benefit equally from lifestyle interventions? Is this cancerspecific or based on host characteristics?
- How can lifestyle interventions be disseminated across diverse populations of cancer survivors?


## How do on-going trials fill these evidence gaps?

## Lifestyle intervention trials with recurrence/mortality outcomes

CHALLENGE: Colon Health and Life-Long Exercise Trial



### **GAP4 Study-Metastatic Prostate Cancer**



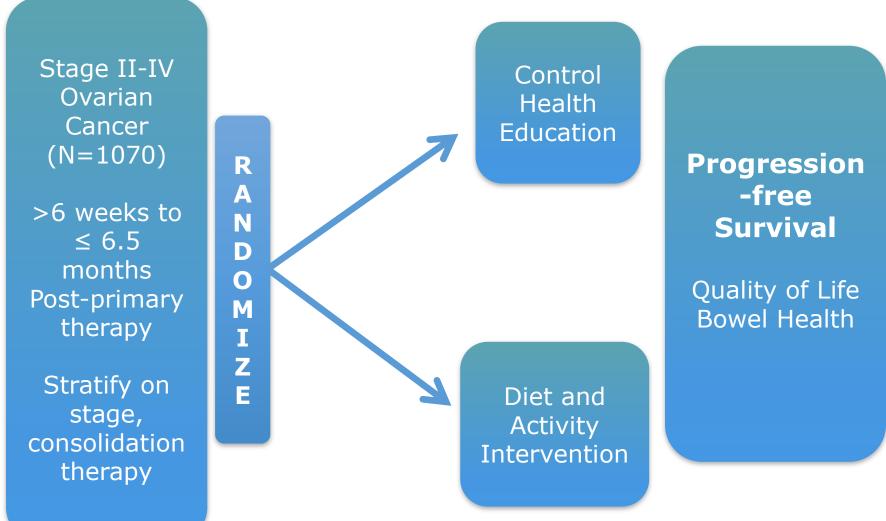
#### ARM A: Exercise Group

12 month supervised exercise programme

Cycle 0: x3 days/week

Cycles 1-8: x2 days/week

Cycles 9-11: x1 day/week


- 12 month self-managed exercise programme
- Behavioural support
- Psychosocial support
- Exercise assessments (Cycles 0, 6, 9, 12, 18, 24)
- Constant Load Tests (Cycles 1-5, 7-11, 13-17 & 19-23)
- Frequent exercise monitoring (Cycles 0-12)
- Metabolic biomarker assessments (Cycles 0, 6, 12, 24)
- QoL assessments (Cycles 3, 6, 9, 12, 15, 18, 21, 24, 36)

#### ARM B: Control Group

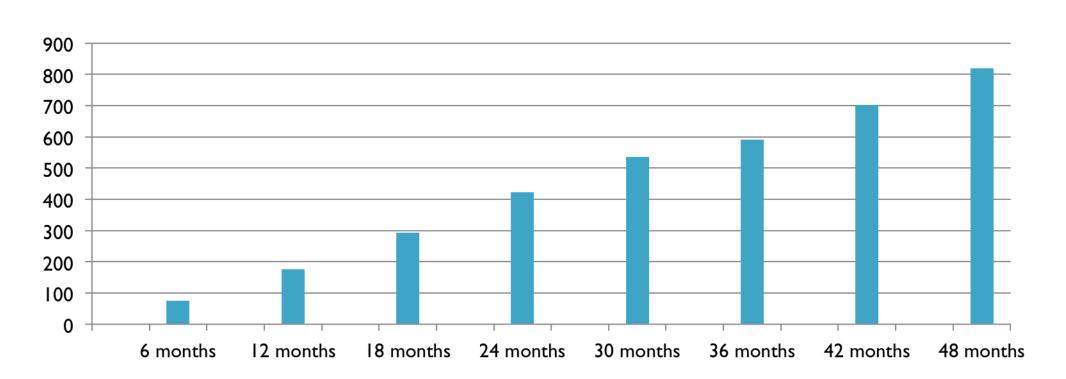
- Psychosocial support
- Exercise assessments (Cycles 0, 6, 12, 18, 24)
- Metabolic biomarker assessments (Cycles 0, 6, 12, 24)
- QoL assessments (Cycles 3, 6, 9, 12, 15, 18, 21, 24, 36)

### Study Schematic for GOG 0225 – LIVES study





PI: Thomson and Alperts


## Lifestyle Intervention for Ovarian Cancer Enhanced Survival

- Centralized telephone coaching
  - English and Spanish
- Multi-modal intervention
  - Telephone, print, SMS, email, blog
- Participant centered intervention
  - Grounded in Social Cognitive Theory utilizing Motivational Interviewing
- Promotion of high vegetable, fiber and fruit diet with low fat and +4000 steps daily
- Control: attention control health education group



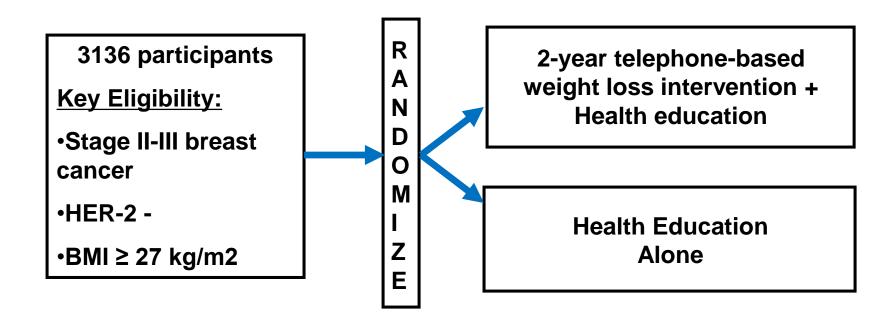
### RECRUITMENT

#### GOG-0225 Accrual (Current accrual: 962)



### Patient Characteristics, first 529 patients

| Characteristic                                                | N (%)                                                   |  |
|---------------------------------------------------------------|---------------------------------------------------------|--|
| Age  ≤50  51-60  61-70  71+                                   | 100 (18.8%)<br>171 (32.2%0<br>181 (34.1%)<br>70 (14.9%) |  |
| Race/ethnicity Non-Hispanic White Non-Hispanic Black Hispanic | 459 (86.8%)<br>22 (4.2%)<br>30 (5.6%)                   |  |
| Body Mass Index <25 kg/m2 25-29.9 kg/m2 ≥30kg/m2              | 197 (37.2%)<br>177 (33.5%)<br>149 (28.2%)               |  |
| Disease Stage  //  ///                                        | 82 (15.4%)<br>376 (70.8%)<br>72 (13.8%)                 |  |




## BWE

The Breast Cancer Weight Loss Trial A011401

Pl's: Ligibel and Goodwin

### **BWEL Study Schema**



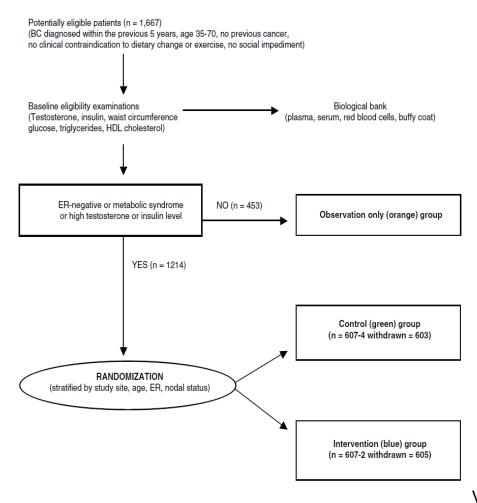
#### **Objectives**

- •Primary: Assess the impact of the weight loss intervention on iDFS
- •Secondary:
  - Assess impact of intervention upon:
    - OS, DDFS
    - Comorbidities
    - · Weight, diet and exercise
  - Correlative science and PRO

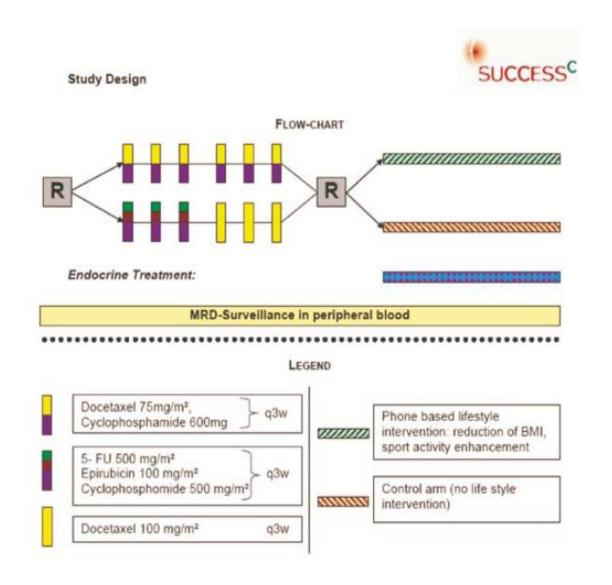
### **Weight Loss Intervention Overview**

- Centralized, 2 year telephone-based weight loss program
- Each patient paired with a weight loss coach, based at DFCI
  - Patients receive 42 phone calls over 2 years
  - Receive a workbook to accompany calls, tools to help increase exercise and reduce calories (Fitbit, wireless scale, food scale, protein shakes)

#### Intervention goals:


- 10% weight loss
- 500-1000 kcal/day deficit
  - » Portion control -- meal replacements, structured menus
  - » Basic diet stresses fruits, vegetables, whole grains, lower in fat
- Increased physical activity
  - 150-200 minutes moderate-intensity activity in first 6 months
  - Goal of 45-60 minutes of activity/<u>day</u> in maintenance phase

### **BWEL Study Update**


- Protocol activated August 29, 2016
- Currently open in 897 sites in US
- Two step registration/randomization process for first 514 patients to allow for detailed diet and exercise data
  - 292 patients registered
  - · 234 patients randomized
- Next steps
  - Activation in Canadian centers planned for early spring 2017
  - Additional of Spanish version of intervention planned summer 2017

## Other ongoing trials testing lifestyle change on breast cancer outcomes

#### Diana-5: Calorie restricted Mediterranean diet + Increased PA vs control



### **SUCCESS-C**



### Summary of RCT's with disease recurrence/ mortality end points

|                 | BWEL                   | CHALLENGE | DIANA 5                   | GAP4     | LIVES             | SUCCESS<br>C           |
|-----------------|------------------------|-----------|---------------------------|----------|-------------------|------------------------|
| N               | 3136                   | 962       | 1241                      | 866      | 1040              | ~1400                  |
| Disease         | Breast                 | Colon     | Breast                    | Prostate | Ovarian           | Breast                 |
| Stage           | 11-111                 | II-III    | I-III                     | IV       | II-IV             | 11-111                 |
| Intervention    | 2-yr<br>Weight<br>Ioss | 3-yr Ex   | 4+ yr<br>Med diet +<br>Ex | 2-yr Ex  | 2-yr<br>Diet + Ex | 2-yr<br>Weight<br>Ioss |
| 1º End<br>point | IDFS                   | DFS       | IDFS                      | OS       | PFS               | DFS                    |
| Correlative     | Blood<br>Tissue        | Blood     | Blood                     | Blood    | Blood             | Blood                  |

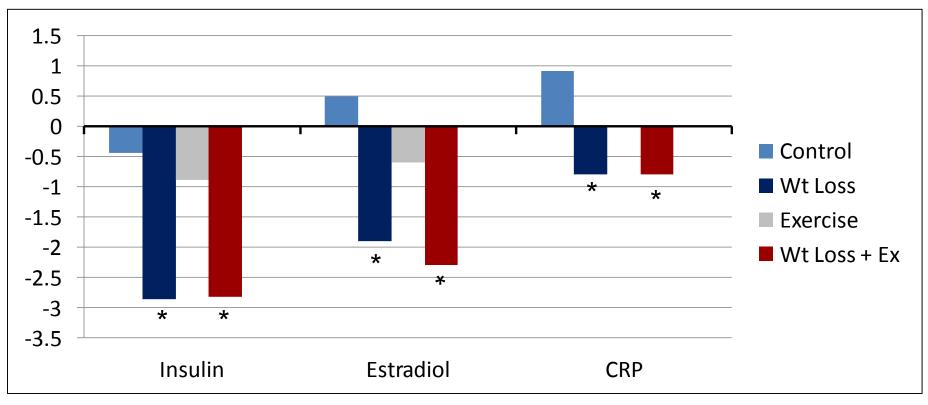
### Summary of RCT's with disease recurrence/ mortality end points

|                 | BWEL                   | CHALLENGE | DIANA 5                   | GAP4     | LIVES             | SUCCESS<br>C           |
|-----------------|------------------------|-----------|---------------------------|----------|-------------------|------------------------|
| N               | 3136                   | 962       | 1241                      | 866      | 1040              | ~1400                  |
| Disease         | Breast                 | Colon     | Breast                    | Prostate | Ovarian           | Breast                 |
| Stage           | 11-111                 | 11-111    | 1-111                     | IV       | II-IV             | 11-111                 |
| Intervention    | 2-yr<br>Weight<br>Ioss | 3-yr Ex   | 4+ yr<br>Med diet +<br>Ex | 2-yr Ex  | 2-yr<br>Diet + Ex | 2-yr<br>Weight<br>Ioss |
| 1º End<br>point | IDFS                   | DFS       | IDFS                      | os       | PFS               | DFS                    |
| Correlative     | Blood<br>Tissue        | Blood     | Blood                     | Blood    | Blood             | Blood                  |

### Will these trials fill the evidence gaps?

- Studies will test impact of lifestyle change after cancer diagnosis on recurrence and mortality in common malignancies
- Each trial examines impact of a specific intervention on recurrence/mortality in a single malignancy
  - Some trials are large enough to evaluate the impact of interventions on subsets of patients defined by tumor or host characteristics
- Can these trials help answer other unresolved questions?
- Can we generalize the information learned from these studies to other malignancies?

### **Correlative science**

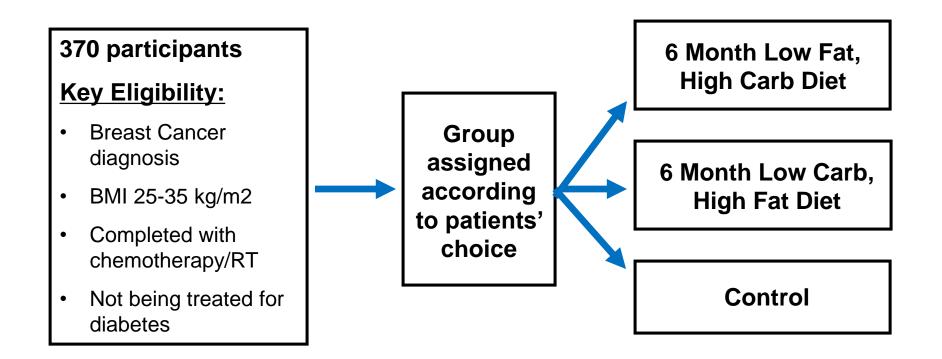

- Each of the on-going large-scale trials include biospecimen collection
  - Serial collection of fasting blood for biomarker analysis
  - Baseline collection of tumor and benign tissue
  - DNA
- Assessment of predictors of intervention benefit
  - Potentially define population to whom intervention should be prescribed
- Development of potential intermediate biomarkers
  - Provide a way to determine whether an intervention is "working"
  - Streamline future research
  - Enhance interpretation of prior studies

## Lifestyle interventions affect metabolic and inflammatory pathways

#### Nutrition and Exercise Study for Women (NEW Trial)

- Designed to evaluate the impact of dietary weight loss and exercise upon biomarkers linked to breast cancer risk
- Enrolled 439 sedentary, overweight or obese, postmenopausal women
- Participants randomized to 1 of 4 groups:
  - Dietary weight loss
  - Exercise
  - Dietary weight loss + exercise
  - Control
- Endpoints:
  - Primary: change in sex steroids
  - Secondary: change in insulin, metabolic and inflammatory hormones

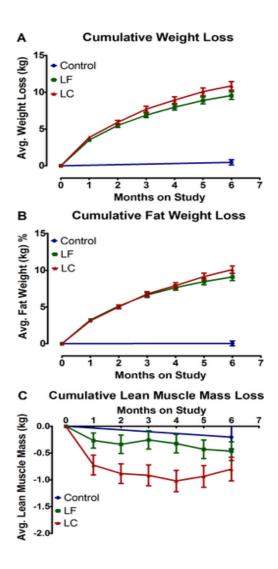
## Weight loss led to significant reductions in metabolic and inflammatory biomarkers




<sup>\*</sup> P<0.001

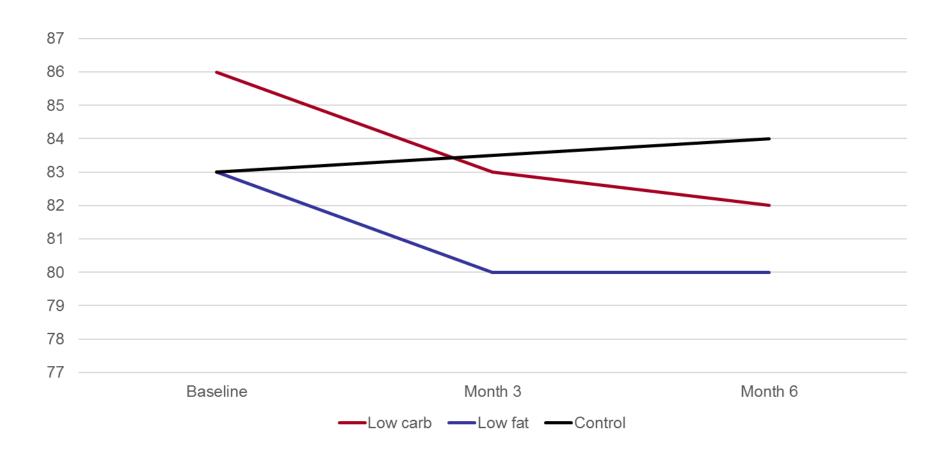
#### Weight Change:

Diet: -10.8% Exercise -3.3% Diet + Exercise -11.9% Control -0.6%

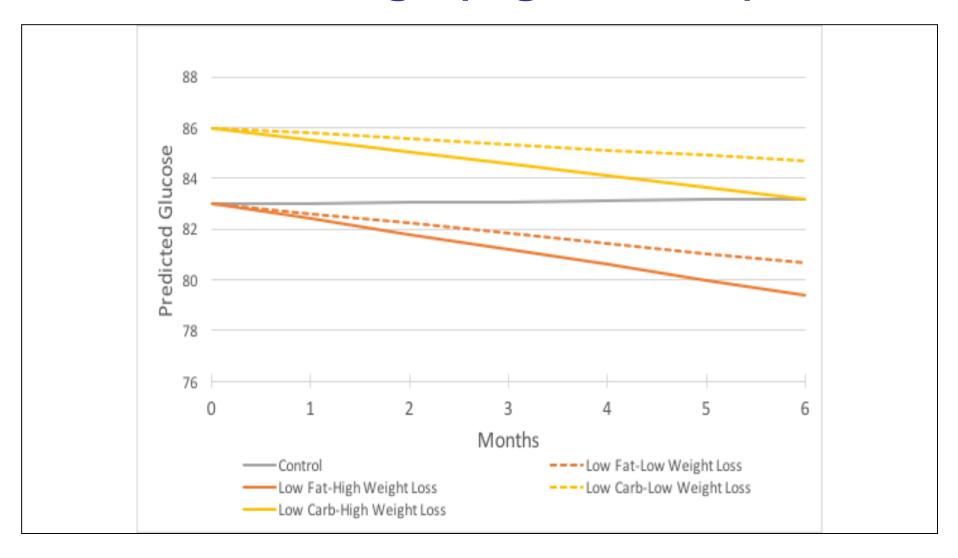

## CHOICE Study: Impact of low fat vs. low carb diet on biomarkers in breast cancer survivors



**Primary Question:** How does fat loss achieved by different dietary approaches impact biomarkers of breast cancer risk?


- Glucose Homeostasis
- Inflammation
- Cellular oxidation
- Sex steroid metabolism

## Cumulative Loss of Body Weight, Body Fat, and Lean Body Mass According to Study Group






### Change in fasting glucose by diet group



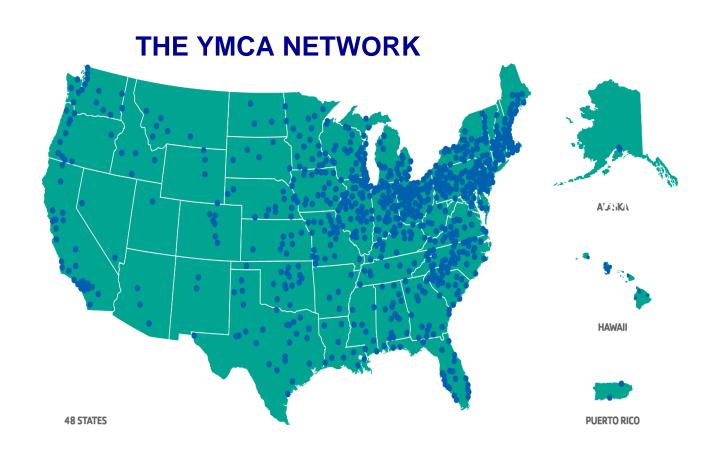
## Change in glucose by arm and weight change (high vs. low)



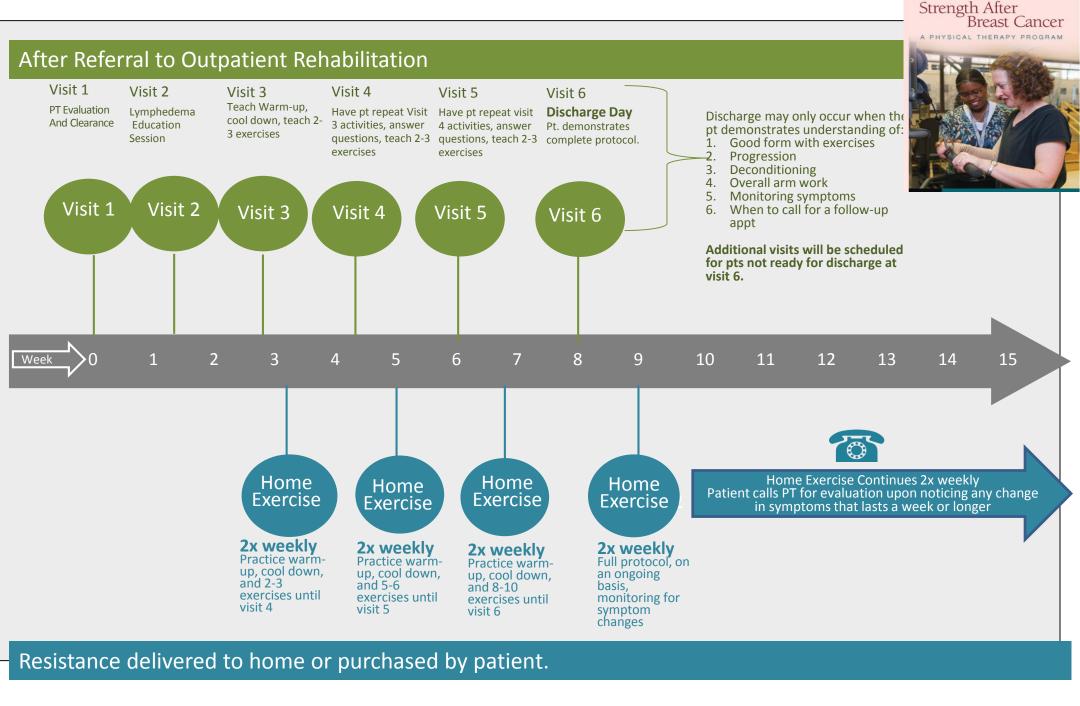
### Do on-going trials provide a path to widespread dissemination in cancer survivors?

|                       | BWEL                | CHALLENGE                   | DIANA 5                    | GAP 4                       | LIVES                | SUCCESS             |
|-----------------------|---------------------|-----------------------------|----------------------------|-----------------------------|----------------------|---------------------|
|                       |                     |                             |                            |                             |                      | U                   |
| Recruitment sites     | Cooperative group   | Cooperative group           | Individual clinics         | Individual clinics          | Cooperative group    | Cooperative group   |
|                       |                     |                             | Dietary                    |                             | Dietary              |                     |
| Intervention          | Weight Loss         | Exercise                    | change +<br>Exercise       | Exercise                    | change +<br>exercise | Weight Loss         |
| Intervention delivery | Telephone-<br>based | Supervised,<br>clinic-based | Group,<br>clinic-<br>based | Supervised,<br>clinic-based | Telephone-<br>based  | Telephone-<br>based |

### Do on-going trials provide a path to widespread dissemination in cancer survivors?


|                       | BWEL                | CHALLENGE                   | DIANA 5                         | GAP 4                       | LIVES                           | SUCCESS<br>C        |
|-----------------------|---------------------|-----------------------------|---------------------------------|-----------------------------|---------------------------------|---------------------|
| Recruitment sites     | Cooperative group   | Cooperative group           | Individual<br>clinics           | Individual<br>clinics       | Cooperative group               | Cooperative group   |
| Intervention          | Weight Loss         | Exercise                    | Dietary<br>change +<br>Exercise | Exercise                    | Dietary<br>change +<br>exercise | Weight Loss         |
| Intervention delivery | Telephone-<br>based | Supervised,<br>clinic-based | Group,<br>clinic-<br>based      | Supervised,<br>clinic-based | Telephone-<br>based             | Telephone-<br>based |
|                       |                     |                             |                                 |                             |                                 |                     |

### Do on-going trials provide a path to widespread dissemination in cancer survivors?


|                       | BWEL                | CHALLENGE                   | DIANA 5                         | GAP 4                       | LIVES                           | SUCCESS<br>C        |
|-----------------------|---------------------|-----------------------------|---------------------------------|-----------------------------|---------------------------------|---------------------|
| Recruitment sites     | Cooperative group   | Cooperative group           | Individual<br>clinics           | Individual<br>clinics       | Cooperative<br>group            | Cooperative group   |
| Intervention          | Weight Loss         | Exercise                    | Dietary<br>change +<br>Exercise | Exercise                    | Dietary<br>change +<br>exercise | Weight Loss         |
| Intervention delivery | Telephone-<br>based | Supervised,<br>clinic-based | Group,<br>clinic-<br>based      | Supervised,<br>clinic-based | Telephone-<br>based             | Telephone-<br>based |
|                       |                     |                             |                                 |                             |                                 |                     |

## Potential avenues for implementation of exercise interventions in cancer survivors

80% OF U.S.
HOUSEHOLDS
WITHIN
5 MILES
OF A YMCA



SERVING MORE THAN **22 MILLION MEMBERS**EACH YEAR IN MORE THAN **10,000 COMMUNITIES.** 



## New technologies may allow for development of distance-based exercise interventions

- Wearable activity monitors allow for transmission of objective activity and biometric data to trainers/investigators
- Mobile platforms allow for delivery of content in real-time and also allow for individualized coaching from afar

- More work is needed
- On-going work will explore balance of technology and traditional coaching methods



## Can we generalize information from on-going trials to other diseases/populations?

- Observational data connects obesity and inactivity to increased risk of cancer recurrence and related mortality in many diseases
- On-going trials focus on a small sub-set of these cancers
- Trials also need to focus on a single intervention in a narrow subset of patients to keep sample size feasible
- As oncology treatments become more "personalized", focusing on development of individual treatment plans for subsets of patients within a particular disease, path to broader generalization of trial results remains unclear

## Which evidence gaps will be addressed by current trials?

- Evidence from on-going trials will provide information about the impact of weight loss and increased physical activity on cancer recurrence and mortality
- Trials address specific interventions in individual diseases
- Correlative work may provide tools to extend the knowledge gained from these studies
  - Predictive markers: define populations most likely to benefit
  - Intermediate biomarkers: facilitate work to compare different interventions and doses
- Still significant unanswered questions
  - Best ways to disseminate interventions to diverse groups of cancer survivors, especially exercise interventions
  - Unclear how much generalization can occur across diseases

## BWE Study team

- PI: Jennifer Ligibel
- Co-Chairs
  - Correlative Science Co-Chair: Pam Goodwin (Co-PI)
  - Health Behaviors Co-Chair: Dawn Hershman (SWOG)
  - Community Oncology Co-Chair: Judy Hopkins
  - Health Disparities Co-Chair: Electra Paskett
  - Breast Committee Chairs: Eric Winer
     & Cliff Hudis
- Statistics: Bill Barry, Linda McCourt, Amylou Dueck
- Advocates: Patty Spears and Liz Frank
- Funding: CTEP, DCP, DCCPS, ACS, Komen

#### Intervention Oversight Committee:

- · Chair: Tom Wadden
- Behavioral Science: Catherine Alfano
- Exercise Physiology: Melinda Irwin
- Nutrition: Marian Neuhouser
- Call Center: Linda Delahanty
- Remote Intervention Delivery: Cyndi Thomson

#### Steering Committee Members

- Vered Stearn (ECOG)
- Julia White (NRG)
- Rachel Ballard (NIH)
- Worta McCaskill-Stevens (NCI)
- Linda Nebeling (NCI)
- Vanessa Bernstein